УДК 533.662.64: 621.548.4

Лебедь В.Г., Калкаманов С.А., Сушко А.Л.

ОЦЕНКА ЦЕЛЕСООБРАЗНОСТИ ИСПОЛЬЗОВАНИЯ КОНЦЕНТРАТОРОВ ВОЗДУШНОГО ПОТОКА В ВЕТРОЭНЕРГЕТИЧЕСКИХ УСТАНОВКАХ

На сегодняшний день в силу экономических и экологических проблем актуальными становятся вопросы использования альтернативных источников энергии, в том числе энергетического потенциала ветра. Но ветроэнергетические установки (ВЭУ) рентабельны при среднегодовой скорости ветра больше 5 м/с. Одним из способов повышения эффективности ВЭУ в регионах с малыми среднегодовыми скоростями ветра является использование концентраторов воздушного потока (КВП), обеспечивающих усиление аэродинамического взаимодействия набегающего воздушного потока с турбиной ВЭУ.

В качестве КВП могут быть использованы кольцевые конические тела. На рисунке 1 показан характер распределения коэффициента давления C_P вдоль оси *ох* конических тел (кольцевых профилей), полученного в работе [1] на основе метода дискретных вихрей. Скорость на поверхности тел можно определить по формуле

$$\frac{V}{V_{\infty}} = \sqrt{1 - C_p} ,$$

где V_{∞} – скорость набегающего потока.

Из анализа представленных на рисунке 1 зависимостей следует, что наиболее эффективным КВП является диффузор [2, 3, 4].

Но кольцевые профили конечной толщины и сравнительно малой хорды изучены в недостаточной степени, особенно с учетом вязкости, в связи с чем исследования по влиянию геометрических параметров КВП на эффективность обеспечения максимальной концентрации воздушной энергии являются актуальными.

Если обратить внимание на существующие ветроэнергетические установки с КВП (рис. 2), то естественно возникает вопрос: насколько эффективно использование КВП в ветроэнергетических установках?

С этой целью целесообразно использовать критерий

$$\Im = \frac{N_{\rm T}}{C_{\Sigma}},$$

где $N_{\rm T}$ – мощность турбины в ветроэнергетических установках; C_{Σ} – суммарная стоимость КВП и турбины.

На рисунке 3 представлена зависимость стоимости диффузора от величины $L_D = L \cdot 0, 5 \cdot (D_{\text{вых}} + D_{\text{вх}})$, где L – длина диффузора (КВП), $D_{\text{вых}}$, $D_{\text{вх}}$ – диаметр выходного и входного сечения КВП. Зависимость получена на основе анализа стоимости пластмассовых изделий.

Рисунок 1 – Расчетные значения распределения давления для двух конических кольцевых профилей и для соответствующей плоской пластины, установленной с углом атаки 11°:

1 - коническое тело - диффузор; 2 - коническое тело конфузор; 3 - изолированный профиль

Рисунок 2 – Внешний вид ветроэнергетической установки с КВП

Рисунок 3 – Стоимость диффузора в зависимости от произведения длины диффузора L на средний диаметр $D_c = (D_{\text{вых}} + D_{\text{вх}})/2$

На рисунке 4 представлена зависимость стоимости турбины от ее радиуса $r_{\rm T}$ при КПД равном 0,3. Зависимость построена исходя из статических данных: стоимость одного ватта мощности ветротурбины при скорости набегающего потока $V_{\infty} = 8$ м/с равна двум долларам.

Рисунок 4 – Зависимости стоимости турбины от ее радиуса

Принимая во внимание, что мощность турбины

$$N_T = \eta \frac{\rho V_\infty^3}{2} \pi r_{\rm T}^2,$$

где *r*_т, η – соответственно, радиус и КПД турбины.

Можно построить зависимость стоимости турбины от $r_{\rm T}$ для других значений скорости ветра.

Для определения N_т необходимо провести расчет обтекания воздушным потоком ветроэнергетической установки, состоящей из КВП и турбины.

В работе [4] на основе численного интегрирования осредненных уравнений Навье-Стокса в двумерной постановке представлены результаты расчетов параметров течения около диффузора. В работе [3] на основе численного интегрирования уравнений газовой динамики представлены структура течения около диффузора со щелями и изменения коэффициентов мощности, давления в зависимости от удельной нагрузки. Сравнение с экспериментальными данными показало недостаточную точность расчетных данных и необходимость коррекции расчетной модели.

