УДК 629.735.45

Башинский В.Г., Камак Ю.О.

МЕТОДИКА ОПРЕДЕЛЕНИЯ ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ ДВИГАТЕЛЕЙ ЛЕТАТЕЛЬНОГО АППАРАТА ПРИ ПРОВЕДЕНИИ ИСПЫТАНИЙ

Главным источником ИК-излучения летательного аппарата (ЛА) в наземных условиях является силовая установка (СУ) и ее элементы: детали двигателя (лопатки последней ступени турбины, элементы затурбинного кока, экраны и др.), нагретые до высокой температуры, а также струя выхлопных газов. На бесфорсажных режимах максимум ИК-излучения газовой струи составляет около 15% от максимума ИК-излучения сопла СУ ЛА (без применения мер по снижению тепловой заметности).

Мероприятия по снижению ИК-излучения могут привести к изменению основных характеристик ЛА, влияя на боевую эффективность его применения. Эффективными мероприятиями по снижению тепловой заметности следует считать такие, которые, изменяя ИК-характеристики до заданного уровня, не нарушают соответствия основных характеристик ЛА требованиям, заданным тактико-техническим заданием.

Основной характеристикой ИК-излучения двигателей ЛА, позволяющей оценивать зоны действия головок самонаведения и изменение размеров этих зон, является величина собственной спектральной силы излучения $I_{o,\lambda}$, зависящая от режима работы двигателя, длины волны и направления наблюдения. Поскольку боевые ИК-приборы работают в сравнительно широких спектральных интервалах $\Delta\lambda$, то ИК-излучение ЛА характеризуется величиной интегральной собственной силы излучения $I_{o,\Delta\lambda}$.

Для конкретных условий работы объекта испытаний его ИК-излучение полностью характеризуется индикатрисой излучения, то есть зависимостью силы излучения от угла наблюдения φ . Мероприятия по снижению ИК-заметности приводят либо к общему уменьшению значений силы излучения, либо к перераспределению ее в пространстве, то есть в конечном итоге изменяют индикатрису излучения.

Эффективность мероприятий по снижению ИК-заметности характеризуется коэффициентом ослабления силы излучения в зависимости от направления наблюдения

$$\tilde{k}\left(\varphi\right) = \frac{I_{o,\Delta\lambda}\left(\varphi\right)_{\delta.M}\left(\text{без мероприятий}\right)}{I_{o,\Delta\lambda}\left(\varphi\right)_{M}\left(\text{с мероприятиями}\right)},\tag{1}$$

который в общем случае является также функцией длины волны и ширины используемого спектрального интервала $\Delta \lambda$.

При использовании радиометрической (спектрорадиометрической) измерительной аппаратуры собственная сила излучения не может быть измерена непосредственно. Путем косвенных измерений может быть получен ряд физических параметров, в той или иной степени (в зависимости от вида измерительного прибора (ИП) и условий измерений) приближающихся к собственной силе излучения.

Выходной сигнал A ИК-приборов определяется непосредственно разностью между суммарным потоком излучения от объекта и фона, попадающего в поле зрения ИП, и потоком излучения от чистого фона. В других ИП выходной сигнал определяется разностью внешнего (падающего) и внутреннего (создаваемого внутриприборными засветками или специальным встроенным излучателем) потоков, которая путем последовательного измерения потоков от объекта с фоном и от чистого фона сводится к предыдущей.

Учитывая, что входной поток (в Вт) связан с энергетической освещенностью соотношением

$$\Phi = ES_{\alpha c}, \tag{2}$$

где $S_{o.c.}$ — действующая площадь оптической системы ИП, для величины выходного сигнала, определяемой отдельной спектральной составляющей потока, имеем выражение

$$A_2 = c' \Delta \Phi_2 \phi_2 = c \Delta E_2 \phi_2 \,, \tag{3}$$

где $\phi_{\lambda} = \phi_{\lambda,o,c}\phi_{\lambda,\phi}\phi_{\lambda,np}$ — сквозная относительная спектральная характеристика чувствительности ИП; $\phi_{\lambda,o,c}$ — относительная спектральная характеристика оптической системы; $\phi_{\lambda,\phi}$ — относительная спектральная характеристика пропускания спектрального фильтра; $\phi_{\lambda,np}$ — относительная спектральная характеристика чувствительности приемника излучения; c — постоянный коэффициент, учитывающий площадь входного зрачка ИП, максимальные абсолютные значения пропускания оптики и фильтра, максимальную чувствительность приемника и коэффициент передачи тракта сигнала.

