ФОТОКАТАЛИТИЧЕСКАЯ ДЕСТРУКЦИЯ АНИОННЫХ ПАВ КИСЛОРОДОМ И ПЕРОКСИДОМ ВОДОРОДА В СУСПЕНЗИИ Тю,

Ю.О. Швадчина, В.Ф. Вакуленко, Е.Е. Левицкая, В.В. Гончарук

Институт коллоидной химии и химии воды им. А.В. Думанского НАН Украины, г. Киев

Поступила 05.03.2012 г.

Проведено сравнение скорости и степени деструкции анионного ПАВ – алкилбензолсульфоната натрия (АБС) в гетерогенных ($O_2/TiO_2/V\Phi$, $H_2O_2/TiO_2/V\Phi$) и гомогенных ($O_2/V\Phi$, $H_2O_2/V\Phi$) окислительных системах на нескольких образцах TiO₂ при VФ-облучении ртутно-кварцевой лампой высокого давления СВД-120. Показана возможность достижения высокой степени фотокаталитической деструкции АБС пероксидом водорода (100, 90 и 80 % соответственно по концентрации АБС, ХПК и ООУ за два часа).

Ключевые слова: анионные ПАВ, диоксид титана, деструкция, кислород, окисление, пероксид водорода, фотокатализ.

Введение. Гетерогенно-фотокаталитические системы на основе высокодисперсных полупроводниковых оксидных катализаторов, среди которых нетоксический и химически устойчивый TiO_2 исследуют в последние годы наиболее интенсивно, вызывают в настоящее время широкий научный и практический интерес в области глубокой очистки природных и сточных вод от органических примесей [1-6]. Окисление органических веществ в указанных системах осуществляется по радикально-цепному механизму с участием разнообразных активированных форм кислорода (гидроксильного, гидропероксильного, супероксидного радикалов, пероксида водорода и др.), а также фотогенерированных электронных вакансий валентной зоны полупроводника – "дырок" [1, 3]. Перспективность гетерогенно-фотокаталитического окисления для очистки сточных вод обусловлена возможностью достижения высокой степени деструкции органических соединений (в ряде случаев до CO₂ и H₂O), особенно при сочетании с действием более сильных, чем кислород, окислителей [7, 8].

Однако фотокаталитическое окисление одного из наиболее распространенных типов экотоксикантов – синтетических поверхностно-актив-

© Ю.О. ШВАДЧИНА, В.Ф. ВАКУЛЕНКО, Е.Е. ЛЕВИЦКАЯ, В.В. ГОНЧАРУК, 2012

370

ISSN 0204–3556. Химия и технология воды, 2012, т. 34, №5

ных веществ (СПАВ) в настоящее время изучено недостаточно. Анализ работ [9-19], посвященных гетерогенно-фотокаталитическому окислению СПАВ кислородом на диоксиде титана, показывает, что все типы СПАВ подвержены фотокаталитической деструкции. Отмечено [9, 11, 12, 18], что скорость и степень деструкции алифатических СПАВ были значительно ниже, чем ароматических. Фотокаталитическая деструкция ароматических ядер и гидрофильных групп анионных, катионных и неионогенных СПАВ (соответственно АПАВ, КПАВ и НПАВ) протекала относительно легко, в то время как окисление длинных углеводородных радикалов происходило медленно. Поэтому ароматическая структура типичного АПАВ – додецилбензолсульфоната разрушалась на 90 % в течение двух – трех часов фотокаталитического окисления кислородом, однако степень его полной деструкции (снижение концентрации общего органического углерода (ООУ)) составляла 25 – 58 % за 5 – 10 ч [9, 12, 15]. Концентрация НПАВ снижалась до нуля за 1,5 – 2 ч [18], а степень полной деструкции НПАВ по ООУ колебалась от 80 % за 2 ч [18] до 41 -58 % за 5 ч [12, 17].

Скорость и степень фотокаталитической деструкции органических соединений зависят от многочисленных параметров: природы и концентрации субстрата, фотокатализатора, окислителя и сопутствующих неорганических примесей, pH среды, спектра и интенсивности УФ-излучения, температуры и др. [1 – 4, 7, 8]. В работах [9 – 21] концентрация фотокатализатора при окислении СПАВ изменялась от 0,1 до 10 г/дм³, концентрация СПАВ в растворах индивидуальных соединений варьировала от 0,01 до 0,5 ммоль/дм³, а в модельных растворах коммерческих моющих средств составляла 111 – 258 мг/дм³ в расчете на ООУ [12]. Для УФ-облучения использовали ртутные лампы высокого и низкого давления разной мощности, отличающиеся спектральными характеристиками в ультрафиолетовой области (соответственно 200 – 400 и 200 – 280 нм) [22].

На скорость фотокаталитического окисления существенно влияют физико-химические свойства фотокатализатора, которые зависят от метода синтеза и последующей обработки TiO_2 [1 – 3, 19]. Как правило, образцы TiO_2 , имеющие кристаллическую структуру анатаза, обладают более высокой фотокаталитической активностью, чем рутил [1, 2, 16, 19, 23, 24]. Наиболее широко изучен TiO_2 Degussa P-25 (70 – 80 % анатаза и 20 – 30 % рутила), считающийся стандартом фотокатализатора [1, 2, 8, 9, 11, 12, 14, 16, 18]. В последние годы значительное внимание уделяется синтезу и исследованию фотокаталитической активности наноразмерных образцов TiO_2 с разными физико-химическими свойствами [1, 4, 11, 19, 24] и TiO_2 , иммобилизованного на разных носителях [1, 4, 12, 16, 17, 21].