В тоже время использование численных методов решения осредненных уравнений Навье-Стокса при расчете обтекания КВП с турбиной наталкивается на сложности в задании расчетной сетки около трехмерных тел с протоком и на огромные вычислительные затраты. Поэтому не потеряли свою актуальность и методы, основанные на идеи Прандтля – разделение области течения на внешнюю, где используется модель идеального газа, и на пограничный слой (ПС).

Целью данной работы является разработка численного метода расчета параметров течения в КВП с турбиной и оценка целесообразности использования КВП в ветроэнергетических установках.

Постановка задачи и исходные уравнения

Течение воздуха около ветроэнергетической установки определяется путем решения уравнения Лапласа и интегральных соотношений теорий пограничного слоя.

Известно [5], что значение потенциала возмущенных скоростей, удовлетворяющего уравнению Лапласа, можно определить с помощью граничного интегрального уравнения

$$\varphi = \frac{1}{2\pi} \int_{S+S_{\mathrm{T}}} \left(\frac{1}{r} \frac{\partial \varphi}{\partial n} - \varphi \frac{\partial}{\partial n} \frac{1}{r} \right) ds - \frac{1}{2\pi} \int_{f} \Delta \varphi \, \frac{\partial}{\partial n} \frac{1}{r} df \,, \tag{1}$$

где r – расстояние от точки интегрирования до точки, где определяется потенциал φ ; S – поверхность КВП; f – поверхность вихревой пелены за КВП; $S_{\rm T}$ – площадь турбины; $\Delta \varphi$ – перепад потенциала на пелене; $\vec{n} = n_x i + n_y j + n_z k$ – единичная нормаль в точках поверхностей S, f, $S_{\rm T}$.

Из граничного условия непротекания на поверхности S

$$\frac{\partial \varphi}{\partial n} = -\vec{V}_{\infty}\vec{n},$$

где \vec{V}_{∞} – вектор скорости набегающего потока.

Турбина моделируется активным сечением по аналогии с работой [6]. Так как поверхность турбины $S_{\rm T}$ проницаемая, то условие непротекания записывается для той части скорости, на какую уменьшается скорость потока, проходя через турбину. Если обозначить эту скорость $\chi V_{6,\rm T}$, то на поверхности $S_{\rm T}$

$$\frac{\partial \varphi}{\partial n} = -\chi \vec{V}_{\vec{0}.T} \vec{n},$$

где χ – коэффициент торможения потока турбиной (чем меньше χ , тем большая часть потока тормозится турбиной); $\vec{V}_{6.T}$ – скорость внутри КВП в месте установки турбины (когда турбина еще не установлена).

Индуктивная скорость в плоскости турбины

$$\vartheta_i = V_{\delta,\mathrm{T}} - V_2$$

где V₂ – скорость в плоскости 2-2 (рис. 5) при установке турбины.

Для определения мощности турбины составим уравнение импульсов для двух выделенных контрольных объемов (рис. 5). Принимая во внимание, что сила давления на срезе контрольного объема $P_{\infty}(S_0 - S_1)$ уравновешивается силой на поверхности спутной струи, то для контрольного объема с конфузором имеем

$$P_{\infty}S_{1} + \int_{S_{\kappa}} P\cos(\vec{n}i) dS - P_{2,1}S_{T} - \int_{S_{\kappa}} \tau\cos(\vec{e}i) dS = \rho V_{2}^{2}S_{T} - \rho V_{2}S_{T}V_{\infty}$$

Учитывая, что $\cos(\vec{n}i)dS = -dS_1$, и добавляя в левую часть

$$\int_{S_{\kappa}} P_{\infty} \cos\left(\vec{n}i\right) dS - \int_{S_{\kappa}} P_{\infty} \cos\left(\vec{n}i\right) dS ,$$

получим

$$P_{\infty}S_{\rm T} + \int_{S_{\kappa}} (P - P_{\infty})\cos(\vec{n}i) dS - P_{2,1}S_{\rm T} - \int_{S_{\kappa}} \tau \cos(\vec{e}i) dS = \rho (V_{\rm \tilde{6},T} - \vartheta_i) (V_{\rm \tilde{6},T} - \vartheta_i - V_{\infty}) S_{\rm T}, \quad (2)$$

где P_{∞} – атмосферное давление; \vec{n} – единичная нормаль к внутренней поверхности КВП; i – орт оси ox; S_{τ} – площадь турбины; S_{κ} – внутренняя площадь поверхности конфузора; τ – напряжение трения; \vec{e} – единичный вектор касательной в точках внутренней поверхности КВП.