Известно, что

$$\Delta E_{\lambda} = \frac{\tau_{\lambda} \left(D \right)}{D^{2}} \left[B_{o,\lambda} S_{o} + B_{\phi,\lambda} \left(S_{n.3} - S_{o} \right) - B_{\phi,\lambda} S_{n.3} \right] = \frac{\tau_{\lambda} \left(D \right)}{D^{2}} S_{o} \left(B_{o,\lambda} - B_{\phi,\lambda} \right) =$$

$$= \frac{\tau_{\lambda} \left(D \right)}{D^{2}} \left(I_{o,\lambda} - I_{\phi,\lambda} \right) = E_{\kappa,\lambda},$$

$$(4)$$

где $E_{\kappa,\lambda}$ — контрастная спектральная энергетическая освещенность, $\mathrm{Br/m^3}$; D — расстояние между объектом и ИП, м; D>100 м; $\tau_{\lambda}\left(D\right)$ — спектральный коэффициент атмосферного пропускания на трассе длиной D; S_o — видимая площадь объекта, $\mathrm{m^2}$; $S_{n,3}$ — площадь участка фона, заполняющего мгновенное поле зрения прибора на расстоянии D, $\mathrm{m^2}$; $B_{o,\lambda}$; $B_{\phi,\lambda}$ — средние спектральные яркости объекта и фона, $\mathrm{Br/cp\cdot m}$; $I_{o,\lambda}$; $I_{\phi,\lambda}$ — собственная спектральная сила излучения объекта и участка фона, затеняемого объектом соответственно, $\mathrm{Br/cp\cdot m}$.

Отсюда следует, что в результате спектральных измерений могут быть определены: кажущаяся контрастная спектральная сила излучения (в $BT/cp \cdot M$)

$$I_{\kappa,\lambda}^* = E_{\kappa,\lambda} D^2 = \tau_{\lambda} (D) \left[I_{o,\lambda} - I_{\phi,\lambda} \right], \tag{5}$$

истинная контрастная спектральная сила излучения (в Вт/ср · м)

$$I_{\kappa,\lambda} = \frac{E_{\kappa,\lambda}D^2}{\tau_{\lambda}(D)} = I_{o,\lambda} - I_{\phi,\lambda} , \qquad (6)$$

собственная спектральная сила излучения (в Вт/ср · м)

$$I_{o\lambda} = I_{\kappa\lambda} + I_{d\lambda}. \tag{7}$$

Интегрирование этих величин в пределах требуемого спектрального интервала $\Delta \lambda$, позволяет получить соответствующие интегральные значения $I_{\kappa.\Delta\lambda}^*$, $I_{\kappa.\Delta\lambda}$ и $I_{o.\Delta\lambda}$.

При использовании ИП радиометрического типа измеряется эффективная контрастная интегральная освещенность (в Bt/m^2)

$$E_{3\phi,\kappa\Delta\lambda} = \frac{I_{o,n}}{D^2} \left[Z_{\lambda} \left(\frac{\lambda_2}{\lambda_{o,M}} \right) - Z_{\lambda} \left(\frac{\lambda_1}{\lambda_{o,M}} \right) \right] k_o - \frac{I_{\phi,n}}{D^2} \left[Z_{\lambda} \left(\frac{\lambda_2}{\lambda_{\phi,M}} \right) - Z_{\lambda} \left(\frac{\lambda_1}{\lambda_{\phi,M}} \right) \right] k_{\phi} =$$

$$= I_{o,\Delta\lambda} k_o - I_{\phi,\Delta\lambda} k_{\phi},$$
(8)

МОДЕЛЮВАННЯ ПРОЦЕСІВ ПРОМИСЛОВОГО ОБЛАДНАННЯ

где $I_{o,n}$ — полная (во всем спектральном диапазоне) собственная сила излучения объекта, Вт/ср; $I_{\phi,n}$ — полная собственная сила излучения участка фона, затеняемого объектом, Вт/ср; $Z\bigg(\frac{\lambda}{\lambda_{\scriptscriptstyle M}}\bigg)$ — табличная функция; $\lambda_{o,n}$, $\lambda_{\phi,n}$ — длины волн, соответствующие максимальным значениям спектральной плотности изучения объекта и фона и определяемые (в мкм) по закону Вина:

$$\lambda_{\scriptscriptstyle M} = \frac{2898}{T} \,; \tag{9}$$

 λ_1 , λ_2 – коротковолновая и длинноволновая границы чувствительности ИП; $I_{o,\Delta\lambda}$, $I_{\phi,\Delta\lambda}$ – интегральная собственная сила излучения соответственно объекта и фона в интервале $\Delta\lambda$; k_o , k_ϕ – коэффициенты использования излучения объекта и фона, определяемые выражением:

$$k = \frac{\int_{\lambda_{1}}^{\lambda_{2}} Me_{\lambda_{omn}}(T)\phi_{\lambda}\tau_{\lambda}d\lambda}{\int_{\lambda_{1}}^{\lambda_{2}} Me_{\lambda_{omn}}(T)d\lambda},$$
(10)

где $Me_{\lambda_{cont}}$ – функция Планка, нормированная относительно максимума.

Определяемая в результате радиометрических измерений величина $E_{3\phi,\kappa,\Delta\lambda}D^2$ представляет собой эффективную контрастную интегральную силу излучения объекта $I_{3\phi,\kappa,\Delta\lambda}$, если в коэффициентах использования излучения учтено атмосферное пропускание τ_λ , или кажущуюся эффективную контрастную интегральную силу излучения $I^*_{3\phi,\kappa,\Delta\lambda}$, если атмосферное пропускание по каким-либо причинам не может быть учтено.

Таким образом, в процессе измерений (с использованием радиометрической аппаратуры) реально достигнуто получение пяти вышеописанных физических параметров, характеризующих ИК-излучение объекта испытаний.

Эффективность мероприятий (постоянных или временных) по снижению ИК-излучения оценивается любым из следующих выражений (в зависимости от условий проведения испытаний, их цели и используемой измерительной ИК-аппаратуры), представленных в порядке возрастания погрешности:

$$\tilde{k}_{1} \cong \frac{I_{o,\Delta\lambda,\delta.M}}{I_{o,\Delta\lambda,M}};$$

$$\tilde{k}_{2} \cong \frac{I_{\kappa,\Delta\lambda,\delta.M}}{I_{\kappa,\Delta\lambda,M}};$$

$$\tilde{k}_{3} \cong \frac{I_{\kappa,\Delta\lambda,\delta.M}^{*}}{I_{\kappa,\Delta\lambda,M}^{*}};$$

$$\tilde{k}_{4} \cong \frac{I_{g\phi,\kappa,\Delta\lambda,\delta.M}}{I_{g\phi,\kappa,\Delta\lambda,M}};$$

$$\tilde{k}_{5} \cong \frac{I_{g\phi,\kappa,\Delta\lambda,\delta.M}^{*}}{I_{g\phi,\kappa,\Delta\lambda,\delta.M}^{*}},$$
(11)

где 6.м — означает значение параметра, характеризующее ИКИ объекта испытаний без мероприятий по снижению ИК-заметности; м — то же, но с учетом мероприятий по снижению уровня ИК-излучения.

Калибровка ИП радиометрического типа заключается в определении взаимосвязи выходного сигнала ИП (в виде напряжения, тока, отклонения шлейфа и т.п.) с величиной освещенности на входном зрачке. Калибровка в единицах освещенности автоматически учитывает в градуировочной зависимости все постоянные характеристики ИП, включая действующую площадь оптической системы.

Измерительный прибор радиометрического типа калибруется (при D>100 м) по точечной модели абсолютно черного тела (АЧТ) с набором сменных диафрагм. При этом оптическая ось объекта ИП должна быть перпендикулярна поверхности излучения АЧТ. Расстояние t между ИП и АЧТ должно быть не менее ближнего предела фокусировки (для ИП, имеющих возможность фокусировки) или не менее 30F (где F – фокусное расстояние объектива) для ИП, постоянно сфокусированных на бесконечность.

Величина освещенности от АЧТ изменяется путем изменения площади $S_{AЧT}$ излучающего отверстия (диаметра d и сменных диафрагм) и температуры АЧТ и рассчитывается по формулам:

$$E_{\lambda A Y T} = \frac{S_{A Y T}}{\pi l^2} 1,2854 \cdot 10^{-15} T_{A Y T}^5 Y_{\lambda} \left(\frac{\lambda}{\lambda_{M}}\right) \tau \lambda,$$

$$E_{3 \phi \phi, \Delta \lambda} = \frac{S_{A Y T}}{\pi l^2} 1,2854 \cdot 10^{-15} T_{A Y T}^5 \int_{\lambda_{L}}^{\lambda_{L}} Y_{\lambda} \left(\frac{\lambda}{\lambda_{M}}\right) \phi_{\lambda} \tau_{\lambda} d\lambda,$$
(12)

где $Y_{\lambda}\left(\frac{\lambda}{\lambda_{_{M}}}\right)$ — табличная функция.

