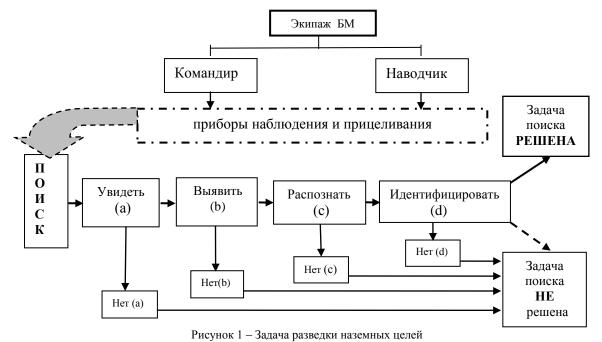
УДК 355.40; 534.79; 623.44; 629.1.03

Бирюков И.Ю., Сиренко С.Н.

ИНТЕГРАЦИЯ ДОПОЛНИТЕЛЬНОЙ ОПТИКО-АКУСТИЧЕСКОЙ СИСТЕМЫ РАЗВЕДКИ В СИСТЕМУ УПРАВЛЕНИЯ ОГНЕМ ТАНКА


Эффективность управления объектом бронетанковой техники (БТТ) определяется полнотой потока информации, поступающей к экипажу (оператору) и, в первую очередь, – командиру боевой машины (БМ). Долгое время основными каналами поступления информации был и остается до настоящего времени визуальный. Технические средства этого канала непрерывно совершенствуются и прошли путь от смотровых приборов в корпусе БТТ до оптических панкратических приборов, приборов ночного видения, тепловизоров и радиостанций [1–3].

Широкое внедрение информационных технологий с одной стороны, и изменение взглядов на формы и методы ведения вооруженной борьбы с другой, привели к формированию новых концепций применения сил специального назначения, в основе которых лежит иерархически построенная информационноуправляющая система [4].

Необходимо подчеркнуть, что работы по разработке боевой системы будущего (Future Combat Systems (FCS)) были начаты в США еще в 2000 году.

Однако отечественные образцы БТТ на современном этапе содержат лишь отдельные компоненты, но еще не интегрированы в боевую информационно-управляющую систему. По-видимому это связано с отсутствием концептуального видения такой системы. Нет в отечественных БМ и бортового диагностического информационного комплекса, позволяющего в полной мере использовать технические возможности, заложенные при различных условиях ее функционирования.

Соответственно и современные системы разведки объектов БТТ имеют недостаточную видимость оптических, оптико-электронных и электронно-оптических приборов, лазерных дальномеров, отсутствуют возможности оперативного обнаружения, распознания и идентификации наземных целей. Для повышения показателей обнаружения типовых целей необходимо решить задачу разведки наземной цели (рис. 1).

а – для того, чтобы увидеть объект можно воспользоваться так называемыми критериями Джонсона, разработанными для использования в военных целях; b – чтобы определить наличие объекта в поле зрения минимальное из его измерений должно быть представлено на операторском экране полутора или более пикселям; с – распознать объект – значит классифицировать его по типу, при этом оператор должен мгновенно определить по изображению, попал ли в кадр объект БТТ (считается достаточным, чтобы критический размер объекта составлял 6 и

более пикселей); d – идентификация цели заключается в определении принадлежит ли объект противнику или "нам", при этом его критический размер должен быть представлен 12-ю и более пикселями

Эти критерии обеспечивают 50 % вероятности того, что оператор примет верное решение исходя из картинки на экране. Так тепловизионные системы, имеющие достаточное разрешение, видят удаленный на 1 км объект высотой 0,75 метра 6 пикселями. Если изображение объекта в достаточной степени контрастирует с фоном, то система имеет высокую вероятность распознавания объектов на расстояниях до 1 км [5, 6].

Боевая информационно-управляющая система (БИУС) предназначена для информационного обеспечения принятия решений командиром БМ в реальном масштабе времени с помощью дополнительной оптико-акустической системы разведки наземных целей (ДОАСР) и проведения оперативного целеуказания. Назначение БИУС позволяет определить и ее функции, которые приведены в [4].

По форме представления это визуализированная информация, с применением геоинформационной системы (ГИС) на планшете с выборочным голосовым дублированием.