Рисунок 5 – Общий вид КВП с турбиной площадью $S_{\rm T}$

Для контрольного объема с диффузором

$$P_{2,2}S_{\mathrm{T}} + \int_{S_{\mathrm{T}}} (P - P_{\infty})\cos\left(\vec{n}i\right) dS - \int_{S_{\mathrm{T}}} \tau \cos\left(\vec{e}i\right) dS - P_{\infty}S_{\mathrm{T}} =$$

$$= -\rho V_{2}S_{\mathrm{T}}V_{2} + \rho V_{2}S_{\mathrm{T}}\left(V_{\infty} - \vartheta_{2}\right) = \rho \left(V_{\mathrm{6.T}} - \vartheta_{i}\right) \left[\left(V_{\infty} - \vartheta_{2}\right) - V_{\mathrm{6.T}} + \vartheta_{i} \right] S_{\mathrm{T}}.$$
(3)

Сложим уравнения (2), (3) и получим

$$\left(P_{2,2}-P_{2,1}\right)S_{\mathrm{T}}+\int_{S_{\mathrm{K}}+S_{\mathrm{R}}}\left(P-P_{\infty}\right)\cos\left(\vec{n}i\right)dS-\int_{S_{\mathrm{K}}+S_{\mathrm{R}}}\tau\cos\left(\vec{e}i\right)dS=-\rho\left(V_{\mathrm{\tilde{6},\mathrm{T}}}-\vartheta_{i}\right)\vartheta_{2}S_{\mathrm{T}}.$$

Разделим обе части полученного равенства на $\frac{\rho V_{\infty}^2}{2} S_{\text{T}}$, тогда

$$\overline{\Delta P_{\mathrm{T}}} - C_{x\rho} + C_{x\tau} = 2 \left(\frac{V_{\mathrm{6,T}}}{V_{\infty}} - \frac{\vartheta_i}{V_{\infty}} \right) \frac{\vartheta_2}{V_{\infty}} = 2 \left(\overline{V}_{\mathrm{6,T}} - \overline{\vartheta}_i \right) \overline{\vartheta}_2, \tag{4}$$

Інтегровані технології та енергозбереження 4'2011

где
$$\overline{\Delta P_{\rm T}} = \frac{2(P_{2,1} - P_{2,2})}{\rho V_{\infty}^2};$$
 $C_{x\rho} = \frac{1}{S_{\rm T}} \int_{S_{\rm K} + S_{\rm R}} C_p \cos(\vec{n}i) dS;$ $C_{x\tau} = \frac{1}{S_{\rm T}} \int_{S_{\rm K} + S_{\rm R}} C_f \cos(\vec{e}i) dS;$
2(*P*, *P*)

 $C_{\rho} = \frac{2(P - P_{\infty})}{\rho V_{\infty}^2}$ – коэффициент давления; $C_f = \frac{2\tau}{\rho V_{\infty}^2}$ – коэффициент трения.

Уравнение (4) можно переписать в виде

$$\overline{\Delta P_{\mathrm{T}}} - 2\left(\overline{V}_{\overline{0},\mathrm{T}} - \overline{\vartheta}_{i}\right)\overline{\vartheta}_{2} = C_{xp} - C_{x\tau} \,. \tag{5}$$

Запишем уравнение Бернулли для двух контрольных объемов. Для контрольного объема с конфузором

$$P_{\infty} + \frac{\rho V_{\infty}^2}{2} = P_{2,1} + \frac{\rho V_2^2}{2} + \xi_{\kappa} \frac{\rho V_{\infty}^2}{2}.$$
 (6)

Для контрольного объема с диффузором

$$P_{2,1} - \Delta P_{\rm T} + \frac{\rho V_2^2}{2} = P_{\infty} + \frac{\rho (V_{\infty} - \vartheta_2)^2}{2} + \xi_{\rm A} \frac{\rho V_{\infty}^2}{2}.$$
 (7)

Найдем из уравнения (6) Р_{2,1} и подставим в уравнение (7), тогда будем иметь

$$\overline{\Delta P_{\mathrm{T}}} = \frac{\rho}{2} \left(2V_{\infty} \vartheta_2 - \vartheta_2^2 \right) - \xi \frac{\rho V_{\infty}^2}{2}$$

Разделим обе части полученного равенства на $\frac{\rho V_{\infty}^2}{2}$ получим

$$\overline{\Delta P_{\rm T}} = 2\overline{\vartheta}_2 - \overline{\vartheta}_2^2 - \xi, \qquad (8)$$

где $\xi = \xi_{\kappa} + \xi_{\pi} = \xi_{\tau p} + \xi_{M} - \kappa o \Rightarrow \phi \phi$ ициент потери давления в КВП; $\xi_{\tau p}$ – потери за счет трения; ξ_{M} – местные потери.

