Т.Н. Ситниченко, В.Ф. Вакуленко, В.В. Гончарук

ФОТОКАТАЛИТИЧЕСКАЯ ДЕСТРУКЦИЯ ФУЛЬВОКИСЛОТ КИСЛОРОДОМ В СУСПЕНЗИИ ТЮ,

Приведен краткий обзор опубликованных данных по фотокаталитическому $(O_2/\text{Ti}O_2/\text{Y}\Phi)$ окислению гуминовых и фульвокислот – основных органических примесей природных вод. Показана возможность достижения глубокой деструкции ($\geq 90\%$ по ООУ) фульвокислот, выделенных из днепровской воды, в процессе фотокаталитического окисления растворенным кислородом в широком интервале pH (3 – 8). Оценена фотокаталитическая активность ряда коммерческих образцов TiO₂ в различном изоморфном состоянии и определено влияние некоторых параметров фотокаталитического окисления на степень полной деструкции фульвокислот.

Ключевые слова: диоксид титана, окисление, фульвокислоты, фотокатализ.

Введение. Основную часть (50 – 90%) органических примесей поверхностных природных вод составляют гуминовые (ГК) и фульвокислоты (ФК) [1 – 3]. Максимальное удаление этих природных органических веществ (ПОВ) является одной из основных задач подготовки воды для питьевых и технологических целей [4, 5].

Соотношение фракций ГК и ФК в поверхностных водах может изменяться, однако в основном преобладают ФК [2, 6]. Например, в воде Киевского водохранилища концентрация ФК колеблется в интервале 14 - 54, концентрация ГК– 0,3 - 2,0 мг/дм³ [6]. В настоящее время не существует четкого представления о структуре молекул ГК и ФК. Предложено несколько моделей строения определенных "первичных блоков" структуры данных веществ, в которой эти блоки повторяются с некоторыми вариантами [1, 7, 8]. Молекулы ФК содержат несколько ароматических и гетероциклических (кислород- и азотсодержащих) ядер, полизамещенных карбоксильными, карбонильными, гидроксильными и аминогруппами, и алифатические углеводородные цепи, включающие углеводные и аминокислотные структуры, карбоксильные, эфирные, спиртовые и другие группы [1, 7, 8].

Молекулярная масса (М.м.) ПОВ поверхностных вод колеблется от 0,5 до 10 кДа [1 – 3], однако основную долю составляют соединения с М.м. до 2 кДа [2, 4, 9].

Традиционные технологии централизованного водоснабжения обеспечивают удаление органических примесей из поверхностных вод не более чем на 50 – 60% [4, 10]. Поэтому в питьевой воде централизован-

© Т.Н. СИТНИЧЕНКО, В.Ф. ВАКУЛЕНКО, В.В. ГОНЧАРУК, 2011

402

ных систем водоснабжения присутствует значительное количество ПОВ. Их концентрация в пересчете на общий органический углерод (ООУ) или основную его часть – растворенный органический углерод (РОУ) достигает 7 – 9 мг/дм³ [11, 12]. В [12] приведено следующее молекулярномассовое распределение (ММР) органических веществ (% по РОУ) в водопроводной воде г. Киева (РОУ_{исх} = 7,02 мг/дм³): <200 Да (8); 200–1000 Да (18); 1000 – 3000 Да (24); 3000 – 4500 Да (39); 4500 – 6000 Да (9).

К перспективным методам глубокого удаления органических соединений из водной среды относятся методы фотокаталитической окислительной деструкции, базирующиеся на применении кислородсодержащих окислителей и полупроводниковых катализаторов [13 – 16]. В качестве катализатора чаще всего используют высокодисперсный диоксид титана [17].

Фотокаталитическое окисление органических веществ осуществляется по радикальному цепному механизму с участием разных активированных форм кислорода. При поглощении кванта света ($200 < \lambda < 380$ нм) на поверхности частицы полупроводника (TiO₂) образуются свободный электрон и электронная вакансия – "дырка". В водной среде при взаимодействии "дырки" с адсорбированными молекулами воды или гидроксильными ионами и электрона – с адсорбированным кислородом или другими акцепторами электронов образуются высокоактивные радикалы (гидроксильный, гидропероксильный, супероксидный). Фотогенерированные "дырки" и радикалы, обладая высокой реакционной способностью, окисляют адсорбированные на поверхности TiO₂ и растворенные в воде органические вещества (в приповерхностном слое), а также принимают участие в продолжении цепи, т.е. в образовании новых радикалов.

Перспективность гетерогенно-фотокаталитического окисления для очистки воды обусловлена возможностью достижения полной деструкции (до CO₂ и H₂O) различных органических соединений кислородом [13, 14, 17].

Основные аспекты фотокаталитической деструкции ПОВ кислородом $(O_2/TiO_2/Y\Phi)$ изучены на модельных растворах коммерческих ГК [18–24]. В этих исследованиях концентрация фотокатализатора (TiO₂ в суспензии или нанесенного на разные носители) при фотокаталитическом окислении ГК варьировала от 0,1 до 10 г/дм³, концентрация ГК – от 10 до 500 мг/дм³ (в основном от 10 до 100 мг/дм³). Для УФ-облучения использовали ртутные лампы высокого и низкого давления различной мощности, излучающие в УФ-области А (315 – 400 нм) или С (200 – 280 нм). Продолжительность окисления изменялась от 0,5 до 6 ч. Широкий диапазон используемых параметров фотокаталитического окисления ГК затрудняет обобщение опубликованных данных [18 – 24] и выявление общих закономерностей.

Окисление молекул ГК и ФК, учитывая их высокую молекулярную массу, полидисперсность и сложную структуру, протекает многостадийно. Определение степени их деструкции осуществляют по разным показателям: снижению оптической плотности растворов в видимой и ультрафиолетовой областях (при определенных длинах волн в диапазоне 254 – 436 нм); изменению суммарной концентрации органических соединений в реакционной смеси по обобщенным показателям (ООУ, РОУ, ХПК); изменению содержания отдельных фракций (по М.м. или гидрофобности/ гидрофильности). Поэтому описание кинетики деструкции ПОВ является сложной задачей, а полученные результаты зачастую противоречивы.