ISSN 0204–3556. Химия и технология воды, 2012, т. 34, №5

Как правило, скорость деструкции органических соединений линейно возрастает лишь в определенном диапазоне значений ряда параметров фотокаталитического окисления (концентрации TiO₂ и субстрата, парциального давления кислорода и др.) [1, 2, 12, 13, 18, 23], достигая максимума или плато при их оптимальных значениях. Максимальная эффективность фотокаталитической деструкции СПАВ, согласно опубликованным данным [12, 13, 15, 18, 20, 23], наблюдалась при концентрации высокодисперсного TiO₂ в водных суспензиях от 0,1 до 2 г/дм³.

Таким образом, широкий диапазон параметров, используемых в [9–21], затрудняет выявление общих закономерностей процесса фотокаталитического окисления СПАВ. Глубокая деструкция основных типов СПАВ, учитывая наличие в их молекулах длинноцепочечных ($C_8 - C_{16}$) алифатических радикалов, при фотокаталитическом окислении кислородом требует продолжительной обработки (5–10 ч) [9, 12, 13, 15–17].

Применение сильных окислителей (H_2O_2 , $K_2S_2O_8$, KBrO₃, O_3 и др.) повышает скорость и степень фотокаталитической деструкции различных органических соединений в водной среде [1, 2, 7, 8, 11, 21, 25]. Анализ работ [7, 26 – 31], посвященных влиянию пероксида водорода на степень фотокаталитической и фотохимической деструкции органических соединений в водной среде, показывает, что в зависимости от природы вещества и концентрации пероксида водорода последний может существенно ускорять или замедлять процесс окисления. Оптимальное соотношение молярных концентраций H_2O_2 и субстрата при фотокаталитическом или фотохимическом окислении различных органических соединений изменяется в диапазоне от 5 до 200 [7, 26], поскольку определяется рядом взаимосвязанных параметров, таких, как длина волны и интенсивность УФ-излучения, pH раствора, физико-химические свойства субстрата и катализатора.

Фотокаталитическая деструкция СПАВ сильными окислителями исследована недостаточно [11, 21]. При изучении фотохимического окисления СПАВ, их аналогов и метаболитов пероксидом водорода и персульфатом калия [28 – 31] установлено повышение константы скорости деструкции этих соединений на один – два порядка по сравнению с фотолизом [28] и показана возможность глубокой деструкции (\geq 80 % по ХПК за 1,5 – 2 ч) коммерческих СПАВ разных типов пероксидом водорода в щелочной среде (pH 10 – 11) при использовании УФ-излучения в диапазоне 200 – 280 нм [30, 31]. Следует отметить, что степень деструкции СПАВ по ХПК возрастает в диапазоне концентраций H₂O₂ 0 – 27 ммоль/дм³, сохраняется неизменной в диапазоне 30 – 44 ммоль/дм³ и существенно снижается при более высоких концентрациях пероксида водорода (68 ммоль/дм³) [31]. Стехиометрический расход окислителя составляет 2,1 г H₂O₂ на снижение 1 г ХПК. Таким образом, преимущества фотокаталитической системы $H_2O_2/TiO_2/$ УФ по сравнению с другими системами проявляются лишь при определенных параметрах окисления и практически не изучены по отношению к СПАВ.

Цель данной работы – исследование степени фотокаталитической деструкции АПАВ в водной среде кислородом воздуха и пероксидом водорода на диоксиде титана.

Методика эксперимента. В качестве объектов исследования были использованы водные растворы алкилбензолсульфоната натрия (АБС) усредненного состава $C_{12}H_{25}-C_6H_4$ –SO₃Na (C_0 – 50 мг/дм³, XПK₀ – 99 ± 3 мг О/дм³, ООУ₀ – 29 мг /дм³, рH₀ 3,5 – 5,8).

Фотокаталитическое окисление растворов АПАВ в присутствии TiO₂ проводили при комнатной температуре ($20 \pm 3^{\circ}$ C) в стеклянном открытом реакторе кислородом, самопроизвольно растворяющимся из атмосферы ($O_2/\text{TiO}_2/\text{Y}\Phi$), или добавленным пероксидом водорода ($H_2O_2/\text{TiO}_2/\text{Y}\Phi$) при перемешивании магнитной мешалкой в течение одного – двух часов. УФ-облучение раствора или суспензии ($V - 100 - 200 \text{ cm}^3$, толщина слоя (l) – 1,5 – 3 см) осуществляли ртутно-кварцевой лампой высокого давления СВД-120, закрепленной на расстоянии 24 см от поверхности раствора. Плотность мощности УФ-излучения ($\lambda = 200 - 400 \text{ hm}$), рассчитанная, согласно [22], для расстояния 24 см, составляла 3,05 мВт/см². После окисления фотокатализатор отделяли от раствора АБС центрифугированием (8000 об/мин). Параллельно была изучена степень фотолитической деструкции ($O_2/\text{Y}\Phi$) и фотохимического окисления АБС пероксидом водорода без TiO₂ ($H_2O_2/\text{Y}\Phi$), а также определена степень темновой адсорбции АБС на TiO₂.