Подставим полученное значение $\overline{\Delta P_{\rm T}}$ в формулу (5), тогда

$$\overline{\vartheta}_{2}^{2} + 2\left(\overline{V}_{6,\mathrm{T}} - \overline{\vartheta}_{i} - 1\right)\overline{\vartheta}_{2} + B = 0, \qquad (9)$$

где

$$\overline{\vartheta}_2 = \frac{\vartheta_2}{V_{\infty}}, \quad \overline{\vartheta}_i = \frac{\vartheta_i}{V_{\infty}}, \quad \overline{V}_{\overline{0}.\tau} = \frac{V_{\overline{0}.\tau}}{V_{\infty}}, \quad B = +C_{x\rho} - C_{x\tau} + \xi.$$

Решая уравнение (9), получим

$$\overline{\vartheta}_{2} = -\left(\overline{V}_{\overline{0}.\mathrm{T}} - \overline{\vartheta}_{i} - 1\right) \pm \sqrt{\left(\overline{V}_{\overline{0}.\mathrm{T}} - \overline{\vartheta}_{i} - 1\right)^{2} - B} \,. \tag{10}$$

При B = 0, то есть при отсутствии КВП, $\vartheta_2 = 2 \vartheta_i$, что соответствует известной связи между ϑ_2 и ϑ_i [7].

Подставляя значение $\overline{9}_2$ в уравнение (5), получим перепад давления на турбине

$$\overline{\Delta P_{\mathrm{T}}} = 2\left(\overline{V}_{\tilde{6}.\mathrm{T}} - \overline{\vartheta}_{i}\right)\overline{\vartheta}_{2} + C_{x\rho} - C_{x\tau}.$$
(11)

Для определения коэффициентов $C_{x\tau}$, ξ и $C_{x\rho}$ проводится расчет параметров пограничного слоя (ПС). С использованием интегральных соотношений уравнение пространственного ПС можно записать в виде [8]:

$$\frac{d\delta_{00}}{dx} + \frac{1}{V_{\delta}}\frac{dV_{\delta}}{dx}\delta_0 + \left(\frac{2}{V_{\delta}}\frac{dV_{\delta}}{dx} - \frac{1}{V_{\delta}}\frac{dV_{\Psi}}{d\Psi}\right)\delta_{00} = \frac{\tau_0}{\rho V_{\delta}^2} - \frac{V_0}{V_{\delta}},\tag{12}$$

где $\delta_{00} = \int_{0}^{\delta} \frac{V_x}{V_{\delta}} \left(1 - \frac{V_x}{V_{\delta}}\right) dr$ – толщина потери количества движения; $\delta_0 = \int_{0}^{\delta} \left(1 - \frac{V_x}{V_{\delta}}\right) dr$ –

толщина вытеснения; V_{δ} – скорость на границе пограничного слоя; V_x – текущее значение скорости в пограничном слое; δ – толщина ПС; V_0 – скорость выдува или отсоса; V_{ψ} – азимутальная составляющая вектора скорости.

Координата *г* отсчитывается от поверхности КВП до верхней границы ПС. Для определения характеристики ламинарного ПС уравнение (12) решается при следующих граничных условиях:

$$r = 0, \ \tau = \tau_0, \ \frac{\partial \tau}{\partial r} = \frac{\partial P}{\partial x}; \ \frac{\partial^2 \tau}{\partial r^2} = 0, \ V_x = V_y = 0;$$
$$r = \delta, \ \tau = 0, \ V_\chi = V_\delta; \ \frac{\partial P}{\partial x} = -\rho V_\delta \frac{\partial V_\delta}{\partial x}.$$

Профиль скорости представлен в виде

$$\frac{V_x}{V_{\delta}} = A_1 \eta + A_2 \eta^2 + A_3 \eta^3,$$

где

$$A_1 = \frac{\lambda + 6}{4 + \beta}, \ A_2 = \frac{3\beta - 2\lambda}{4 + \beta}, \ A_3 = \frac{\lambda - 2\beta - 2}{4 + \beta}, \ \lambda = \frac{\delta^2 V_{\delta}}{\nu}, \ \beta = \frac{\delta V_0}{\nu}, \ \eta = \frac{r}{\delta}$$

