ФИЗИЧЕСКАЯ ХИМИЯ ПРОЦЕССОВ ОБРАБОТКИ ВОДЫ

УДК 628.16.094 - 926.214: 544.526.5: 542.943

Ю.О. Швадчина, В.Ф. Вакуленко, А.Н. Сова, В.В. Гончарук

ФОТОКАТАЛИТИЧЕСКАЯ ДЕСТРУКЦИЯ АНИОННЫХ ПАВ ОЗОНОМ И КИСЛОРОДОМ

Институт коллоидной химии и химии воды им. А.В. Думанского НАН Украины, г. Киев

Исследованафотокаталитическая деструкция анионного ПАВ—алкилбензолсульфоната натрия (АБС) в водной среде озоном на TiO_2 Degussa P-25 при УФ-облученииртутно-кварцевойлампойнизкогодавления ДБ-15. Определены параметрыфотокаталитическогоозонирования, обеспечивающие полную деструкцию АБС (100% по общему органическому углероду). Оценены преимущества фотокаталитического озонирования раствора АБС по сравнению с фотокаталитическим окислением кислородом и $O_3/УФ$ -обработкой.

Ключевые слова: анионные ПАВ, деструкция, диоксид титана, кислород, озон, фотокатализ.

Введение. Гетерогенно-фотокаталитическое окисление способно обеспечить глубокую очистку природных и сточных вод от разнообразных органических соединений, особенно при использовании более сильных, чем кислород, окислителей (H_2O_2 , $K_2S_2O_8$, O_3 идр.) [1–4], существенно повышающих скорость и степень их фотокаталитической деструкции в водной среде. Однако фотокаталитическое окисление кислородом ($O_2/TiO_2/Y\Phi$) одного из наиболее распространенных типов экотоксикантов – синтетических ПАВ (СПАВ) до полной их минерализации происходит медленно, а применение других окислителей с этой целью в настоящее время исследовано недостаточно [5–9].

Сравнение эффективности фотокаталитических систем, в которых используются разные окислители, показало, что максимальные скорость и степень деструкции органических соединений достигаются при одновременном действии озона, УФ-излучения и фотокатализа-

© Ю.О. Швадчина, В.Ф. Вакуленко, А.Н. Сова, В.В. Гончарук, 2013

ISSN 0204–3556. Химия и технология воды, 2013, т.35, №5

тора [4, 10 – 18]. В качестве фотокатализатора в большинстве этих работ использовали высокодисперсный диоксид титана [10 – 16], реже – ионы металлов (Fe²⁺, Cu²⁺ и др.) [17, 18]. Преимущества фотокаталитического озонирования (O₃ /TiO₂ /VΦ) по сравнению с рядом других способов окисления (O₃, O₃ /TiO₂, O₃ /VΦ, O₂/TiO₂ /VΦ) для полициклических ароматических углеводородов показаны в [10], пестицидов – [12, 13, 19, 20], фенолов – [21], дибутилфталата – [22], токсических соединений, содержащих азот, – [4, 10, 23, 24], лекарственных препаратов – [14, 17], ароматических и алифатических карбоновых кислот – [15, 16, 25]. Тем не менее эффективность фотокаталитической деструкции озоном многих органических веществ, присутствующих в природных и сточных водах, в том числе СПАВ, изучена недостаточно.

Цель данной работы — исследование фотокаталитического окисления водного раствора анионных ПАВ (АПАВ) озоном на диоксиде титана и оценка преимуществ этого способа окисления ($O_3/TiO_2/Y\Phi$) по сравнению с другими ($O_2/TiO_2/Y\Phi$ и $O_3/Y\Phi$).

На скорость и степень фотокаталитического окисления органических соединений влияют химическая природа и концентрация субстрата и окислителя, физико-химические свойства и концентрация катализатора, спектр и интенсивность УФ-излучения, pH раствора и другие параметры процесса [1 - 4, 7]. Кроме того, при фотокаталитическом озонировании степень деструкции субстрата существенно зависит от скорости подачи озона (v_{ox}) [13]:

$$v_{o3} = \frac{v_{OBC} \cdot C_{o3}}{V_p}$$

где v_{OBC} – скорость подачи озоно-воздушной смеси (OBC), дм³/мин; $C_{_{03}}$ – концентрация озона в OBC, мг/дм³; $V_{_{p}}$ – объем раствора, дм³.

В работах [11 – 14, 17, 19 – 23] скорость подачи азота варьировали в интервале от 0,5 до ≥ 200 мг/(дм³·мин). Причем в [11, 17, 19, 23] она значительно превышала рациональную, которая может быть рекомендована при очистке природных или сточных вод, учитывая энергоемкость получения окислителя.