Изменение концентрации АБС в процессе окисления контролировали спектрофотометрическим методом (по изменению A_{225}). Степень деструкции АБС оценивали по снижению ХПК и концентрации ООУ. Спектры поглощения растворов АБС регистрировали с помощью спектрофотометров Specord UV-VIS и Shimadzu UV-2450. Концентрацию ООУ определяли на анализаторе Shimadzu TOC-VCSN. Концентрацию пероксида водорода в растворах АБС до и после фотокаталитического окисления определяли по реакции с TiOSO₄ [32].

В качестве фотокатализатора использовали три коммерческих образца TiO₂ разного фазового состава (табл. 1) при концентрации 1,0 г/дм³, а также два образца (А/Р* и А/Р**), полученных путем прокаливания коммерческого TiO₂ Degussa P-25 соответственно при 500 и 600°С. Текстурные параметры образцов диоксида титана были определены методом низкотемпературной (77 K) адсорбции азота при использовании вакуумной установки Quantachrome NovaWin 2. Рентгенофазовый анализ образцов TiO₂ проводили при помощи дифрактометра ДРОН 2 (Со Каизлучение) в диапазоне углов Брега (2 θ) 5 – 90.

Таблица 1. Характеристика образцов ТіО,

Officer TiO	Casear	pH _{TH3}	Удельная	Размер	
Oopaset 110_2	Состав	[1, 20]	$(S_{\text{DDT}}) M^2/\Gamma$	частиц,	
("Aldrich")	100.0/	52 55	(JE3T), M /1	пм	
A_1 ("Aldrich")	~ 100 % анатаза	$\sim 100 \%$ anatasa $5,2-5,5$		—	
A ₂ ("Aldrich")	~ 100 % анатаза		7,9	490	
A/P	81 % анатаза,	62 60	56	20	
(Degussa P-25)	19 % рутила	0,2 - 0,9	50	~ 30	
A/P*	76 % анатаза,		52	20	
(500°C)	24 % рутила	_	55	20	
A/P**	63 % анатаза,		25	27	
(600°C)	37 % рутила	_	33	57	

Результаты и их обсуждение. При УФ-облучении суспензии образца $\text{TiO}_2 \text{ A}_1$ и АБС концентрация исходного вещества снижалась на 65 и 76 % за два часа при толщине слоя (*l*) соответственно 1,5 и 3 см (табл. 2).

Таблица 2. Степень фотолитической и фотокаталитической деструкции АБС кислородом

Образец ТіО2	$V, \mathrm{cm}^3 (l, \mathrm{cm})$	ΔC_{ABC} , %	ΔХПК, %
	100 (1,5)	79	23
_	200 (3,0)	65	12
٨	100 (1,5)	76	33
Al	200 (3,0)	65	27
A/P	200 (3,0)	90	64
A/P* (500°C)	200 (3,0)	91	69
A/P** (600°C)	200 (3,0)	38	30

Примечание. Продолжительность окисления – два часа.

УФ-облучение без TiO_2 в идентичных условиях обеспечивало аналогичное снижение концентрации АБС. Это позволило предположить, что при данных экспериментальных условиях преобладает фотолитичес-кая трансформация исходной структуры АБС в объеме раствора. Однако степень адсорбции исследуемого вещества на образцах A_1 и A_2 , составляющая в среднем 12 – 13 % (т.е. 6,0 – 6,5 мг АБС на 1 г TiO₂), и более высокая (на 10 – 15 % по ХПК) степень фотокаталитической деструкции

АБС по сравнению с фотолитической свидетельствовали о его частичной деструкции и на поверхности полупроводникового оксида (см. табл. 2). Увеличение толщины слоя облучаемой суспензии в два раза приводило к незначительному снижению степени фотокаталитической деструкции АБС. Поэтому во всех дальнейших исследованиях объем облучаемого раствора или суспензии АБС составлял 200 см³ (*l* = 3 см).

Степень адсорбции АБС на образце А/Р (в среднем 14 мг АБС на 1 г TiO_2) была в 2,2 – 2,3 раза выше, чем на образцах A_1 и A_2 , так как его удельная поверхность в 4,5 – 4,9 раза выше (см. табл. 1). Соответственно, при использовании образца А/Р фотокаталитическая деструкция АБС значительно ускорялась. Степень фотокаталитической деструкции АБС по ХПК на образцах А/Р и А/Р* в 2,5 раза превышала таковую на образце A_1 и в 5,5 раза – степень фотокаталитической деструкции (см. табл. 2). Тем не менее при изученных параметрах фотокаталитического окисления растворенным кислородом деструкция АБС протекала недостаточно эффективно (на 38 – 91 и 27 – 69 % за два часа соответственно по C_{AFC} и ХПК).

С целью повышения эффективности процесса было изучено влияние регулирования pH раствора и добавок пероксида водорода на степень фотокаталитической деструкции АБС.

Следует отметить, что поверхность амфотерного TiO_2 заряжена положительно при низких значениях pH и отрицательно – при высоких вследствие протонирования и диссоциации поверхностных групп. Известно, что pH точки нулевого заряда (pH_{TH3}) разных образцов TiO₂ варьирует от 5 до 7 [1, 9, 11, 18, 25]. Значение pH исходного раствора AEC близко к pH_{TH3} образцов A₁ и A₂ (см. табл. 1), что, возможно, является одной из причин невысокой степени адсорбции субстрата на их поверхности. Снижение pH раствора повышает положительный заряд поверхности TiO₂, что способствует адсорбции AEC в диссоциированной форме, однако снижает степень его диссоциации (pK_a = 3 [29]). Повышение pH среды при фотокаталитическом окислении AIIAB бесперспективно, так как снижает степень адсорбции диссоциированной формы субстрата на отрицательно заряженной в щелочной среде поверхности TiO₂. Такой вывод подтверждают результаты исследований, приведенные в [11, 12, 18].