Для расчета турбулентного ПС используется двухслойная модель, предполагающая наличие ламинарного подслоя, где напряжение трения определяется по формуле Ньютона:

Інтегровані технології та енергозбереження 4'2011

$$\tau = \mu \frac{dV_x}{dr} ,$$

и турбулентного ядра, в котором напряжение трения представлено в виде полинома [10]:

$$\sqrt{\frac{\tau}{\tau_0}} = 1 + \frac{1}{2}A\eta - \left(1 + \frac{1}{2}A\right)\eta^2$$

где τ_0 – напряжение трения на поверхности КВП:

$$A = \frac{\delta}{\tau_0} \frac{dP}{dx}$$

Если полученное значение напряжения трения подставить в формулу Прандтля

$$\tau = \rho l^2 \left(\frac{dV_x}{dr}\right)^2,\tag{13}$$

тогда профиль скорости в турбулентном ядре будет иметь вид:

$$\frac{V_x}{V_{\delta}} = 1 + \frac{V^*}{KV_{\delta}} \left[\ln \eta - \frac{A}{2} (1 - \eta) + \frac{1}{2} \left(1 + \frac{A}{2} \right) (1 - \eta^2) \right],$$
(14)

где $V^* = \sqrt{\frac{\tau_{\infty}}{\rho}};$ l = Kr - длина пути смешивания; <math>K = 0,4.

Из формул (13) и (14) определить τ_0 достаточно сложно, потому целесообразно воспользоваться способом, предложенным в [10], то есть профиль скорости представить в виде

$$\frac{V_x}{V_\delta} = \left(\frac{\eta}{\delta}\right)^{\frac{1}{n}},\tag{15}$$

где $n = \frac{12KV_{\delta}}{(8+A)V^*} - 1.$

Значение *n* получено из условия, что толщины вытеснения, определенные с использованием формул (14) и (15), одинаковые.

В результате параметры ПС определяются таким образом:

$$\delta_0 = \delta \frac{n}{n+1}; \delta_{00} = \delta \frac{n}{(n+1)(n+2)};$$

$$\tau_0 = \rho V_\delta^2 \left(\operatorname{Re}_{\mathrm{H}} \right)^{\frac{1-n}{n+1}} \operatorname{Re}_\delta^{\frac{2}{n+1}} - \frac{\delta}{2} \frac{dP}{dx} \left(\operatorname{Re}_{\mathrm{H}} \right)^{\frac{n}{n+1}} \operatorname{Re}_\delta^{-\frac{n}{n+1}}$$

где Re_н – число Рейнольдса перехода ламинарного подслоя в турбулентное ядро, в соответствии с работой [10] Re_н=21*n*; Re_{δ} = $\frac{V_{\delta}\delta}{v}$ – число Рейнольдса определенное по толщине ПС.

Подставив полученные параметры ПС в уравнение (12) будем иметь уравнение с одним неизвестным, которое решается методом Рунге-Кутта.

За точку перехода ламинарного ПС в турбулентный принимается точка, в которой выполняется условие

$$\operatorname{Re}_{00}(x) = \operatorname{Re}_{\mathrm{KP}}$$

где $\operatorname{Re}_{00}(x) = \frac{V_{\delta}\delta_{00}}{v}; \ \lambda_{00} = \frac{V_{\delta}' - \delta_{00}^2}{v}; \ V_{\delta}' = \frac{dV_{\delta}}{dx}; \ \operatorname{Re}_{\kappa p} = \frac{0.3(0.085 + \lambda_{00})^{0.666}}{\epsilon^{1.66}} + 140 - \kappa pu-$

тическое число Рейнольдса; є – степень турбулентности потока.

Точка отрыва ПС определяется по значению напряжения трения, если $\tau_0 \leq 0$ пограничный слой считается оторванным. Вязко-невязкое взаимодействие моделируется путем коррекции значения возмущенного потенциала с учетом толщины вытеснения ПС – значению потенциала, определенного из решения уравнения (1), добавляется величина [9, 10]

$$\varphi_{\rm B} = \pm \frac{1}{4\pi} \int_{S_{\rm mc}} \Delta \varphi_{\rm mc} \frac{\partial}{\partial n} \frac{1}{r} ds \,,$$

где $S_{\rm nc}$ – площадь вихревой пелены, удаленной от тела на величину δ_0 .