Вычисление интеграла в выражении (12) выполняется следующим образом:

спектральный диапазон чувствительности ИП $\Delta \lambda = \lambda_2 - \lambda_1$ разбивается на n узких спектральных интервалов $\Delta \lambda_i$, одинаковой ширины;

интеграл заменяется суммой

$$\int_{\lambda_{i}}^{\lambda_{2}} Y_{\lambda} \left(\frac{\lambda}{\lambda_{M}} \right) \phi_{\lambda} \tau_{\lambda} d\lambda = \sum_{i=1}^{n} Y_{\lambda i} \left(\frac{\lambda_{i}}{\lambda_{M}} \right) \phi_{\lambda i} \tau_{\lambda i} \Delta \lambda_{i} ; \qquad (13)$$

для центральной или граничной (одинаково для всех интервалов) длины волны каждого интервала λ_i определяются отношении $\frac{\lambda_i}{\lambda_{\cdots}}$;

по таблице находятся значения Y_{λ_i} ;

по паспортным данным ИП определяются значения ϕ_{λ_i} или составляющих $\phi_{\lambda_i oc}$, $\phi_{\lambda_i np}$;

для выбранных длин волн λ_i определяются значения τ_{λ_i} любым доступным способом, например, с использованием таблицы (см. Криксунов Л.З. Справочник по основам инфракрасной техники. М., Советское радио, 1978) или инженерной методики расчета спектральной прозрачности атмосферы в области 0,22–6,0 мкм для источников неселективного излучения;

для каждой длины волны вычисляются соответствующие произведения и выполняется суммирование в соответствии с выражением (13).

Для некоторых частных случаев (например, в случае радиометрического ИП с приемником I_nSb без спектрального фильтра) можно при вычислениях $E_{9\phi\phi,\Delta\lambda,AЧT}$ использовать формулу (8), рассчитывая коэффициент использования АЧТ по апроксимационным формулам [1].

В целях исключения влияния фона на результат калибровки определяются разности освещенности от АЧТ, создаваемых при последовательной смене диафрагм АЧТ:

$$\Delta E_{i,j,\lambda,AYT} = E_{\lambda,AYT_i} - E_{\lambda,AYT_j} = E_{\kappa,\lambda,AYT_{ij}} \; ; \;$$

$$\Delta E_{i,j\ni\phi,\Delta\lambda,A\Upsilon T} = E_{\ni\phi,\Delta\lambda,A\Upsilon T_i} - E_{\ni\phi,\Delta\lambda,A\Upsilon T_i} = E_{\ni\phi,\kappa,\Delta\lambda,A\Upsilon T_{ij}}$$

и соответствующие им разности выходных сигналов измерительного прибора $\Delta A_{ij} = A_i - A_j$. По этим данным строятся градуировочные зависимости вида $\Delta A = f(\Delta E)$ или $\Delta E = \varphi(\Delta A)$. В целях получения большего количества точек градуировочной зависимости и сокращения затрат времени па калибровку целесообразно использовать одновременно несколько AЧТ, установленных на одинаковом фоне и на одинаковом расстоянии от ИП, но имеющих разные температуры. При этом необходимо следить, чтобы в поле зрения ИП не попадали два АЧТ одновременно.

Испытания (исследования) двигателя проводятся, как правило, на открытом стенде ($30 \text{ м} \leq D \leq 3000 \text{ м}$), позволяющем устанавливать СУ в требуемой компоновке, например, с мотогондолой, хвостовой частью, крылом, системой подавления ИК-излучения и так далее, а летательного аппарата в целом на специальной открытой площадке, приспособленной для его крепления, поворотов и проведения ИК-измерений на расстояниях, обеспечивающих полное попадание объекта в поле зрения измерительного устройства.

Для исключения помех от излучения фона при измерениях с помощью ИП радиометрического типа время испытаний целесообразно выбирать из условий:

в ясную погоду – после захода солнца;

в ненастную погоду – в любое время при отсутствии дождя, снега, густого тумана.