Скорость и степень фотокаталитической деструкции ГК кислородом зависит от их происхождения и концентрации, фазового состава и концентрации диоксида титана, pH раствора, длины волны и плотности мощности УФ-излучения ($I_{y\phi}$), присутствия ловушек OH-радикалов, температуры и других факторов [15, 17].

В частности, скорость деструкции ГК возрастает при повышении концентрации TiO₂ в интервале 0,1 – 1,0 г/дм³ [18, 24], а оптимальная концентрация фотокатализатора равняется 0,4 – 1,0 г/дм³ [18, 20]. При повышении начальной концентрации ГК (от 10 до 50 мг/дм³) наблюдается обратная зависимость: скорость обесцвечивания их растворов снижается на порядок [19], степень максимальной фотокаталитической деструкции – в два раза [20]. Однако, согласно [21], при фотокаталитическом окислении растворов ГК фирмы "Aldrich" равновесная скорость снижения концентрации РОУ остается неизменной (0,2 мг С/(дм³·мин)) в диапазоне его начальных концентраций 2,7 – 39,3 мг/дм³.

Значение pH существенно влияет на эффективность фотокаталитического процесса, что может быть обусловлено изменением заряда поверхности фотокатализатора, гидрофобности и заряда молекулы субстрата, степени или способа адсорбции субстрата, количества образующихся OH-радикалов [17]. Следует отметить, что опубликованные данные о зависимости степени фотокаталитической деструкции ГК от pH раствора достаточно противоречивы. Так, согласно [20], более высокая степень деструкции ГК фирмы "Fluka" достигается в кислой среде. При оптимальных условиях фотокаталитического окисления концентрация ООУ в растворе ГК ($C_{\Gamma K} = 20 \text{ мг/дм}^3$) в течение трех часов снижается на 82; 62 и 40% при pH соответственно 3; 7 и 9. Однако в [21] максимальная скорость деструкции ГК фирмы "Aldrich" (POУ_{исх} = 15 мг/дм³) отмечена при pH 7; в кислой (pH 4) и щелочной (pH 9) средах скорость была существенно ниже.

Реакции фотокаталитической деструкции протекают в двух режимах по отношению к $I_{y\phi}$. Существует пороговое значение $I_{y\phi}$, ниже которого скорость фотокаталитической реакции повышается линейно с ее ростом,

а выше – пропорционально $I_{y\phi}^{0.5}$ (корню квадратному из $I_{y\phi}$). В целом, в лабораторных реакторах скорость деструкции органических соединений прямо пропорциональна $I_{y\phi}$ при $I_{y\phi} < 25$ мВт/см² [17]. Однако в [21] отмечено, что точка перелома при фотокаталитическом окислении ГК фирмы "Aldrich" была в ~ 20 раз ниже, чем при окислении фенола.

Повышение концентрации кислорода в большей степени ускоряет глубокую деструкцию органических соединений (по ООУ), чем начальную трансформацию их молекул [15]. Например, начальная скорость трансформации ГК фирмы "Aldrich" (POY_{исх} = 20 мг/дм³) не зависит от концентрации кислорода в газе в диапазоне 20 - 75% [21], однако скорость деструкции по POУ с повышением концентрации кислорода возрастает в 1,6 раза.

Влияние температуры на скорость фотокаталитической деструкции ГК менее существенно, что обусловлено низкой энергией активации [17]. Растворимость кислорода в воде при повышении температуры уменьшается. Тем не менее изменение температуры в интервалах 10 – 28 и 28 – 50°С повышает скорость фотокаталитической деструкции ГК фирмы "Fluka" соответственно на 22 и 15% [20]. Максимальная степень деструкции ГК (по ООУ) составляет 88% в течение 2 – 6 ч в зависимости от их исходной концентрации [18, 20, 22].

Кроме того, на скорость и эффективность фотокаталитического процесса оказывают влияние неорганические катионы и анионы, присутствующие в природных и сточных водах. Анионы неорганических кислот могут снижать скорость окисления органических соединений из-за конкурентной с органическим субстратом или гидроксильными ионами адсорбции и блокирования активных центров на поверхности TiO_2 , а также из-за конкурентных реакций этих ионов с радикалами или фотонами (HCO_3^- , HPO_3^{2-} , NO_3^-) [18]. Например, адсорбция фосфат-ионов при их концентрации 1 ммоль/дм³ снижает степень фотокаталитического окисления ряда органических соединений почти на 50% [18].

Изучение изменения концентрации отдельных фракций коммерческих ГК в процессе фотокаталитического окисления их водных растворов кислородом на TiO₂ Degussa P-25 показало [22, 23], что в первую очередь окислению подвергались наиболее высокомолекулярные фракции гуминовых кислот, в частности фракция сильногидрофобных кислот. Фотокаталитическая деструкция ГК сопровождалась повышением концентрации соединений низкомолекулярных фракций (М.м. < 10 кДа), а также образованием гидрофильных заряженных соединений, концентрация которых при дальнейшем окислении быстрее снижалась в нейтральной среде.

Ряд работ посвящен гетерогенно-фотокаталитическому окислению фульвокислот или ПОВ поверхностных вод [8, 24 – 27]

Сравнительное исследование фотокаталитической деструкции речных ФК (Suwannee River) и ГК различного происхождения (речных, почвенных, коммерческих) при их концентрации в водных растворах 50 мг/дм³ и pH $6,5 \pm 0,5$ проведено в [24]. Показано, что повышение концентрации TiO₂ Degussa P-25 от 0,25 до 1 г/дм³ в 2 – 4 раза ускоряет деструкцию ГК и ФК по спектрофотометрическим показателям (цветности, A_{254}). Равновесная скорость фотокаталитической деструкции ФК по ООУ составляет 0,220 мг С/(дм³·мин) и превышает скорость деструкции речных и коммерческих образцов ГК (0,050 – 0,151 мг С/(дм³·мин)), но уступает скорости деструкции почвенных ГК (0,339 мг С/(дм³·мин). Снижение концентрации ООУ раствора речных $\Phi K (OOY_{\mu cx} = 20,6 \text{ мг/дм}^3)$ на 50% достигается после фотокаталитического окисления в течение 65 мин. Для аналогичной степени деструкции ГК различного происхождения (ООУ_{исх} = 15,5 – 19,5 мг/дм³) требуется фотокаталитическое окисление в течение ~ 0,5 - 4,3 ч. Однако приведенная в [21] равновесная скорость снижения концентрации РОУ в растворах ГК фирмы "Aldrich" (0,20 мг С/(дм³·мин)) лишь незначительно уступает установленной в [24] для речных фульвокислот.