В области ПС $\Delta \phi_{nc}$ определяется из уравнения

$$\frac{d\Delta\phi_{\rm nc}}{de} = \frac{\delta_0}{\delta} V_{\delta}$$
 или $\Delta\phi_{\rm nc} = \phi_0 + \int_0^L \frac{\delta_0}{\delta} V_{\delta} de$

В области отрыва потока возникает цепочка вихрей с циркуляцией [10]

$$\Gamma = \frac{V_{6.\text{orp}}^2}{2}t = \frac{V_{6.\text{orp}}}{2}V_{6.\text{orp}}t = \frac{V_{6.\text{orp}}}{2}\Delta l,$$

где Δl – длина панели.

Потенциал на поверхности в области отрыва

$$\varphi = \Delta \varphi_{\rm nc} + G_4 \sum_{i=1}^{I} \frac{V_{6.\rm orp}}{2} \Delta l ,$$

где G_4 находиться из условия, что возмущенная скорость в последующей точке от точки отрыва равна скорости в точке отрыва, т.е.

Інтегровані технології та енергозбереження 4'2011

$$V_{\text{6.orp}}\Delta l = \Delta \varphi_{\text{nc}} + G_4 \frac{V_{\text{6.orp}}}{2}\Delta l.$$
(16)

Оторвавшаяся вихревая пелена располагается по вектору скорости набегающего потока, а ее влияние на значение потенциала по телу определяется аналогично влиянию пелены в уравнение (1). Уравнение (16) обеспечивает непрерывность давления.

На рисунках 6, 7 представлены значения коэффициента давления в центральном сечении прямоугольного крыла с удлинением $\lambda = 5$ и профилем типа NACA 0018, $\overline{C} = 0,18$ при числе Рейнольдса $\text{Re} = 0,7 \cdot 10^6$. Пунктирной линией показаны экспериментальные значение C_P . Сплошная линия – расчетные значения коэффициента C_P . Видно, что совпадение расчетных значения C_P с экспериментальными вполне удовлетворительное.

Рисунок 6 – Зависимость коэффициента давления С_n от безразмерной

продольной координаты \overline{x} при угле атаки $\alpha = 17^{\circ}$

Рисунок 7 – Зависимость коэффициента давления С_п

от безразмерной продольной координаты \overline{x}

при α = 21°: кривые 1, 2 для верхней поверхности крыла; кривые 3, 4 для нижней поверхности крыла На рисунке 8 представлены расчетные значения C_P на внешней поверхности мотогондолы при степени торможения потока турбиной $\xi = \frac{V_2}{V_{\infty}} = 0,8$ и экспериментальные значения [1] при степени торможения $\xi = 0,6$. Некоторые расхождения экспериментальных и расчетных данных обусловлено отсутствием точных геометрических данных мотогондолы, с которой проводился эксперимент.

Рисунок 8 – Распределение коэффициента давления *C*_{*p*} на внешней поверхности мотогондолы

По расчетным значениям C_P и τ определяются коэффициенты C_{xp} и $C_{x\tau}$. Потеря энергии в ПС за счет вязкости определяется по формуле

$$E = \frac{\rho V_{\delta}^3}{2} \cdot \delta_{000} \cdot 2\pi r_0,$$

где $\delta_{000} = 2\delta \frac{n}{(1+n)(3+n)}$ – толщина потери энергии; r_0 – радиус внутренней окружно-

сти сечения КВП перпендикулярного оси ох, в котором произошел отрыв ПС.

Если энергию *E* отнести к величине $V_2 S_{\rm T} \frac{\rho V_{\infty}^2}{2}$, то получим

$$\xi_{\rm Tp} = 8 \ \overline{V}_{\delta}^2 \ \overline{\delta}_{000} \ \overline{r}_0 \frac{V_{\delta}}{V_2} \,, \tag{17}$$

где $\overline{V_{\delta}} = \frac{V_{\delta}}{V_{\infty}}; \overline{\delta}_{000} = \frac{\delta_{000}}{r_{\mathrm{T}}}; \overline{r_0} = \frac{r_0}{r_{\mathrm{T}}}.$

Коэффициент местных потерь определяется по формуле [11]:

$$\xi_{\mathbf{M}} = \left[1 - \left(\frac{r_0}{r_3}\right)^2\right]^2 \cdot \left(\frac{V_{\delta OT}}{V_{\infty}}\right)^2.$$

На рисунке 9 представлены экспериментальные [12] и расчетные значения относительной мощности $\bar{N} = \frac{0.5 \rho V_2^3 S_{\rm T} C_D}{0.593 \cdot 0.5 \rho V_{\infty}^3 S_{\rm T}}$ от коэффициента загрузки турбины

 $C_D = \frac{P_{2,1} - P_{2,2}}{0.5 \rho V_2^2}$ для трех моделей КВП, показанных на рисунке 10.