Степень адсорбции АБС на образце А/Р при подкислении его раствора до pH 3,5 возрастала в среднем на 5 % (от 28 до 33 %), в то время как для образца A_1 – практически не изменялась. Однако ускорение фотокаталитической деструкции АБС кислородом на обоих образцах TiO₂ при подкислении его раствора до pH 3,5 было незначительным (≤ 10 %) (рис. 1, *a*, *б*). Отсутствие влияния pH₀ раствора вызвано отщеплением сульфогруппы с образованием сульфат-ионов в начальный период фотокаталитического окисления АБС [13], сопровождающимся быстрым снижением pH раствора, не имеющего буферной емкости, с 5,5 – 5,8 до 4,3 ± 0,1.

Рис. 1. Изменение концентрации АБС (1 - 4) (a) и ХПК его растворов (5 - 8) (б) при pH₀ 5,5 (1, 3, 5, 7) и 3,5 (2, 4, 6, 8) при фотокаталитическом окислении кислородом $(O_2/TiO_2/Y\Phi)$ на образцах TiO_2A_1 (1, 2, 5, 6) и A/P (3, 4, 7, 8).

Влияние добавок пероксида водорода на степень фотокаталитической деструкции АБС было исследовано в интервале концентраций 12,5 – 50 мг/дм³, соответствующих соотношению молярных концентраций окислителя и АБС ~ (2,5 – 10), при рH₀ растворов 5,5 и 3,5, а также при концентрации H₂O₂ 250 мг/дм³, близкой к стехиометрическому соотношению молярных концентраций H₂O₂ и АБС (51 моль/моль), необходимому для полной деструкции последнего. Влияние пероксида водорода на степень фотокаталитической деструкции АБС зависело от параметров окисления.

Степень фотокаталитической деструкции АБС на образце A_1 при pH₀ 5,5 линейно ($R^2 > 0,95$) зависела от концентрации H₂O₂ при соотношении молярных концентраций окислителя и АБС ≤ 10 (рис. 2). Однако повышение степени деструкции АБС в фотокаталитической системе H₂O₂/TiO₂/УФ при концентрации окислителя 50 мг/дм³ по сравнению с системой O₂/TiO₂/УФ было небольшим (≤ 20 % по C_{AEC} и XПК). К тому же степень фотокаталитической деструкции АБС на указанном образце TiO₂ была ниже, чем при его фотохимическом (H₂O₂/УФ) окислении (табл. 3, рис. 2). Добавка пероксида водорода (50 мг/дм³) к раствору АБС, подкисленному до pH₀ 3,5, менее эффективна, чем при pH₀ 5,5 (см. табл. 3).

Рис. 2. Зависимость степени фотохимической (1, 3) и фотокаталитической (2, 4) деструкции АБС от концентрации H_2O_2 по изменению концентрации АБС (1, 2) и ХПК (3, 4). Концентрация образца $A_1 - 1 \ r/\partial M^3$, продолжительность окисления – два часа.

Таблица 3. Влияние концентрации пероксида водорода на степень фотохимической $(H_2O_2/V\Phi)$ и фотокаталитической $(H_2O_2/TiO_2/V\Phi)$ деструкции АБС

Образец ТіО ₂	$\Delta C_{ABC} (H_2)$	%) при кон О ₂ , мг/дм ³	нцентрации (pH ₀)	ΔХПК (%) при концентрации H ₂ O ₂ , мг/дм ³ (pH ₀)			
	50 (5,5)	250 (5,5)	50 (3,5)	50 (5,5)	250 (5,5)	50 (3,5)	
A ₁	81	51	81	46	22	38	
A/P	99	96	_	68	79	_	
A/P*	-	100	—	-	90	—	
A/P**	_	95	—	_	68	_	
_	91	94	—	62	69	_	

Примечание. Продолжительность окисления – два часа.

Фотокаталитическое окисление раствора АБС (pH₀ 5,5) на образце А/Р в присутствии 50 мг/дм³ H₂O₂ обеспечивало практически полное разложение исходного соединения за два часа, однако степень его деструкции по ХПК незначительно отличалась от таковой в двух других системах (O₂/TiO₂/УФ, H₂O₂/УФ) (см. табл. 2, 3).

Повышение скорости реакции при добавке пероксида водорода обусловлено различными причинами, в том числе повышением квантового выхода и концентрации гидроксил-радикалов. Согласно [33] в присутствии H₂O₂ (*C* – 0,2 – 0,4 ммоль/дм³) скорость фотокаталитического образования

ОН-радикалов возрастала для образцов TiO₂, состоящих из рутила, или смешанных форм TiO₂, содержащих 10 - 20 % рутила, и несколько снижалась – для образцов TiO₂, состоящих из чистого анатаза. В частности, добавка 0,2 - 0,3 ммоль/дм³ H₂O₂ к суспензии TiO₂ Degussa P-25 повышала скорость фотокаталитического образования OH-радикалов в 4 - 5 раз.