В [9, 25] изучена фотокаталитическая деструкция отдельных фракций ПОВ воды двух поверхностных источников (Австралия). Доля четырех основных фракций ПОВ исследуемых вод составляет (по POУ): 62 – 65% сильногидрофобных кислот; 20 – 21% слабогидрофобных кислот; 0 – 3% гидрофильных заряженных соединений; 12 – 17% гидрофильных нейтральных соединений [25]. Состав возможных органических соединений каждой фракции приведен в [4]. Максимальная суммарная степень деструкции ПОВ при фотокаталитическом окислении указанных вод составляет 80 – 85% по РОУ через 2,5 ч [25]. Наиболее устойчивой к фотокаталитическому окислению оказалась фракция гидрофильных нейтральных соединений. К аналогичному заключению привело изучение фотокаталитической деструкции ГК фирмы "Fluka" [22]. Отмечено, что эта фракция трудно удаляется также при других процессах водоочистки – коагуляции, ионном обмене, УФ-облучении, биологической очистке [25].

По данным высокоэффективной эксклюзионной хроматографии (HPSEC), в процессе фотокаталитического окисления поверхностных вод (Австралия) интенсивность поглощения (λ = 205 – 280 нм) соединений с М.м. > 1000 Да быстро снижалась, а соединений с М.м. < 500 Да – увеличивалась [9]. В состав ПОВ исследуемых вод входили следующие группы соединений: полисахариды или органические коллоиды (протеины) с М.м. ~ 20 кДа; гуминовые соединения с М.м. 1 – 20 кДа; структурные элементы гуминовых соединений (так называемые "первичные блоки") с М.м. 300 – 500 Да; низкомолекулярные кислоты, нейтральные соединения и амфолиты с М.м. < 350 Да [9]. При фотокаталитическом окисле-

нии высокомолекулярные полисахариды и гуминовые соединения эффективно разрушались. Фрагментация соединений указанных групп приводила к образованию "первичных блоков", низкомолекулярных кислот и нейтральных соединений, которые разлагались при дальнейшем окислении. После фотокаталитического окисления в течение четырех часов низкомолекулярные кислоты и нейтральные соединения доминировали в остаточном РОУ поверхностных вод.

Фотокаталитическая трансформация ПОВ озерной воды (РОУ_{исх} = 21 мг/дм^3) на TiO₂ Degussa P-25 протекала в две стадии: без заметного снижения концентрации РОУ на первой стадии и с равновесным ее снижением – на второй [26]. Концентрация РОУ высокомолекулярной фракции ПОВ снижалась линейно в течение двух часов фотокаталитического окисления со скоростью 0,05 мг C/(дм³·мин). Одновременно концентрации РОУ фракций со средней и низкой М.м. возрастали линейно в течение одного часа со скоростью, составляющей ~ 0,5 от скорости деструкции высокомолекулярной фракции, хотя через 3,5 ч концентрации этих фракций снижались до < 1 мг/дм³.

Для удаления органических соединений из воды перспективно сочетание фотокаталитического окисления на TiO_2 с фильтрованием через мембраны [15, 28]. Фотокаталитическое окисление ($O_2/\text{TiO}_2/\text{У}\Phi$) ПОВ, выделенных из речной воды ($OOY_{\text{исх}} = 10 \text{ мг/дм}^3$), в течение 20 мин при концентрации $\text{TiO}_2 0,5 \text{ г/дм}^3$ было достаточным для полного предотвращения загрязнения микрофильтрационных и ультрафильтрационных мембран [29]. Константа скорости фотокаталитической деструкции ПОВ по ООУ увеличивалась в 1,6 раза при снижении концентрации ООУ в воде вдвое (с 10 до 5 мг/дм³).

Фотокаталитическое окисление ФК ("Beijing BioChem. Corp") при исходной концентрации РОУ ~ 12 мг/дм³ в мембранных фотокаталитических реакторах изучено в [8, 27]. Степень полной деструкции ФК составляла 73% по РОУ в течение двух часов при следующих параметрах фотокаталитического окисления: 0,5 г/дм³ катализатора (TiO₂/SiO₂), pH 3,4, скорость аэрации – 60 дм³/ч, $I_{y\phi}$ – 0,75 мВт/см² (λ = 254 нм) [27]. В другом фотокаталитическом реакторе, соединенном с ультрафильтрационным модулем, оптимальными параметрами фотокаталитического окисления указанных ФК были определены: pH 3,4, концентрация TiO, Degussa P-25 – 0,5 г/дм³, $I_{v\phi}$ – 2,36 мВт/см² (λ = 254 нм) [8]. Степень фотокаталитической деструкции ФК в течение двух часов составляла ~ 46% по РОУ и в ~ 3 раза превышала суммарное снижение концентрации РОУ за счет адсорбции на TiO, и фотолитической деструкции. Скорость фотокаталитической деструкции ФК возрастала в кислой среде. Константа скорости фотокаталитической деструкции ФК по ООУ в диапазоне рН 3,4 - 8,2 снижалась в 2,3 раза (с 8,4·10⁻³ до 3,6·10⁻³ мин⁻¹) [8]. При pH ~ 6,5 константы скорости деструкции образцов ФК, выделенных из разных водоисточников, различались в два раза [8, 24].

Таким образом, опубликованных в настоящее время данных недостаточно для определения основных закономерностей глубокой фотокаталитической деструкции фульвокислот кислородом. Кроме того, необходимо сопоставить опубликованные сведения с экспериментальными данными по фотокаталитическому окислению ФК, выделенных из воды водоисточников Украины.

Цель данной работы – определение условий достижения глубокой фотокаталитической деструкции ФК в водной среде растворенным кислородом.

Методика эксперимента. В качестве объектов исследования использовали образцы ФК, выделенных из воды р. Днепр [30], следующего элементного состава (%): С – 36,8, H – 3,9, О – 56,2, N – 1,2, S – 1,9. Рабочие растворы ФК (табл. 1) готовили путем разбавления основного раствора при концентрации 1 г/дм³ и рН 6,4 дистиллированной (pH₀ 6,1 ± 0,1) или модельной водой, имитирующей неорганический состав речной воды (pH 8 ± 0,1).