В качестве обязательных режимов работы СУ ЛА, на которых производится измерение ИК-излучения, должны быть выбраны:

максимальный форсированный;

крейсерский форсированный;

максимальный.

В процессе проведения испытаний дополнительно ИК-излучение должно проверяться на следующих режимах:

крейсерском;

полетном малом газе.

Углы визирования ИП выбираются из условия проведения экспериментов в количестве, необходимом для построения индикатрисы ИК-излучения в задней и передней полусферах (ЗПС и ППС). Шаг изменения угла визирования задается в зависимости от целей испытаний и испытательной аппаратуры.

Измерение характеристик ИК-излучения проводится в спектральных диапазонах чувствительности приемников излучения головок самонаведения управляемых ракет (1,8–3,2 мкм; 3,5–5,5 мкм; 6–14 мкм).

Последовательность операций в процессе ИК-измерений при фиксированном угле визирования для каждого режима работы двигателя (СУ ЛА) следующая:

наводка ИП (радиометра, спектрорадиометра, тепловизора) на объект испытаний с помощью визирного устройства или по максимальному сигналу и установка необходимой чувствительности прибора;

измерение ИК-излучения фона при неработающем двигателе, если такая возможность обеспечивается $\mathrm{И}\Pi$;

вывод двигателя па требуемый режим, его стабилизация в течение необходимого времени и регистрация основных параметров данного режима (частоты вращения роторов, температуры газов за турбиной, расхода топлива и др.);

измерение ИК-излучения с регистрацией выходного сигнала ИП на соответствующем регистраторе.

При наличии искусственных помех (шумов) последние две операции повторяются несколько раз.

Если двигатель (ЛА) оборудован системой подавления ИК-излучения, то сначала измеряют излучение объекта при неработающей системе, а затем, не меняя режим работы двигателя и не производя никаких регулировок, – при работающей системе подавления.

Кроме ИК-характеристик и параметров работы двигателя, в процессе испытаний необходимо измерять и регистрировать следующие характеристики:

температуру элементов выходного устройства СУ;

полное давление на срезе сопла;

температуру, относительную влажность и давление атмосферного воздуха;

МОДЕЛЮВАННЯ ПРОЦЕСІВ ПРОМИСЛОВОГО ОБЛАДНАННЯ

диаметр критического сечения и среза сопла;

расстояние от ИП до объекта испытаний и угол визирования.

Дополнительно к указанным параметрам целесообразно (в зависимости от цели испытаний или исследований) фиксировать такие характеристики, как:

статическую температуру струи и ее распределение по сечению и длине в количестве не менее 150 точек;

метеорологическую дальность видимости;

другие параметры (в зависимости от вида и целей испытаний).

Выводы. Приведенную выше методику можно использовать на всех видах испытаний опытных, модифицированных и серийных (в случае доработки) летательных аппаратов, авиационных двигателей или силовых установок для оценки их характеристик тепловой заметности (ИК-характеристик). Также можно использовать на более ранних этапах опытно-конструкторских работ по созданию новых образцов СУ (ЛА), например, при автономной отработке объекта и при проведении специальных испытаний и исследований физических моделей выходного устройства СУ по оценке эффективности мероприятий по снижению ИК-излучения авиационных двигателей.

Литература

- 1. Криксунов Л.З. Тепловизоры. Киев: Техника, 1987.
- 2. Кучин В.Л., Криксунов Л.З., Волков В.А., Мехряков В.И., Рябышко В.А. Справочник по приборам инфракрасной техники / Киев: Техника, 1980.

УДК 629.735.45

Башинський В.Г., Камак Ю.О.

МЕТОДИКА ВИЗНАЧЕННЯ ІНФРАЧЕРВОНОГО ВИПРОМІНЮВАННЯ ДВИГУНІВ ЛІТАЛЬНИХ АПАРАТІВ ПРИ ПРОВЕДЕННІ ВИПРОБУВАНЬ

У статті пропонується типова методика визначення теплової помітності силових установок літальних апаратів, яка використовується для оцінки ефективності заходів щодо зниження інфрачервоного випромінювання

Bashinskii V.G., Kamak Y.O.

TECHNIQUE DEFINITION OF INFRA-RED RADIATION OF ENGINES FLYING MACHINE AT CARRYING OUT OF TESTS

In article the typical technique of definition thermal заметности power-plants of the flying machines, applied to an estimation of efficiency of actions for decrease in infra-red radiation is offered.