Рисунок 9 – Зависимость *N* от *C*_D при нулевом угле скольжения: △, □, × – экспериментальные значения коэффициента мощности [12]; о – расчетные значения коэффициента мощности по предлагаемой методике для моделей *C* (I) и *C* (III)

Мощность турбины равна

$$N_{\rm T} = \Delta \bar{P}_{\rm T} \bar{V}_2 \, \frac{\rho V_{\infty}^3}{2} S_{\rm T} \,, \tag{18}$$

где $\Delta \overline{P}_{\rm T}$ – безразмерный перепад давления на турбине (формула 11); $\overline{V}_2 = \frac{V_2}{V_{\infty}}$ – безраз-

мерная скорость протока через турбину; S_т – площадь турбины.

Рисунок 10 – Модели С (I), С (II) и С (III)

Анализ формулы (18) показывает, что мощность турбины в значительной степени зависит от перепада давления, который в свою очередь зависит от коэффициента C_{xp} . Но эта зависимость двояка: с одной стороны рост C_{xp} приводит к росту ϑ_2 (10), а с другой к уменьшению $\Delta P_{\rm T}$. Рост ϑ_2 более предпочтителен, т.к. ϑ_2 умножается на значительную величину $2(\overline{V}_{\delta,{\rm T}} - \vartheta_i)$, поэтому снижение разрежения внутри диффузора предпочтительно. Так в работе [2] рассмотрен вариант КВП с установкой за ним завихрителя (торнадо-башни), создающего разрежение. Но подобный завихритель имеет высокую себестоимость.

В работе [13] используется фланцевой диффузор (рис. 11). В срывной области за фланцем появляется значительное разрежение. Но надо иметь в виду, что срывные явления за фланцем приводят к значительному росту коэффициента потерь ξ и падению $\Delta \overline{P}_{\rm T}$ (8), поэтому в работе [13] указывается только увеличение энергии в 2,6 раза, а о приросте мощности турбины ничего не сказано.

Рисунок 11 – Фланцевые диффузоры двух типов: удлиненный и короткий

Для уменьшения срыва потока и соответственно уменьшения ξ в настоящее время большое распространение получили щелевые диффузоры [3] (рис. 12), но все эти конструкции сложны и дороги, и кроме того наличие щели приводят к уменьшению скорости V_2 .

Перспективными являются диффузоры с системой управления внутренним и внешним потоками около диффузора. Но они исследованы мало.

Рисунок 12 – Щелевой диффузор [3]

На рисунке 13 представлены зависимости мощности турбины от длины КВП. При этом диаметр d_3 выходного сечения КВП (рис. 5) оставался постоянным и равным 2 м. Диаметр турбины $d_{\rm T} = 1$ м, а диаметр входного сечения $d_1 = 1,4$ м. Видно, что с увеличением длины КВП мощность турбины возрастает (кривая 1). Это обусловлено тем, что с увеличением длины КВП точка отрыва ПС смещается ближе к выходному сечению 3-3. Кривая 2 на рисунке 13 – зависимость мощности турбины от длины КВП при управлении течением воздуха внутри КВП. Треугольником отмечено значение мощности турбины при управлении наружным и внутренним потоками КВП.

Рисунок 13 – Зависимость мощности турбины от длины КВП

На рисунке 14 представлены зависимости стоимости ветроэнергетических установок (стоимость турбины + КВП) от выходной мощности турбины. Кривая 1 – зависимость $C_{\Sigma} = f(N_{T})$ без КВП. Кривая 2 – зависимость $C_{\Sigma} = f(N_{T})$ с КВП. Кривая 3 – зависимость $C_{\Sigma} = f(N_{T})$ с КВП и управлением внутренним течением. Значком Δ обозначена стоимость ветроэнергетической установки с КВП и управлением внутренним и наружным течением в КВП.