Раствор	Цвет-	1		ХПК	ПО	ООУ.	
ФК	ность, град	$A_{254}, \mathrm{CM}^{-1}$	pН	мг О/дм ³		мг/дм ³	
В дистилли- рованной воде	54 – 74	0,53 - 0,61	6,0-6,2	44 – 57	13,5 – 16,6	15,6– 17,8	
В модельной воде	59 - 80	0,56 – 0,70	7,9 - 8,1	49 – 56	14,0 – 16,3	15,2 – 17,6	

Таблица 1. Характеристика растворов фульвокислот

Модельная вода содержала следующие ионы (мг/дм³): Ca²⁺ (40,0), Mg²⁺ (9,8), Na⁺ (46,0), K⁺ (3,9), Cl⁻ (71,0), SO₄²⁻ (43,2), HCO₃⁻ (122,0). В частности, концентрация гидрокарбонат-ионов, ловушек ОН-радикалов, типичных для поверхностных вод, составляла 2 мг-экв/дм³.

В качестве фотокатализатора использовали несколько коммерческих образцов TiO_2 разного фазового состава (табл. 2). Наиболее активным среди коммерческих образцов диоксида титана являлся TiO_2 Degussa P-25 [17]. Однако при фотокаталитической деструкции некоторых соединений более активными могут быть образцы TiO_2 , состоящие из чистого анатаза или рутила [17].

Образец ТіО2	Марка (фирма)	Состав	рН _{ТНЗ} [17,31]	Удельная поверхность (<i>S</i> _{БЭТ}), м ² /г	Размер частиц, нм
A/P	Degussa P-25	70 – 80% анатаза, 20 – 30% рутила	6,25; 6,7	38,8	~ 30
A ₁	"Aldrich"	~ 100% анатаза	5,2 -	8,7	_
A ₂	То же	~ 100% анатаза	5,5	7,9	490
P ₁	ОСЧ-5-2	~ 100% рутила	_	0,5	_
P ₂	P-02	~ 100% рутила	_	6,9	_

Таблица 2. Характеристика образцов ТіО,

Текстурные параметры образцов диоксида титана определены методом низкотемпературной (77 К) адсорбции азота (N_2) на приборе Quantachrome NovaWin 2. Фазовый состав ряда коммерческих образцов TiO₂ (кроме Degussa P-25) был установлен с помощью рентгеноструктурного анализа (дифрактометр Дрон-2).

Фотокаталитическое окисление растворов ФК в присутствии TiO₂ проводили при комнатной температуре (20 ± 2 ⁰C) в стеклянном открытом реакторе растворенным кислородом, поступающим из воздуха, при перемешивании магнитной мешалкой. УФ-облучение суспензии (V = 70 см³, толщина слоя (I) – 1 см) осуществляли ртутно-кварцевой лампой высокого давления СВД-120, закрепленной на расстоянии 24 см от поверхности раствора (рис. 1). Плотность мощности УФ-излучения ($\lambda = 200 - 400$ нм), рассчитанная, согласно [32], для расстояния 24 см, составляла 3,05 мВт/см². После фотокаталитической обработки каждой пробы отдельно (0,5 - 2,5 ч) катализатор отделяли центрифугированием (8000 об/мин). Параллельно была проведена оценка степени фотолитической деструкции ФК без TiO, и степени темновой адсорбции ФК на TiO₂.

Степень деструкции ФК оценивали по обесцвечиванию растворов (A_{364}) , изменению оптической плотности в УФ-области (A_{254}) , характеризующему разложение ароматической структуры ФК, снижению ХПК и концентрации ООУ. Концентрацию ООУ определяли на анализаторе Shimadzu TOC-VCSN. Спектры поглощения растворов ФК регистрировали с помощью спектрофотометров Specord UV-VIS и Shimadzu UV-2450.

Рис. 1. Схема установки фотокаталитического окисления фульвокислот: 1 – лампа СВД-120; 2 – отражатель; 3 – реактор; 4 – магнитная мешалка

Результаты и их обсуждение. Степень деструкции ФК при УФ-облучении в отсутствие TiO_2 была незначительной. Фотолитическая трансформация молекул ФК в присутствии растворенного кислорода ($\text{O}_2/\text{У}\Phi$) в течение двух часов проявлялась в обесцвечивании их раствора на 40 – 60% и снижении оптической плотности в УФ-области (A_{254}) на 20–40%, в то время как степень деструкции ФК по ХПК и ООУ в диапазоне pH 3 – 8 не превышала 10%.

При совместном действии УФ-излучения, растворенного кислорода и диоксида титана степень деструкции ФК по всем показателям в широком интервале pH (3 – 8) возрастала. Причем анализ кинетики фотокаталитической деструкции ФК в дистиллированной воде растворенным кислородом по разным параметрам (*P*) показал, что фрагментация их молекул, сопровождающаяся снижением спектрофотометрических показателей растворов на ~ 90%, достигалась довольно быстро, в то время как снижение суммарного содержания органических соединений по обобщенным показателям (ХПК, ООУ), характеризующее более глубокую деструкции этих веществ, происходило значительно медленнее (рис. 2). При использовании двухфазного TiO₂ Degussa P-25 (образец A/P) в качестве фотокатализатора обесцвечивание раствора и разложение ароматической структуры ФК на ~ 90% достигалось в течение 0,5 ч, а для TiO₂ фирмы "Aldrich" (образец A/P происходила также быстрее и глубже.

Рис. 2. Изменение A_{254} (1, 3) и величины ХПК (2, 4) раствора фульвокислоты в дистиллированной воде при фотокаталитическом окислении растворенным кислородом на TiO₂ Degussa P-25 (1, 2) и анатазе фирмы "Aldrich" (3, 4). Концентрация TiO₂ – 1 г/дм³, l - 1 см, $T = 20 \pm 2^{\circ}C$

Значения констант скорости изменения спектрофотометрических показателей растворов ФК в дистиллированной воде при фотокаталитическом окислении кислородом последних на обоих образцах TiO_2 превышали константы скорости их деструкции по ХПК и ООУ в 2 – 4 раза (табл. 3).