Сравнение кинетики разложения H_2O_2 ($C - 50 \text{ мг/дм}^3$) при фотохимическом и фотокаталитическом окислении растворов АБС показало, что в присутствии катализатора разложение окислителя заметно ускорялось (рис. 3). Причем его низкие остаточные концентрации через один час при $C_{\mu cx} - 50 \text{ мг/дм}^3$ и pH₀ 5,5 (15 и 6 % от исходной соответственно для образцов A₁ и A/P) (см. рис. 3, кривые 3, 4) не позволяли реализовать в полной мере преимущества системы $H_2O_2/\text{Ti}O_2/\text{У}\Phi$ при более продолжительном окислении АБС. Достаточно низкая эффективность добавок H_2O_2 при подкислении раствора АБС до pH₀ 3,5 обусловлена, вероятно, снижением скорости фотокаталитического разложения H_2O_2 (кривые 2, 3) из-за снижения степени его диссоциации (pK_a = 11,6) и значительного различия молярных коэффициентов экстинкции молекулярного H_2O_2 и ионов HO_2^- (соответственно 19,6 и 240 M⁻¹·см⁻¹ [7, 28]).

Рис. 3. Кинетика разложения H_2O_2 при фотохимическом (H_2O_2 /УФ) (1) и фотокаталитическом ($H_2O_2/TiO_2/УΦ$) (2–4) окислении раствора АБС на образцах A_1 (2, 3) и A/P (4) при pH_0 раствора 5,5 (1, 3, 4) и 3,5 (2). Исходная концентрация $H_2O_2 - 50 \pm 1,5$ мг/дм³; $T - 20 \pm 3$ °С.

Таким образом, анализ кинетики разложения H_2O_2 в процессе фотокаталитического окисления растворов АБС при pH_0 5,5 свидетельствует о необходимости повышения концентрации пероксида водорода. Однако, поскольку H_2O_2 является одновременно источником образования и ловушкой гидроксил-радикалов [7, 34], первоначально была оценена эффективность двухстадийного дозирования окислителя – 50 мг/дм³ перед началом облучения и 35 – 50 мг/дм³ – через один час, увеличивая, таким образом, суммарную дозу пероксида водорода в 1,7 – 2 раза.

Следует отметить, что двухстадийное дозирование окисли-100 теля равными частями при суммарной дозе мг/дм³ H₂O₂ обеспечило лучшие условия фотокаталитического окисления раствора АБС на образце А₁, так как на каждой стадии использовали ~ 75 % от начальной концентрации H₂O₂ (табл. 4). Однако суммарная доза 100 мг/дм³ H₂O₂, возможно, являлась избыточной для исследуемого раствора АБС (*C* – 50 мг/дм³), учитывая высокую остаточную концентрацию окислителя через два часа и незначительное повышение (на 7 % по ХПК) степени фотокаталитической деструкции АБС по сравнению с таковой при дозе 50 мг/дм³ H₂O₂ (см. табл. 3, 4).

Таблица 4. Изменение концентрации H_2O_2 и степени деструкции АБС в процессе фотокаталитического окисления (H_2O_2 /TiO₂ /VΦ) его раствора при двухстадийном дозировании окислителя

Образец	Суммарная доза H ₂ O ₂ ,	<i>t</i> , ч	Концентрация НаОз мг/лм ³	Степень деструкции АБС, %		
1102	мг/дм ³		11202, мп/дм	по C_{Abc}	по ХПК	
A ₁	100 ± 1,5	0	51,7	-	-	
		1	63,2 (13,2 + 50)	39	20	
		2	16,2	78	53	
A ₂	85± 1,5	0	48,6	-	—	
		1	41,9 (6,9 + 35)	51	21	
		2	<0,1	86	52	
A/P		0	51,6	_	—	
		1	36,5 (1,5+35)	74	45	
		2	0,9	98	72	

Примечание. Концентрация $TiO_2 - 1 r/дм^3$, $pH_0 5.5 \pm 0.2$.

При возрастании дозы H_2O_2 от 50 до 85 мг/дм³ в процессе фотокаталитического окисления раствора АБС на образце A_2 степень его деструкции по ХПК повышалась на 14 % за два часа и практически не отличалась от таковой при дозе 100 мг/дм³ H_2O_2 на образце A_1 (см. табл. 4).

При двухстадийном дозировании H_2O_2 в процессе фотокаталитического окисления раствора АБС на образце А/Р степень разложения окислителя составляла 97 % на каждой стадии, однако степень деструкции АБС по ХПК повышалась незначительно (на 3 – 4 %) по сравнению с окислением при дозе H_2O_2 50 мг/дм³ (см. табл. 3, 4). Тем не менее применение образца A/P в системе $H_2O_2/TiO_2/У\Phi$ обеспечивало в основном более эффективную деструкцию AБС (на 20 – 25 % по концентрации исходного соединения и на ~ 20 % – по ХПК) по сравнению с образцами A_1 и A_2 .

Дальнейшее повышение концентрации H₂O₂ до 250 мг/дм³ оказывало выраженный ингибирующий эффект на фотокаталитическое окисление АБС на образце А₁, поскольку степень его деструкции за два часа была ниже таковой как при более низких концентрациях H₂O₂, так и при окислении кислородом в системе $O_2/TiO_2/У\Phi$ (см. табл. 2, 3). Кроме того, при таких параметрах окисления степень деструкции АБС за два часа в системе H₂O₂/TiO₂/УФ была в два – три раза ниже, чем в гомогенной фотохимической системе H₂O₂/УФ (см. табл. 3). Разложение окислителя при его исходной концентрации 250 мг/дм³ в процессе фотокаталитического окисления раствора АБС на образце А₁ не ускорялось по сравнению с фотохимическим окислением (рис. 4, кривые 1, 2), в отличие от закономерности, наблюдавшейся при более низкой концентрации H₂O₂ (см. рис. 3), поэтому остаточная концентрация окислителя через два часа была высокой (63 % от исходной). Ингибирующий эффект Н₂O₂ может быть обусловлен образованием пероксокомплексов Ti(O),(OH), и Ti(OOH)(OH), на поверхности TiO,, которые снижают фотокаталитическую активность [26], или нежелательными побочными реакциями при превышении его оптимальной концентрации, например:

 $H_2O_2 + OH \rightarrow HO_2 + H_2O, \qquad k = (1, 2 - 4, 5) \cdot 10^7 M^{-1} \cdot c^{-1} [30, 31];$ $HO_2 + OH \rightarrow H_2O_2 + O_2, \qquad k = 6, 6 \cdot 10^9 M^{-1} \cdot c^{-1} [34].$

Напротив, скорость разложения H_2O_2 ($C - 250 \text{ мг/дм}^3$) в фотокаталитической системе значительно превышала таковую в фотохимической системе при использовании коммерческого образца A/P или образца A/P*, прокаленного при 500°С (см. рис. 4, кривые 4, 5).

Степень фотокаталитической деструкции АБС на образце А/Р при повышении концентрации H_2O_2 от 50 до 250 мг/дм³ возрастала на 11 % по XПК за два часа (см. табл. 3), на 10 и 15 % по XПК превышала таковую соответственно при его фотохимическом ($H_2O_2/УΦ$) окислении и фотокаталитическом окислении растворенным кислородом на указанном образце TiO₂ (см. табл. 2). Прокаливание при 500°С заметно активировало коммерческий образец TiO₂ и позволило повысить степень фотокаталитической деструкции АБС пероксидом водорода на образце А/Р* до 100 и 90 % соответственно по C_{ABC} и XПК за два часа (см. табл. 3), хотя степень фотокаталитической деструкции АБС кислородом после такой термической обработки возрастала несущественно (≤ 5 %) (см. табл. 2).

Рис. 4. Кинетика разложения H_2O_2 при фотохимическом ($H_2O_2/V\Phi$) (1) и фотокаталитическом ($H_2O_2/TiO_2/V\Phi$) (2 – 5) окислении раствора АБС на образцах A_1 (2), A/P^{**} (3), A/P (4) и A/P^{*} (5). Исходная концентрация $H_2O_2 - 250 \text{ мг/дм}^3$; pH_0 4,6; $T - 20 \pm 2 \, {}^0C$.

Фотокаталитическая активность образца A/P**, прокаленного при 600°С, была заметно меньшей по сравнению с двумя другими образцами (A/P и A/P*), о чем свидетельствовало снижение скорости разложения H_2O_2 (см. рис. 4, кривая 3) и степени фотокаталитической деструкции АБС кислородом и пероксидом водорода (см.табл. 2, 3).

Таким образом, максимальная степень деструкции АБС при фотокаталитическом окислении растворенным кислородом и пероксидом водорода достигалась на образце А/Р (без и после активации при 500°С) и составляла соответственно 90 – 91 и 96 – 100 % по C_{AEC} , 64 – 69 и 79 – 90 % по ХПК, 60 и 73 – 80 % по ООУ за два часа (см. табл. 2, 3). Следует отметить, что фотохимическое окисление пероксидом водорода достаточно эффективно снижало концентрацию АБС (> 90 % за два часа), однако степень его деструкции (62 – 69 и 56 % соответственно по ХПК и ООУ за два часа) практически не отличалась от деструкции при фотокаталитическом окислении растворенным кислородом и была значительно меньшей, чем при фотокаталитическом окислении пероксидом водорода.

Сравнение начальной скорости фотокаталитической трансформации АБС кислородом и пероксидом водорода в течение первого часа с таковой в соответствующих гомогенных системах (табл. 5) показало, что повышение эффективности деструкции АБС в разных фотокаталитических системах лишь отчасти обусловлено ускорением деструкции исходного соединения в присутствии фотокатализатора. Начальная скорость гомогенного фотохимического ($H_2O_2/У\Phi$) окисления АБС или его фотокаталитической деструкции кислородом на образцах А/Р и А/Р* существенно повышалась по сравнению со скоростью фотолитического ($O_2/У\Phi$) окисления.

Начальная скорость деструкции АБС в фотокаталитической системе $H_2O_2/TiO_2/У\Phi$ на образцах А/Р и А/Р* также возрастала по сравнению с другой гетерогенной системой ($O_2/TiO_2/У\Phi$), но при этом незначительно уступала таковой в гомогенной фотохимической системе $H_2O_2/У\Phi$ (см. табл. 5). Более глубокая фотокаталитическая деструкция АБС пероксидом водорода на указанных образцах TiO_2 , а также кислородом на образце A_1 по сравнению, соответственно, с фотохимическим и фотолитическим окислением (см. табл. 2, 3) достигалась за счет более высокой скорости деструкции органических компонентов реакционной смеси по ХПК в течение второго часа окисления.