Методика эксперимента. В качестве объекта исследования использовали раствор алкилбензолсульфоната натрия (АБС) усредненного состава $C_{12}H_{25}-C_6H_4$ – SO₃Na в дистиллированной воде (C_0 – 50 мг/дм³, XПК₀ – 96 ± 4 мг О/дм³, OOУ₀ – 29 мг/дм³, рH₀ 5,4 ± 0,2). В качестве

фотокатализатора применяли коммерческий TiO_2 Degussa P-25 (70 – 80 % анатаза, 20 – 30 % рутила; $S_{\text{БЭТ}}$ – 38,8 м²/г; размер частиц – ~ 30 нм) [1, 26] при концентрации 0,2 – 1,0 г/дм³.

Фотокаталитическое озонирование (O₃ /TiO₂ /УФ), O₃ / УФ-обработку и фотокаталитическое окисление кислородом воздуха (O₂ /TiO₂ /УФ) раствора АБС проводили при комнатной температуре (20 ± 2°С) на лабораторной установке, оснащенной компьютерной системой регистрации технологических параметров процесса озонирования [27]; в цилиндрическом кварцевом реакторе (d = 3,6 см, V =0,44 дм³), оснащенном диспергатором в нижней части для подачи OBC или воздуха, шарообразным пеногасителем сверху ($V \sim 1$ дм³) и перистальтическим насосом, который обеспечивает циркуляцию суспензии снизу вверх (v = 0,15 дм³/мин) для интенсификации перемешивания.

Скорость подачи озона в реактор варьировали от 0,7 до 2,4 мг/(дм³·мин) путем изменения концентрации озона в OBC от 4,8 до 15,0 мг/дм³ при постоянной скорости подачи OBC (v = 0,07 дм³/мин). УФ-облучение раствора/суспензии осуществляли ртутно-кварцевой лампой низкого давления ДБ-15 ($\lambda_{\text{макс}} = 254$ нм), расположенной сбоку, параллельно оси реактора на расстоянии 5 см от его стенки при плотности мощности УФ-излучения 5,2 мВт/см². После фотокаталитического окисления в течение 20 – 90 мин катализатор отделяли от раствора АБС центрифугированием (8000 об/мин).

Изменение концентрации АБС в процессе окисления контролировали спектрофотометрическим методом (по изменению A₂₂₅). Спектры поглощения растворов АБС регистрировали с помощью спектрофотометров Specord UV-Vis и Shimadzu UV-2450. Суммарную концентрацию органических соединений в реакционной смеси оценивали по величине ХПК и концентрации ООУ. Последнюю определяли с помощью анализатора Shimadzu TOC-VCSN.

Результаты и их обсуждение. Изменение концентрации TiO₂ Degussa P-25 в диапазоне от 0,2 до 1,0 г/дм³ не оказывало существенного влияния на снижение концентрации АБС и ХПК в процессе фотокаталитического окисления его раствора озоном и кислородом воздуха (рис. 1). При равной продолжительности окисления степень деструкции АБС по ХПК в указанном диапазоне концентраций катализатора возрастала на ≤ 10 % в обеих фотокаталитических системах (O₃ /TiO₂ /УФ и O₂ /TiO₂ /УФ) (см. рис. 1, *б*). Причем в диапазоне концентраций TiO₂ 0,5 – 1,0 г/дм³ степень деструкции АБС по ХПК отличалась

ISSN 0204–3556. Химия и технология воды, 2013, т.35, №5

несущественно. Деструкция АБС по ХПК заметно замедлялась лишь в начальный период фотокаталитического озонирования при минимальной концентрации TiO₂.

Рис. 1. Влияние концентрации TiO_2 на снижение таковой АБС (а) и ХПКраствора (б) при фотокаталитическом окислении кислородом воздуха (1-3) и озоном (4-6). Концентрация $TiO_2 - 0,2(1,4), 0,5(2,5)$ и 1,0г/дм³ (3,6). Скорость подачи озона $-1,3 \pm 0,1$ мг/(дм³.мин).

Скорость деструкции АБС по трем контролируемым показателям (C_{ABC} , ХПК и ООУ) при фотокаталитическом окислении озоном и кислородом, а также при О₃/УФ-обработке его раствора в течение одного часа описывалась уравнением псевдопервого порядка. Значения эффективных констант скорости деструкции АБС были определены по тангенсу угла наклона прямых в координатах ln (P_0/P_t) – f(t), где P обозначает C_{ABC} , ХПК или ООУ.

Из табл. 1 следует, что при постоянной v_{03} в процессе фотокаталитического озонирования значения эффективных констант скорости деструкции АБС по вышеуказанным показателям в интервале концентраций TiO₂ 0,2 – 1,0 г/дм³ возрастали на 13 – 26 %. Причем в диапазоне концентраций TiO₂ 0,5 – 1,0 г/дм³ константы скорости деструкции АБС по ХПК и ООУ оставались практически неизменными.