Таблица 3. Константы скорости псевдопервого порядка фотолитической и фотокаталитической деструкции фульвокислот в дистиллированной воде

Способ	Образец	<i>t</i> , ч	k (мин ⁻¹) по					
окисления	ΠO_2		A_{364}	A ₂₅₄	ХПК	ООУ		
Ο ₂ /ΤίΟ ₂ /VΦ	A/P	0,5	0,109	0,087	0,0388	0,0365		
02/1102/01	A ₂	1,5	0,024	0,019	0,0066	0,0057		
О2/УФ	_	2,5	0,003	0,004	0,0001	0,0001		

Примечание. Концентрация $TiO_2 - 1 \ r/дм^3$; $T = 20 \pm 2^{\circ}C$.

Эффективные константы скорости фотокаталитической деструкции ФК по отдельным параметрам на образце А/Р в 4,5 – 6 раз превышали аналогичные показатели при использовании образца А₂, что удовлетворительно согласуется с соотношением удельной поверхности указанных образцов TiO₂, равным 4,9 (см. табл. 2). Константы скорости фотокаталитической деструкции ФК на более активном образце А/Р на один – два порядка превышали скорость их фотолитической деструкции, а на образце $A_2 - B5 - 70$ раз. Рассчитанное значение эффективной константы скорости деструкции ФК по ООУ на TiO₂ Degussa P-25 (3,65·10⁻² мин⁻¹) существенно выше опубликованных ранее значений для ФК из других источников при pH ~ 6,5 (5,5·10⁻³ мин⁻¹ [8] или 1,1·10⁻² мин⁻¹ [24]). Ближе к опубликованным значение константы полной деструкции ФК на образце A_2 (см. табл. 3).

Фотокаталитическое окисление растворов ФК не приводило к существенному снижению pH раствора. Значение pH исходных растворов ФК в дистиллированной воде (pH₀ 6 – 6,2) в процессе фотокаталитического окисления кислородом снижалось до pH ~ 5, а затем возрастало до исходных значений или несколько превышающих исходные (рис. 3), что свидетельствовало об адсорбции и разложении промежуточных продуктов их деструкции – низкомолекулярных карбоновых кислот [33]. Этим гетерогенно-фотокаталитическое окисление ФК отличалось от их деструкции озоном или O₃/УФ, при которых значение pH растворов ФК быстро снижалось до 4,2 – 4,8 и в дальнейшем изменялось незначительно.

Рис. 3. Изменение pH растворов фульвокислот в процессе фотокаталитического окисления кислородом на образцах TiO, A/P (1) и A, (2)

Сравнение фотокаталитической активности разных коммерческих образцов TiO_2 при продолжительном (2,5 ч) фотокаталитическом окислении растворов ФК в дистиллированной воде подтвердило, что образец А/Р обеспечивал наиболее высокую степень их деструкции (92% по ООУ) (рис. 4). Фотокаталитическая активность образцов TiO_2 (A_1 , A_2), состоящих из анатаза, была значительно меньшей. Так, при близкой степени (>90%) фотокаталитической трансформации ФК по спектрофотометрическим показателям на трех образцах TiO_2 (A/P, A_1 , A_2) степень их деструкции по ООУ при использовании анатазов была на ~ 20 – 30%

ниже. В то же время активность анатазов существенно превышала активность рутилов. Образцы $\text{TiO}_2(P_1, P_2)$, состоящие из рутила, обеспечивали только частичное (на 25 – 50%) уменьшение спектрофотометрических показателей растворов ФК, при этом концентрация ООУ снижалась несущественно ($\leq 7\%$).

Рис. 4. Сравнение фотокаталитической активности разных образцов TiO_2 в процессе фотокаталитического окисления растворов фульвокислот в дистиллированной воде. Концентрация $TiO_2 - 1 \ c/\partial M^3$; $t - 2,5 \ u$; $pH_0 \ 6, 1 \pm 0, 1$; $T = 20 \pm 2^{\circ}C$

Степень фотокаталитической деструкции органических соединений зависит от степени их адсорбции на поверхности катализатора. Зависимость скорости фотокаталитического окисления органических соединений кислотного типа от pH раствора обусловлена амфотерными свойствами TiO₂, поверхность которого заряжена положительно при низких значениях pH и отрицательно – при высоких вследствие протонирования и диссоциации поверхностных групп [15, 17]:

TiOH + H⁺ \leftrightarrow TiOH₂⁺ при низких pH; TiOH \leftrightarrow TiO⁻ + H⁺ при высоких pH.

Значение pH изоэлектрической точки (точки нулевого заряда) разных образцов TiO₂ варьирует от 4,5 до 7 [15, 19, 31]. Согласно [15] распределение поверхностных групп следующее: доля TiOH составляет≥80% в диапазоне pH 3 – 10, доля TiO⁻ – \geq 20% при pH > 10, а доля TiOH₂⁺ – \geq 20% при pH < 3.

Степень диссоциации ФК возрастает с увеличением pH (усредненное значение pK_a фульвокислот равняется 5,7 [34]), но степень адсорбции их анионов будет возрастать за счет электростатического притяжения разноименно заряженных частиц лишь при pH < pH_{тнз}.

Зависимость степени адсорбции ФК на образце А/Р от pH раствора подтверждена экспериментально (табл. 4). При подкислении растворов ФК до pH ~ 3 степень их адсорбции на указанном образце TiO₂ повышается в 1,3 – 1,5 раза, а при увеличении pH до ~ 8 – снижается в 1,5 раза по сравнению с раствором в дистиллированной воде (pH 6). Количество фульвокислот (в пересчете на ООУ), адсорбированных на TiO₂ Degussa P-25 (3,4 – 8,2 мг C/г TiO₂), соответствует приведенным в [21] данным по адсорбции ГК фирмы "Aldrich " (от 4 до 8 – 9 мгС на 1 г TiO₂). Степень адсорбции ФК на других образцах TiO₂ (A₁, A₂) была незначительной ($\leq 10\%$ по ООУ).