На основе перечисленных данных формируется перечень показателей, баз и банков данных, обеспечивающих работу БИУС. Поэтому очевидно, что в соответствии с разработанным перечнем объекты БТТ необходимо оборудовать комплексом датчиков, сенсорных устройств, дополнительных подсистем:

- оптико-электронных, оптико-акустических, тепловизионных для автоматического обнаружения, сопровождения, распознания и идентификации наземных целей;
- внешних условий, а именно химического и радиационного зондов, контроля климатических условий, предупреждения о лазерной подсветке, ракетной атаке;
 - внутреннего состояния технического состояния БМ и вооружения, физическое состояние экипажа.

Одной из функций БИУС, определяющей ее структуру, предполагается наличие бортового модуля с ГИС и навигационной системой. При этом ГИС обеспечит высокую точность определения географических и прямоугольных координат точечных и размеров линейных объектов БТТ. Высокая точность снятия координат достигается за счет привязки левых верхних углов листов топографических карт (растровых файлов) и географических (прямоугольных) координат на земном шаре.

Так, для того, чтобы установить систему отношений между внутренними пиксельными координатами изображения и реальными географическими или прямоугольными координатами в ArcView используется специальный файл привязки. Файл создается в процессе регистрации изображения топографической карты, часто сопровождается ее трансформацией из одной системы координат в другую. Наличие подобного файла приводит способность программы совмещать растровый файл с графическими материалами, которые уже находятся в определенной системе координат [7].

Внешний файл привязки имеет больший приоритет, таким образом, если растр карты имеет еще и внедренную привязку и внешний файл, то в ArcView GIS он будет ориентироваться в географическом пространстве в соответствии с координатами внешнего файла, внутренняя привязка будет игнорироваться.

Файл привязки содержит полное описание отношений пиксельных координат географическим и включает следующие параметры:

- А масштаб растра по оси X; размер пикселя по оси X (например, в 1 единицы растра 20 метров);
- В масштаб растра по оси Y; отрицательный размер пикселя по оси Y;
- C, D параметры поворота (обычно равны нулю);
- Е, F параметры положения; X, Y координаты центра верхнего левого пикселя.

Отрицательное значение размера пикселя по оси Y обуславливается разницей между началами координат изображения и географической системы координат. В изображении (растре листа карты) начало находится в левом верхнем углу, в географической системе координат листа карты – в левом нижнем.

Имя файла привязки должно совпадать с названием растрового файла, для которого создается файл привязки. Расширение состоит из трех букв: первая соответствует первой букве расширения соответствующего растрового файла, вторая – третьей букве расширения, третья – буква w (world).

Результатом использования файла привязки является соответствие снятых прямоугольных координат положения точечного объекта БТТ на карте (рис. 2) с координатами положения маркера в правом верхнем углу карты.

Если рассматривать различные типы объектов и непосредственно танк в виде точки, то его пространственными характеристиками будут являться координата X и координата Y, для объекта в виде линии (колонна танков) - ее пространственными характеристиками будет длина, а для танков в районе обороны, его пространственными характеристиками будет длина (периметр), площадь, центр (центроид).

Пространственные характеристики объектов, о которых идет речь, являются неотъемлемой частью их геометрии. В ArcView GIS получить геометрию объекта можно через специальное поле в таблице Shape.

При проведении расчетов пространственных характеристик важно помнить, что единицы измерения, по умолчанию, будут отвечать исходным единицам измерения имеющихся данных.

Если данные находятся в географической системе координат, то независимо от того, спроектированный вид или нет, получаемые значения, по умолчанию, будут вычислены в десятичных градусах (рис. 3).

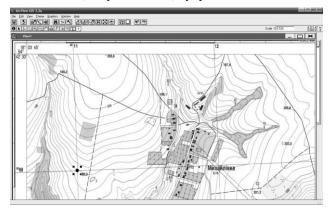


Рисунок 2 — Результат использования файла привязки для снятия прямоугольных координат положения точечного объекта на карте

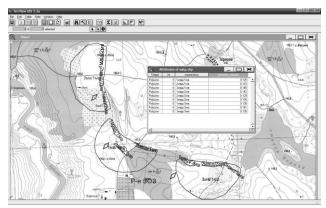


Рисунок 3 – Длина позиции танков вида View1

Современные ГИС военного назначения представляют новый тип интегрированных информационных систем, которые позволяют эффективно решать задачи сбора, накопления, обработки и визуализации геопространственной информации для анализа, моделирования действий войск от отдельного объекта БТТ до группировки БТТ в целом.