Таблица 5. Начальная скорость деструкции АБС в гомогенных ($O_2/У\Phi$, $H_2O_2/V\Phi$) и гетерогенно-фотокаталитических ($O_2/TiO_2/У\Phi$, $H_2O_2/TiO_2/Y\Phi$) системах

Образец ТіО2	$\Delta C_{ABC} / \Delta t$, мг/(дм ³ ·мин) при $C_{H_2O_2}$, мг/дм ³			ΔХПК /Δ <i>t</i> , мг О/(дм ³ ·мин) при С _{H2O2} , мг/дм ³				
	0	35	50	250	0	35	50	250
_	0,33	0,58	0,67	0,74	0,12	0,45	0,50	0,97
A_1, A_2	0,24	0,36	0,36-0,42	0,22	0,10	0,23	0,35-0,40	0,27
A/P	0,48		0,62	0,65	0,58	—	0,67-0,72	0,90
A/P*	0,52		—	0,74	0,58	—	_	0,87
A/P**	0,17		-	0,72	0,30	—	_	0,75

Примечание. Концентрация $\text{TiO}_2 - 1 \text{ } \text{г/дм}^3$, продолжительность окисления (t) – один час.

Скорость деструкции АБС по $C_{A b C}$ и ХПК на образце А/Р была соответственно в 2,0 и 5,8 раза выше, чем на образцах A_1 и A_2 , в системе $O_2/\text{Ti}O_2/\text{V}\Phi$ и, соответственно, в 1,5 – 3,0 и 1,9 – 3,3 раза выше – в системе $H_2O_2/\text{Ti}O_2/\text{V}\Phi$ в интервале концентраций H_2O_2 50 – 250 мг/дм³ (см. табл. 5).

Более эффективная деструкция АБС на образце А/Р*, активированном при 500°С, также достигалась в основном за счет повышения скорости его деструкции по ХПК в течение второго часа окисления по сравнению с коммерческим образцом А/Р. Термическая обработка при 600°С более существенно дезактивировала образец А/Р** при фотокаталитическом окислении АБС кислородом, чем пероксидом водорода (см. табл. 5). Начальная скорость деструкции АБС в фотокаталитической системе $O_2/TiO_2/У\Phi$ на образце A/P** снижалась в 2,8 и 1,9 раза соответственно по C_{AFC} и XПК по сравнению с коммерческим образцом A/P, в то время как в системе $H_2O_2/TiO_2/Y\Phi$ – на < 20 %.

Выводы. Исследование закономерностей фотокаталитической деструкции алкилбензолсульфоната натрия кислородом и пероксидом водорода позволило определить наиболее активный коммерческий образец диоксида титана, способ его активации и параметры фотокаталитического окисления, обеспечивающие максимальную степень деструкции субстрата.

Фотокаталитическое окисление пероксидом водорода было более эффективным для деструкции АБС по сравнению с окислением кислородом при использовании двухфазного образца А/Р без и после активации при 500°С. Максимальная степень деструкции АБС за два часа составляла 100, 90 и 80 % соответственно по $C_{\rm ABC}$, ХПК и ООУ при концентрации пероксида водорода, близкой к стехиометрической (51 моль H_2O_2 /моль АБС), на активированном при 500 °С двухфазном образце TiO₂. Степень фотокаталитической деструкции АБС кислородом или фотохимического окисления пероксидом водорода в аналогичных условиях была существенно меньшей (91 – 94, 69 и 56 – 60 % соответственно по $C_{\rm ABC}$, ХПК и ООУ за два часа).

Влияние пероксида водорода на степень фотокаталитической деструкции АБС зависело от физико-химических свойств TiO_2 . Высокие концентрации окислителя (51 моль H_2O_2 /моль АБС) ингибировали фотокаталитическое окисление АБС при использовании образцов TiO_2 , состоящих из анатаза. Рациональным режимом фотокаталитического окисления раствора АБС пероксидом водорода на образцах A_1 и A_2 являлось двухстадийное дозирование окислителя при суммарной дозе ~ 17 моль H_2O_2 /моль АБС, повышающее в 1,9 раза степень его деструкции по ХПК по сравнению с таковой в системе $O_2/TiO_2/УФ$.

Скорость фотокаталитической деструкции АБС по $C_{\rm AEC}$ и ХПК на двухфазном образце А/Р была соответственно в 2,0 и 5,8 раза выше, чем на образцах А₁ и А₂ (~ 100 % анатаза), при окислении растворенным кислородом, и, соответственно, в 1,5 – 3,0 и 1,9 – 3,3 раза выше – при окислении пероксидом водорода в интервале его концентраций 50 – 250 мг/дм³.

Резюме. Проведено порівняння швидкості та ступеня деструкції аніонної ПАР – алкілбензолсульфонату натрію (АБС) у гетерогенних ($O_2/TiO_2/Y\Phi$, $H_2O_2/TiO_2/Y\Phi$) і гомогенних ($O_2/Y\Phi$, $H_2O_2/Y\Phi$) окисних системах на кількох зразках Ті O_2 при УФ-опроміненні за допомогою ртутно-кварцової лампи високого тиску СВД-120. Показано можливість досягнення високого ступеня фотокаталітичної деструкції АБС пероксидом водню (100, 90 і 80 % відповідно за концентрацією АБС, ХПК та ЗОВ за дві години).

THE PHOTOCATALYTIC DEGRADATION OF ANIONIC SURFACTANTS BY OXYGEN AND HYDROGENE PEROXIDE IN TIO, SUSPENSION

Summary

The rate and degree of destruction of anionic surfactant – sodium alkylbenzenesulphonate (ABS) in heterogeneous ($O_2/TiO_2/UV$, $H_2O_2/TiO_2/UV$) and homogeneous (O_2/UV , H_2O_2/UV) oxidizing systems were compared using several TiO₂ brands under UV irradiation with a high pressure mercury lamp SVD-120. The opportunity of achievement of high extent of photocatalytic degradation of ABS by hydrogen peroxide (100, 90 and 80 % for ABS concentration, COD and TOC respectively at 2 h) was shown.