Таблица 4. Влияние pH на адсорбцию фульвокислот на TiO₂

Образец	pН	Степень адсорбции ФК по ООУ			
1102		мг С/г ТіО ₂	%		
	3,3 (ClO ₄ ⁻)	8,2	55		
A /D	$3,2(SO_4^{2})$	7,1	47		
A/r	6,0	5,5	36		
	8,0 (HCO ₃ ⁻)	3,4	22		
A ₁	$3,1 (SO_4^{2-})$	1,4	8		
Δ.	$3,1 (SO_4^{2-})$	1,5	9		
A ₂	7,8 (HCO ₃ ⁻)	1,8	10		

Примечание. Концентрация $TiO_2 - 1 \ r/дм^3$; $t - 2,5 \ ч, T = 20 \pm 2^{\circ}C$.

Таким образом, регулирование pH может быть одним из способов повышения степени фотокаталитической деструкции ФК лишь для образцов TiO, с высокой удельной поверхностью.

При оценке влияния pH раствора на степень фотокаталитической деструкции органических соединений необходимо учитывать, как отмечено ранее, что характер неорганических анионов (SO_4^{2-} , PO_4^{3-} и HCO_3^{-}) может влиять на степень адсорбции и деструкции субстрата [15, 17].

При кратковременном (0,5 ч) фотокаталитическом окислении влияние pH раствора и характера неорганических анионов на степень фотокаталитической деструкции ФК растворенным кислородом на образце А/Р проявлялось по всем показателям. В соответствии с изменением зависимости степени адсорбции фульвокислот от pH раствора (табл. 4) наивысшая степень их фотокаталитической деструкции растворенным кислородом на указанном образце TiO_2 наблюдалась в растворе, подкисленном до pH 3,3 хлорной кислотой (табл. 5). В присутствии сульфатионов, которые прочно сорбируются на TiO_2 и, по-видимому, блокируют часть активных центров, степень глубокой деструкции ФК в кислой среде снижалась на 30% по ООУ, причем была даже меньше (на 22%), чем при pH 6.

де	еструкции	фульво	жислот	раствор	енным і	кислоро	одом на	TiO ₂ D	egussa .	P-25

Таблица 5. Влияние рН раствора на степень фотокаталитической

nЦ		Степень деструкции ФК (%) по							
	pm	цветности	A_{254}	ХПК	ООУ				
	3,3 (ClO ₄ ⁻)	97	92	80	75				
	$3,3 (SO_4^{2-})$	90	84	54	45				
	6	96	93	69	67				
	8,1 (HCO ₃ ⁻)	89	82	42	39				

Примечание. Концентрация $TiO_2 - 1$ г/дм³; t - 0.5 ч, $T = 20 \pm 2^{\circ}C$.

Меньшая степень глубокой фотокаталитической деструкции ФК растворенным кислородом в модельной воде была обусловлена влиянием одновременно двух факторов – уменьшением адсорбции ФК при росте pH (на 14% по ООУ, см. табл. 4) и присутствием гидрокарбонат-ионов (ловушек ОН-радикалов). Влияние конкурентной адсорбции неорганических анионов при pH > pH_{TH3} уменьшалось из-за электростатического отталкивания одноименно заряженных частиц. Степень деструкции ФК по ООУ в модельной воде снижалась на 28 и 36% по сравнению с их растворами в дистиллированной воде при pH соответственно 6 и 3,3. Аналогичная зависимость наблюдалась в [8]. Подкисление раствора ФК в дистиллированной воде (pH 6,5) до pH 3,4 повышало скорость их деструкции в 1,5 раза, а подщелачивание раствора до pH 8,2 – снижало в 1,5 раза.

Следует отметить, что заметное влияние pH растворов и присутствия сульфат-ионов на степень фотокаталитической деструкции ФК наблюдалось в течение ~ 1 ч и значительно ослабевало при более продолжительном окислении. При окислении в течение 2,5 ч степень деструкции ФК на образце A/P в широком диапазоне pH превышала 90% по ООУ (табл. 6). Степень фотокаталитической деструкции ФК в присутствии сульфат-ионов (0,2 – 0,5 ммоль/дм³ или 19,2 – 48 мг/дм³) при окислении в течение 2,5 ч не отличалась от таковой в дистиллированной воде при pH 6. Более того, степень полной фотокаталитической деструкции ФК

на других образцах (A₁, A₂) в кислой среде составляла около 90%, а в модельной воде – превышала 75% по ООУ (см. табл. 6).

Таблица 6. Максимальная степень фотокаталитической деструкции фульвокислот на образцах TiO, при разных значениях pH

Образец	pH ₀	Степень де	еструкции	ФК (%) по
TiO ₂		цветности	A_{254}	ООУ
	3,3 (ClO ₄ ⁻)	98	96	97
	$3,5 (SO_4^{2})$	99	99	92
A/P	6	96	98	92
	8,2 (HCO ₃ ⁻)	97	98	90
	$3,1 (SO_4^{2})$	100	99	89
A_1	5,5	95	96	71
	8 (HCO ₃ ⁻)	100	91	77
	$3,1 (SO_4^{2})$	100	99	90
A_2	6	91	94	59
	8 (HCO ₃ ⁻)	100	95	81
р	5,5	54	53	7
\mathbf{P}_1	8,2 (HCO ₃ ⁻)	61	47	12
р	6,1	25	24	0
P_2	8 (HCO ₃ ⁻)	22	14	0

Примечание. Концентрация $TiO_2 - 1$ г/дм³; t - 2,5 ч.

Степень деструкции ФК по ООУ при фотокаталитическом окислении их раствора в модельной воде (pH 8,2) на одном из образцов рутила (P_1) была не меньше, чем в дистиллированной воде. Другой образец рутила (P_2) является фотокаталитически неактивным. В его присутствии степень деструкции ФК снижалась даже по сравнению со степенью их фотолитического разложения при обоих значениях pH.

Степень фотокаталитической деструкции ФК по ООУ на TiO₂ Degussa P-25 при всех значениях pH значительно (в 1,4 – 2,9 раза) превышала суммарное снижение концентрации ООУ за счет адсорбции и фотолитической деструкции, т.е. наблюдался эффект синергизма.