Таким образом, функционирование БИУС предполагает наличие прямой и обратной связи, причем как по вертикали, так и по горизонтали, что может быть осуществлено на основе интерфейса со специальным программным обеспечением и структурной схемой, представленной на рис. 4 [4].

Следует особо подчеркнуть важность оценки необходимой точности датчиков, поскольку это, с одной стороны, определяет достоверность информации, а с другой стороны, стоимость системы. В этой связи весьма привлекательным представляется применение простых индикаторов, где это возможно.

В целом создание точной системы предполагает не только рациональное использование вооружения, но и изменение подхода к защищенности. Кроме этого, не последняя роль в такой системе должна отводиться автоматическим и роботизированным комплексам. При этом главное преимущество геоинформационных систем перед другими информацонными технологиями заключается в наборе средств создания и объединения баз данных с возможностями их графического анализа и наглядной визуализации в виде карт, графиков, диаграмм, прямой привязки всех атрибутивных и графических данных для обнаружения БТТ противника.

Поэтому особо актуальной на современном этапе представляется проблема разработки боевой информационно-управляющей системы подразделений тактического звена, как базового элемента с применением дополнительной оптико-акустической системы разведки наземных целей (ДОАСР) и может быть составлена система более высокого уровня (рис. 5).

В заключение необходимо отметить, что задача интеграции всех компонентов этой системы, в том числе и БТТ, в такую систему с единым информационным пространством приводит к тому, что объект БТТ, как система, управляемая человеком, еще больше усложняется ввиду того, что между оператором и БМ появляется еще одна информационно-управляющая система, причем пронизывающая все уровни от

тактического до оперативно-стратегического [2]. В этом смысле объект БТТ представляется как интегрируемый элемент такой системы, для осуществления которой все элементы должны быть увязаны информационно, а также для осуществления интеграции необходимо разработать требования к акустическому и оптическому каналам ДОАСР [8].

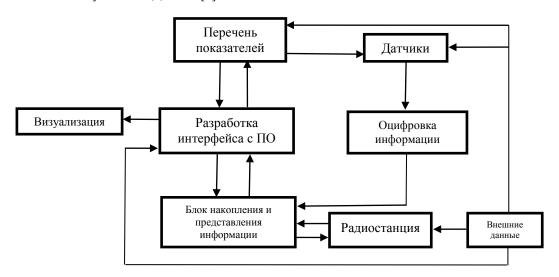


Рисунок 4 – Структурная схема БИУС

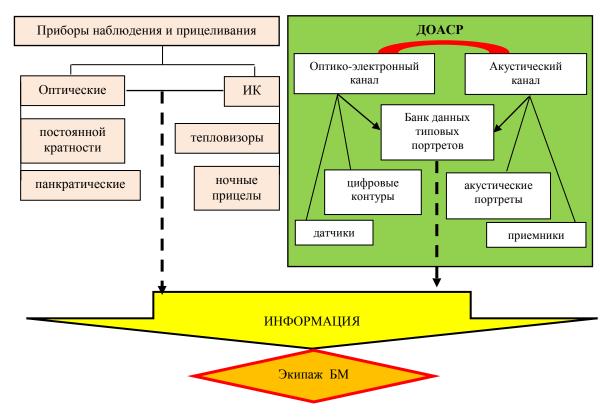


Рисунок 5 – Интеграция ДОАСР в СУО танка

Литература

1. Антонов А.С., Мигидович Е.И., Артамонов Б.А. под редакцией Коробкова Б.М. Танк. – Москва, Военное издательство. – 1947. – 387 с.