Рисунок 14 – Зависимость стоимости ветроэнергетической установки от выдаваемой мощности

По приведенным зависимостям легко вычислить критерий целесообразности использования КВП

$$\Im = \frac{N_{\rm T}}{C_{\Sigma}}.$$

Таким образом, разработан численный метод расчета мощности турбины ветроэнергетических установок с концентраторами воздушного потока. Результаты расчетов показывают, что использование в ВЭУ концентраторов воздушного потока целесообразно при применении управления внешним и внутренним потоками. При этом наиболее эффективными являются короткие КВП с энергетической системой управления параметров течения воздушного потока.

Литература

1. Кюхеман Д., Вебер И. Аэродинамика авиационных двигателей, ч. 1. – М.: Изд. иностранная литература, 1956. – 287 с.

2. Янсон В.П. Ветроустановки . М.: МГТУ им. Н.Э. Баумана, 2007 – 26 с.

3. Phillips D.G., Richards P. J., Flay R.G.J. Diffuser development for a diffuser augmented wind turbine using computational fluid dynamics. – Режим доступу: <u>http://www.ipenz.org.nz/ipenz/publications/transactions/7ransactions99/EMCh/Phillips.PDF</u>. – Заголовок з екрану.

4. Palapum K. Al., Adun J. An investigation of diffuser for water current turbine application using CFD // International Journal of Engineering Science and Technology. -2011. -Vol. 3, No 4. -P. 3437–3445.

5. Сучасні методи дослідження аеродинаміки та динаміки польоту. Навч. посібник. В.Г. Лебідь, С.А. Калкаманов, І.Б. Ковтонюк, Д.М. Обідін, А.Л. Сушко – Х.: ХУПС, 2009. – 142 с.

6. Гайдаенко В.И., Гуляев В.В., Калганов А.К. Метод расчета стационарного и нестационарного обтекания летательного аппарата с работающей силовой установкой // Применение ЭВМ для исследования аэродинамических характеристик летательных аппаратов: Труды ВВИА им. Н.Е. Жуковского – М., 1986. – Вып. 1313. – С. 23–32.

7. Кривцов В.С, Олейников А.М., Яковлев А.И. Неисчерпаемая энергия. Книга 2. – Х.: НАКУ «ХАИ», 2004. – 518 с.

8. Лебедь В.Г., Сушко А.Л., Калкаманов С.А. Метод расчета аэродинамических характеристик крыла в широком диапазоне углов атаки // Вопросы проектирования и производства конструкций летательных аппаратов: Сб.научных трудов. – Харьков: НАКУ «ХАИ», 2005 – Вып. 40(1). – С. 22–32.

9. Миргород Ю.И., Лебедь В.Г., Калкаманов С.А. Численное моделирование обтекания тел в предположении вязко-невязкого взаимодействия // Аэрогидродинамика: проблемы и перспективы: Сб. научных трудов. – Харьков: НАКУ «ХАИ», 2006. – Вып. 2. – С. 71-87.

10. Репик Е.У. Исследование внутренней структуры турбулентного пограничного слоя // Труды ЦАГИ. – М., 1965. – Вып. 972.– 72 с.

11. Алешко П.И. Механика жидкости и газа. – Х.: Вища школа, 1977 – 320 с.

12. Игра О. Кожухи для ветродвигателей // Ракетная техника и космонавтика. – 1976. – № 10. – С. 166–168.

13. Kazuhiko T., Koutarou N., Wataru H., Shinichi O., Manabu T. and Yuji O. PIV Measurements of Flows around the Wind Turbines with a Flanged-Diffuser Shroud // Proceedings of the 2nd Asian Joint Workshop on Thermophysics and Fluid Science, 2008. – Luoyang, China. – P. 264–270.

УДК 533.662.64: 621.548.4

Лебедь В.Г., Калкаманов С.А., Сушко А.Л.

ОЦІНКА ДОЦІЛЬНОСТІ ВИКОРИСТАННЯ КОНЦЕНТРАТОРІВ ПОВІТРЯНОГО ПОТОКУ У ВІТРОЕНЕРГЕТИЧНИХ УСТАНОВКАХ

Запропонований чисельний метод розрахунку потужності турбіни вітроенергетичних установок з концентратором повітряного потоку. Проведена оцінка доцільності використання концентраторів повітряного потоку у ветроэнергетических установках.

Lebed V.G., Kalkamanov S.A., Sushco A.L.

THE ESTIMATION OF EXPEDIENCY OF USING CONCENTRATORS AIR FLOW IN WIND POWER PLANTS

The proposed numerical method for calculating wind turbine power plants with a concentrator of air flow. The estimation of expediency of using concentrators air flow is conducted in wind power plants.