Анализ данных [29] показал, что при повышении концентрации TiO_2 в 10 раз (от 0,1 до 1,0 г/дм³) константа скорости фотокаталитической деструкции ПОВ по ООУ возрастала в три раза (с 0,005 до 0,016 мин⁻¹), однако в диапазонах концентраций TiO_2 0,3 – 1,0 г/дм³ или 0,5 – 1,0 г/дм³ увеличение константы скорости деструкции ПОВ было незначительным – соответственно на 12 и 4,5%. Для уточнения оптимальной концентрации фотокатализатора нами было проведено сравнение степени фотокаталитической деструкции ФК растворенным кислородом при концентрации TiO₂ (образцов А/Р и А₁) 0,5 и 1,0 г/дм³, pH растворов 3,5; 6 и 8,1 и продолжительности окисления 0,5 и 2,5 ч (табл. 7).

Таблица 7. Влияние концентрации ТіO₂ на степень фотокаталитической деструкции фульвокислот

Образец		Vouuoumpouug		Степень деструкции ФК (%) по							
	<i>t</i> 11	ТіО ₂ , г/дм ³	A_2	54 при	pН	ООУ при рН					
1102	1, 4		3,5	6,0	8,1*	3,5	6,0	8,1*			
	0,5	0,5	76	94	89	31	74	48			
A /D	,	1,0	84	93	82	45	67	39			
A/r	2,5	0,5	99	98	99	94	94	83			
		1,0	99	98	98	92	92	90			
•	2,5	0,5	-	95	91	-	78	71			
A ₁		1,0	99	89	91	89	71	77			

*В модельной воде (2 мг-экв/дм³ HCO₃⁻).

При кратковременном (0,5 ч) фотокаталитическом окислении ФК возрастание концентрации образца А/Р от 0,5 до 1,0 г/дм³ повышало степень их деструкции по всем контролируемым показателям лишь в кислой среде (pH 3,5). В частности, степень деструкции ФК по ООУ возрастала на 14% (см. табл. 7). При двух других значениях pH растворов рост концентрации образца А/Р в два раза (от 0,5 до 1,0 г/дм³) не способствовал повышению степени фотокаталитической деструкции ФК в начальный период, более того, степень их полной деструкции при этом снижалась на 7 – 9%.

При максимальной продолжительности (2,5 ч) фотокаталитического окисления раствора ФК более высокая (на 6 – 7%) степень их деструкции по ООУ достигалась при повышении концентрации обоих образцов TiO_2 (А/РиА₁) до 1,0 г/дм³ лишь в модельной воде при рН 8,1 (см. табл. 7). Степень полной деструкции ФК в дистиллированной воде (рН 3,5 и 6) через 2,5 ч для обеих величин концентраций образца А/Р (0,5 и 1,0 г/дм³) практически не отличалась (92 – 94%), а при использовании образца А₁ – была выше при меньшей концентрации.

Необходимо отметить, что при начальной концентрации ООУ в растворах ФК $15,4\pm0,2$ мг/дм³ его остаточная концентрация после фотокаталитического окисления в течение 2,5 ч при всех значениях pH отвечала требованиям СанПиНа № 136/1940 для питьевой воды (3,0 мг/дм³ согласно [35]), хотя в дистиллированной воде ее значение (0,9–1,3 мг/дм³) было в 1,5–2 раза ниже, чем в модельной воде, имитирующей речную (1,5–2,6 мг/дм³). Следовательно, оптимальная концентрация образца А/Р при фотокаталитическом окислении растворов ФК в дистиллированной воде составляет 0,5, в модельной (т.е. речной) – 1,0 г/дм³. По-видимому, повышение концентрации TiO₂ компенсирует снижение фотокаталитической активности указанного образца, обусловленное уменьшением адсорбции ФК при pH 8, характерном для модельной воды.

Таким образом, полная деструкция ФК до неорганических соединений (снижение ООУ на 100%) при фотокаталитическом окислении кислородом не достигалась, что отмечено и в других работах [22, 29]. Максимальную степень деструкции ФК в дистиллированной и модельной водах (90 – 97% по ООУ) обеспечивало фотокаталитическое окисление растворенным кислородом на TiO₂ Degussa P-25 (0,5 – 1,0 г/дм³) в течение 2,5 ч. Устойчивая к окислению фракция речных ФК составляла от 3 до 8% в дистиллированной воде (при pH соответственно 3,3 и 6) и 10 – 17% – в модельной (т.е. речной), что согласуется с установленной в [29] долей трудноокисляемых фракций ПОВ речной воды, равной 18% по ООУ.

Выводы. Установлена возможность достижения глубокой деструкции (≥90% по ООУ) фульвокислот в процессе фотокаталитического окисления растворенным кислородом в широком интервале pH (3 – 8).

Наиболее высокую фотокаталитическую активность в процессе окисления Φ K растворенным кислородом проявляет TiO₂ Degussa P-25, состоящий из 70 – 80% анатаза и 20 – 30% рутила. Анатазы фирмы "Aldrich" обладают меньшей фотокаталитической активностью, однако при продолжительном фотокаталитическом окислении Φ K кислородом обеспечивают степень их полной деструкции более 70%. Коммерческие рутилы фотокаталитически неактивны и непригодны для глубокой деструкции Φ K кислородом.

Концентрация TiO₂, pH раствора и характер неорганических анионов существенно влияют на степень фотокаталитической деструкции ФК растворенным кислородом в начальный период (0,5 ч). При продолжительном окислении (2,5 ч) влияние этих параметров значительно уменьшается.

Степень полной фотокаталитической деструкции (по ООУ) ФК кислородом в модельной воде, имитирующей речную (pH $8 \pm 0,1;2$ мг-экв/дм³ гидрокарбонат-ионов), в начальный период (0,5 ч) снижается в 1,4 - 1,8раза по сравнению с их раствором в дистиллированной воде. Однако при продолжительном окислении (2,5 ч) различие в степени полной деструкции ФК в дистиллированной и модельной водах не превышает 10%.

Резюме. Наведено короткий огляд опублікованих даних по фотокаталітичному (O₂/TiO₂/УФ) окисненню гумінових і фульвокислот – основних органічних домішок природних вод. Показано можливість досягнення глибокої деструкції (≥ 90% по ЗОВ) фульвокислот, виділених з води р. Дніпро, у процесі фотокаталітичного окиснення розчиненим киснем у широкому інтервалі рН (3 – 8). Оцінено фотокаталітичну активність декількох комерційних зразків ТіО₂ у різному ізоморфному стані та визначено вплив деяких параметрів фотокаталітичного окиснення на ступінь повної деструкції фульвокислот.