Список использованной литературы

- Carp O., Huisman C.L., Reller A. // Progr. in Solid State Chem. 2004. 32, N 1. – P. 33 – 187.
- [2] Ahmed S., Rasul M.G., Martens W. N. et al. // Desalination. 2010. 261, N 1. - P. 3 - 18.
- [3] Соболева Н.М., Носонович А.А., Гончарук В.В. // Химия и технология воды. 2007. **29**, № 2. С. 125 159.
- [4] Gaya U. I., Abdullah A. H. // J. Photochem. and Photobiol., C. 2008. 9, N 1. – P. 1 – 12.
- [5] *Пат. 2033970 РФ, МКИ С02F 1/32 /* Ф. Миано, Э. Боргарелло. Опубл. 27.04.1995, Бюл. № 12.
- [6] *Пат. 2117517 РФ, МКИ В01D37/00, В01D 61/00, С02F 1/32, С02F 1/72* / Ф.А. Махмутов, Р.Н. Мишкин, Е.И. Царева. Опубл. 20.08.1998, Бюл. № 23 (Ч. 2).
- [7] Dionysiou D.D., Suidan M. T., Baudin I., Laine J.-M. // Appl. Catal., B. 2004. – 50, N 4. – P. 259 – 269.
- [8] Agustina T.E., Ang H.M., Vareek V.K. // J. Photochem. and Photobiol., C. 2005. 6, N 4. P. 264 273.
- [9] Hidaka H., Zhao J., Pelizzetti E., Serpone N. // J. Phys. Chem. 1992. 96, N 5. – P. 2226 – 2230.
- [10] Lea J., Adesina A.A. // J. Photochem. and Photobiol., A. 1998. 118, N 2. P. 111 – 122.
- [11] Zhang T., Oyama T., Horikoshi S. et al. // Appl. Catal., B.– 2003. 42, N 1. P. 13 – 24.
- [12] Perkowski J., Bzdon S., Bulska A., Jozwiak W.K. // Polish. J. Environ. Stud. 2006. – 15, N 3. – P. 457 – 465
- [13] Szabo-Bardos E., Markovics O., Horvath O. et al. // Water Res. 2011. 45,

N 4. – P. 1617 – 1628.

- [14] Horvath O., Bodnar E., Hegyi J. // Colloids and Surfaces, A. 2005. 265, N 1/3. – P. 135 – 140.
- [15] Zhang R., Gao L., Zhang Q. // Chemosphere. 2004. 54, N 3. P. 405 411.
- [16] Horikoshi S., Watanabe N., Onishi H. et al. // Appl. Catal., B. 2002. 37, N 2. – P. 117 – 129
- [17] Mozia S., Tomaszewska M., Morawski A. W. // Ibid. 2005. 59, N 3/4. P. 155 160
- [18] Eng Y.Y., Sharma V.K., Ray A. K. // Chemosphere. 2010. **79**, N 2. P. 205 209.
- [19] Халявка Т.А., Капинус Е.И., Стрелко В.В., Шимановская В.В. // Химия и технология воды. 2000. **22**, № 6. С. 584 593.
- [20] *Pujara K., Kamble S.P., Pangarkar V.G. //* Ind. Eng. Chem. Res. 2007. **46**. P. 4257 4264.
- [21] Yamazaki S., Mori T., Katou T. et al. // J. Photochem. and Photobiol., A. 2008. – 199, N 2/3. – P. 330 – 335.
- [22] Додин Е.И. Фотохимический анализ. М.: Металлургия, 1979. 176 с.
- [23]. *Rachel A., Sarakha M., Subrahmanyam M., Boule P. //* Appl. Catal., B. 2002. **37**, N 4. P. 293 300.
- [24]. Scotti R., D'Arienzo M., Morazzoni F., Bellobono I.R. // Ibid. 2009. 88, N 3/4. – P. 323 – 330.
- [25]. *Chiou C.-H., Wu C.-Y., Juang R.-S.* // Chem. Eng. J. 2008. **139**, N 2. P. 322–329.
- [26]. *Adan C., Carbajo J., Bahamonde A., Martinez-Arias A.* // Catal. Today. 2009. **143**, N 3/4. – P. 247 – 252
- [27] Adan C., Coronado J.M., Soria J. et al. // Appl. Catal., A. 2006. 303, N 2. – P. 199 – 206.
- [28] Bledzka D., Gryglik D., Olak M. et al. // Radiat. Phys. and Chem. 2010. 79. – P. 409 – 416.
- [29] Mendez-Diaz J., Sanchez-Polo M., Rivera-Utrilla J. et al. // Chem. Eng. J. 2010. – 163, N 3. – P. 300 – 306.
- [30] Olmez-Hanci T., Arslan-Alaton I., Basar G. // J. Hazard. Materials. 2011. 185, N 1. – P. 193 – 203.
- [31] Arslan-Alaton I., Cokgor E.U., Koban B. // Ibid. 2007. 146, N 3. 453 458.
- [32] *Марченко 3*. Фотометрическое определение элементов. М.: Мир, 1971. 502 с.
- [33] *Hirakawa T., Yawata K., Nosaka Y. //* Appl. Catal., A. 2007. **325**, N 1. P. 105–111.
- [34] Гончарук В.В., Соболева Н.М., Носонович А.А. // Химия и технология воды. 2010. **32**, № 1. С. 30 56.