- 2. Анипко О.Б., Борисюк М.Д., Бусяк Ю.М. Концептуальное проектирование бронетанковой техники. Харьков, НТУ «ХПИ». -2008.-196 с.
- 3. Глущенко А.Р., Гордиенко В.И., Бурак А.В., Денисенко А.Ю. Танковые ночные системы и приборы наблюдения. Черкассы, Чабоненко Ю.А.– 2007.– 442 с.
- 4. Анипко О.Б., Сиренко С.Н. Основные функции и структура информационно-управляющей системы тактического звена. // Інтегровані технології та енергозбереження. Х.: НТУ "ХПИ". 2014. № 3. С. 9–11.
- 5. Анипко О.Б., Бирюков И.Ю., Бусяк Ю.М. Комплексная проблема поиска и обнаружения наземных целей для поражения вооружением, установленным на объектах бронетехники. // Сбірник наукових праць. Х.: Акад. ВВ МВС України. 2011.— № 2(18). С. 43–47.
- 6. Бирюков І.Ю. Расчет средних ошибок, определяемых дополнительной акустической системой разведки наземних целей. // Інтегровані технології та енергозбереження. Х.: НТУ "ХПИ".— 2014.— № 3.— С. 12—18.
- 7. Бірюков І.Ю. Геоінформаційне забезпечення службово-бойової діяльності підрозділів внутрішніх військ, частина І. Подання та аналіз просторових даних [Текст]: навч. посіб./ В.І. Воробьев, В.В. Обрядін.— Х.: Акад. ВВ МВС України, 2010.— 160 с.
- 8. Анипко О.Б., Бирюков І.Ю. Комплексный метод обнаружения и распознания наземных целей на основе анализа цифровых изображений и регистрации акустических возмущений. // Інтегровані технології та енергозбереження. Х.: НТУ "ХПИ".– 2014.–№4.– С. 51–57.

Bibliography (transliterated)

- 1. Antonov A.S., Migidovich E.I., Artamonov B.A. pod redaktsiey Korobkova B.M. Tank. Moskva, Voennoe izdatelstvo.– 1947.– 387 p.
- 2. Anipko O.B., Borisyuk M.D., Busyak Yu.M. Kontseptualnoe proektirovanie bronetankovoy tehniki. Harkov, NTU «HPI».– 2008.– 196 p.
- 3. Gluschenko A.R., Gordienko V.I., Burak A.V., Denisenko A.Yu. Tankovyie nochnyie sistemyi i priboryi nablyudeniya. Cherkassyi, Chabonenko Yu.A.–2007.–442 p.
- 4. Anipko O.B., Sirenko S.N. Osnovnyie funktsii i struktura informatsionno-upravlyayuschey sistemyi takticheskogo zvena. Integrovani tehnologiyi ta energozberezhennya. H.: NTU "HPI".– 2014.– # 3.– P. 9–11.
- 5. Anipko O.B., Biryukov I.Yu., Busyak Yu.M. Kompleksnaya problema poiska i obnaruzheniya nazemnyih tseley dlya porazheniya vooruzheniem, ustanovlennyim na ob'ektah bronetehniki. Sbirnik naukovih prats. H.: Akad. VV MVS Ukrayini. 2011.–# 2(18). P. 43–47.
- 6. Biryukov I.Yu. Raschet srednih oshibok, opredelyaemyih dopolnitelnoy akusticheskoy sistemoy razvedki nazemnih tseley. Integrovani tehnologiyi ta energozberezhennya. H.: NTU "HPI".– 2014.– # 3.– P. 12–18.
- 7. Biryukov I.Yu. Geoinformatsiyne zabezpechennya sluzhbovo-boyovoyi diyalnosti pidrozdiliv vnutrishnih viysk, chastina I. Podannya ta analiz prostorovih danih [Tekst]: navch. posib./ V.I. Vorobev, V.V. Obryadin.— H.: Akad. VV MVS Ukrayini, 2010.— 160 p.
- 8. Anipko O.B., Biryukov I.Yu. Kompleksnyiy metod obnaruzheniya i raspoznaniya nazemnyih tseley na osnove analiza tsifrovyih izobrazheniy i registratsii akusticheskih vozmuscheniy. Integrovani tehnologiyi ta energozberezhennya. H.: NTU "HPI".– 2014.– #4.– P. 51–57.

УДК 355.40; 534.79; 623.44; 629.1.03

Бірюков І.Ю, Сіренко С.М.

ІНТЕГРАЦІЯ ДОДАТКОВОЇ ОПТИКО-АКУСТИЧНОЇ СИСТЕМИ РОЗВІДКИ В СИСТЕМУ УПРАВЛІННЯ ВОГНЕМ ТАНКА

На основі аналізу існуючих автоматизованих систем управління для БТТ в роботі розглядається інтеграція додаткової оптико-акустичної системи розвідки в систему управління вогнем танка

Birukov I.Yu., Sirenko S.N.

INTEGRATION OF ADDITIONAL OPTICAL-ACOUSTIC SYSTEMS INTELLIGENCE IN THE TANK FIRE CONTROL SYSTEM

СИСТЕМИ УПРАВЛІННЯ ТА ОБРОБКИ ІНФОРМАЦІЇ

Based on the analysis of existing automated control systems for BBT to work the integration of additional opto-acoustic intelligence system in fire control tank.