T.N. Sytnichenko, V.F. Vakulenko, V.V. Goncharuk

THE PHOTOCATALYTIC DEGRADATION OF FULVIC ACIDS BY OXYGEN IN TIO, SUSPENSION

Summary

The short review of the published data on photocatalytic $(O_2/TiO_2/Y\Phi)$ oxidation of humic and fulvic acids – the basic organic impurity of natural waters is presented. The opportunity of achievement of high extent of complete degradation ($\geq 90\%$ on TOC) of fulvic acids from Dnipro water during photocatalytic oxidation in a wide pH interval (3 – 8) has been shown. The photocatalytic efficiencies of several commercial TiO₂ brands of different crystal structure and effects of some operational parameters of photocatalytic oxidation on the extent of complete degradation of fulvic acid have been estimated.

- 1. *McDonald S., Bishop A. G., Prenzler P. D., Robards K. //* Anal. Chim. Acta. 2004. **527**, N 2. P. 105 124.
- 2. Thurman E.M., Wershaw R.L., Malcolm R.L., Pinckney D.J. // Org. Geochem. 1982. 4, N 1. P. 27 35.
- 3. *Amy G.L., Sierka R.A., Bedessem J. et al.* // J. Amer. Water Works Assoc. 1992. **84**, N 6. P. 67 75.
- 4. Гончарук В.В., Клименко Н.А., Савчина Л.А. и др. // Химия и технология воды. 2006. **28**, № 1. С. 3 95.
- 5. *Стельмашук В., Савчина Л.А., Антонюк Н.Г. //* Наук. записки НУКМА. 2003. **22**. С. 460 471.
- 6. Линник П.Н., Васильчук Т.А, Болелая Н.В. // Гидробиол. журн. 1995. **31**, № 2. С. 74 81.
- 7. *Савчина Л.А.* // Дис. ... канд. хим. наук. Киев, 2003. 163 с.
- 8. *Fu J., Ji M., Zhao Y., Wang Z. //* Separ. and Purif. Technol. 2006. **50**, N1. P. 107 113.
- 9. *Liu S., Lim M., Fabris R. et al.* // Water Res. 2010. **44**, N 8. P. 1525 1532.
- 10. Гончарук В.В., Клименко Н.А., Вакуленко В.Ф. и др. // Химия и технология воды. 1999. **21**, № 2. С. 173 184.
- 11. Гончарук В. В., Вакуленко В.Ф., Самсони-Тодоров А.О. и др. // Там же. 2010. **32**, № 1. С. 67 86.

- 12. Митченко А.А. // Дис. ... канд. техн. наук. Киев, 2004. 128 с.
- 13. *Hoffmann M.R., Martin S.T., Choi W., Bahnemann D.W.* // Chem. Rev. 1995. **95**, N 1. P. 69 96.
- 14. Соболева Н.М., Носонович А.А., Гончарук В.В. // Химия и технология воды. 2007. **29**, № 2. С. 125 159.
- 15. *Gaya U. I., Abdullah A. H. //* J. Photochem. and Photobiol., C. 2008. 9, N1. P. 1 12.
- 16. *Chong M.N., Jin B., Chow C.W., Saint C. //* Water Res. 2010. **44**, N 10. P. 2997–3027.
- 17. *Carp O., Huisman C.L., Reller A.* // Progr. in Solid State Chem. 2004. **32**, N 1/2. P. 33 177.
- Wiszniowski J., Robert D., Surmacz-Gorska J. et al. // J. Photochem. and Photobiol., A. – 2002. – 152, N 1/3. – P. 267 – 273.
- 19. Bekbolet M., Suphandag A.S., Uyguner C.S. // Ibid. 2002. 148, N 1/3. P. 121–128.
- 20. *Qiao S., Sun D.D., Tay J.H., Easton C. //* Water Sci. and Technol. 2003. **47**, N 1. P. 211 217.
- 21. *Palmer F. L., Eggins B.R., Coleman H. M.* // J. Photochem. and Photobiol., A. 2002. **148**, N 1/3. P. 137 143.
- 22. Liu S., Lim M., Fabris R. et al. // Chemosphere. 2008. 72, N 2. P. 263 271.
- 23. Uyguner C. S., Bekbolet M. // Catal. Today. 2005. 101, N 3/4. P. 267 274.
- 24. Uyguner C. S., Bekbolet M. // Desalination. 2005. 176, N 1/3. P. 167 176.
- 25. *Liu S., Lim M., Fabris R. et al.* // Org. Geochem. 2010. **41**, N 2. P. 124 129.
- 26. *Tercero Espinoza L.A., ter Haseborg E., Weber M., Frimmel F.H.* // Appl. Catal., B. – 2009. – **87**, N 1/2. – P. 56 – 62.
- 27. *Fu J., Ji M., Wang Z. et al.* // J. Hazard. Materials. 2006. **131**, N 1/3. P. 238–242.
- Кочкодан В.М., Роля Е.А., Гончарук В.В. // Химия и технология воды. 2009. – 31, № 4. – С. 399 – 416.
- 29. Huang X., Leal M., Li Q. // Water Res. 2008. 42, N 4/5. P. 1142 1150.
- 30. Гончарук В.В., Вакуленко В.Ф., Сова А.Н. и др. // Химия и технология воды. 2003. **25**, № 5. С. 407 427.
- 31. Kritikos D.E., Xekoukoulotakis N.P., Psillakis E., Mantzavinos D. // Water Res. 2007. **41**, N10. P. 2236 2246.
- 32. Додин Е.И. Фотохимический анализ. М.: Металлургия, 1979. 176 с.
- 33. *McMurray T.A., Byrne J.A., Dunlop P.S.M. et al.* // Appl. Catal., A. 2004. **262**, N 1. P. 105 110.
- Руководство по химическому анализу поверхностных вод суши / Под ред. А. Д. Семенова. – Л.: Гидрометеоиздат, 1977. – 542 с.
- 35. *Вода* питна. Нормативні документи: У 2-х т. / Під ред. В.Л. Іванова. Львів: НТЦ "Леонорм-стандарт", 2001. 496 с.

Ин-т коллоид. химии и химии воды им. А.В. Думанского НАН Украины, г. Киев

Поступила: 11.06.2010