Следует также отметить, что аэрация суспензии АБС с высокодисперсным TiO_2 Degussa P-25 воздухом или OBC при концентрации фотокатализатора 1 г/дм³ сопровождалась образованием устойчивой пены (флотошлама). При более низкой концентрации TiO_2 (0,2 – 0,5 г/дм³) в аэрируемой суспензии слой пены уменьшался и разрушался быс-трее. Повышение стабильности пены АПАВ при росте концентрации TiO_2 Degussa P-25 и возможность агрегации частиц фотокатализатора, вызванной адсорбцией АПАВ на нем, показаны в [5]. В наших исследованиях степень адсорбции АБС на TiO_2 Degussa P-25 составляла 28 ± 1 % (в среднем 14 мг АБС на 1 г TiO_2) [7].

Таблица 1. Влияниеконцентрации ТіО₂накинетикудеструкции АБСприфотокаталитическом озонировании

Показатель	<i>k</i> , мин ⁻¹ при концентрации ТіО ₂ , г/дм ³				
	0,2	0,5	1,0		
С _{АБС}	0,067	0,076	0,072		
ХПК	0,023	0,026	0,026		
ООУ	0,023	0,028	0,029		

Примечание. Скорость подачи озона — 1,3 \pm 0,1 мг/(дм³мин); *t* – 1 ч; T – 20 \pm 2°C; R² > 0,95.

Таким образом, оптимальная концентрация TiO₂ Degussa P-25 в процессе фотокаталитического окисления озоном и кислородом растворов АБС при концентрации 50 мг/дм³ составляла 0,5 г/дм³. Все дальнейшие исследования были проведены при указанной концентрации TiO₂.

Фотокаталитическая деструкция АБС существенно ускорялась при повышении v_{03} (рис. 2). При фотокаталитическом озонировании раствора АБС его концентрация снижалась на 99 %, т.е. до ПДК для поверхностных вод (ПДК_{АПАВ} = 0,5 мг/дм³ [28]), при v_{03} 0,7 – 0,8; 1,3 ± 0,1 и 2,2 ± 0,1 мг/(дм³·мин) в течение соответственно 90; 60 и 45 мин (см. рис. 2, *a*). Для сравнения, в процессе O₃ /УФ-обработки раствора АБС остаточная концентрация исходного вещества, соответствующая значению ПДК_{АПАВ} для поверхностных вод, достигалась за 90 мин лишь при наиболее высокой величине v_{03} .

Однако более заметное влияние скорость подачи озона оказывала на степень глубокой деструкции АБС при фотокаталитическом озонировании (см. рис. 2, δ) и О₃/УФ-обработке его растворов. При минимальной величине v_{o_3} (0,7 – 0,8 мг/(дм³·мин)) степень фотокаталитической деструкции АБС озоном составляла 79 % по ООУ за 90 мин. Аналогичная степень деструкции АБС (80 ± 2 % по ООУ) при повышении скорости подачи озона в два и три раза достигалась соответственно за 60 и 45 мин. Фотокаталитическое озонирование рас-

ISSN 0204–3556. Химия и технология воды, 2013, т.35, №5

твора АБС в течение 90 мин при $v_{03} = 2,2 \pm 0,2$ мг/(дм³·мин) обеспечивало полную деструкцию субстрата (на 100 % по ООУ) (см. рис. 2, б). Высокая степень деструкции АБС (93% по ООУ за 90 мин) наблюдалась также в процессе $O_3/УФ$ -обработки раствора АБС при $v_{03} = 2,2 \pm 0,2$ мг/(дм³·мин), в то время как при меньших в два – три раза значениях v_{03} максимальная степень его деструкции была в 1,5 – 1,9 раза ниже, чем при фотокаталитическом озонировании.

Рис. 2. Влияние скорости подачи озона на снижение концентрации АБС (а) и ООУ(б) при фотокаталитическом озонировании его раствора. Скорость подачи озона — 0,7 — 0,8(1), 1,3 \pm 0,1(2) и 2,2 \pm 0,2 мг/(дм³ мин) (3); концентрация TiO₂ — 0,5 г/дм³.

Кроме того, даже при наименьшей величине v_{03} , снижение концентрации АБС и ХПК раствора при фотокаталитическом озонировании или $O_3/У\Phi$ -обработке происходило быстрее, чем при фотокаталитическом окислении кислородом воздуха (рис. 3, *a*, *б*). В целом, при равной продолжительности окисления степень фотокаталитической деструкции АБС озоном превышала степень его деструкции при использовании систем $O_2/TiO_2/У\Phi$ и $O_3/У\Phi$ в 1,4 – 1,7 раза – по концентрации исходного соединения и в 1,5 – 2,1 раза – по ХПК.

Степень деструкции АБС по ООУ при фотокаталитическом озонировании во всем диапазоне значений v_{03} была выше, чем при О₃ / УФ-обработке, и существенно выше, чем при фотокаталитическом окислении кислородом (рис. 4). В то же время степень деструкции АБС по ООУ при О₃ /УФ-обработке превышала таковую при фотокаталитическом окислении кислородом лишь при $v_{03} \ge 1,2$ мг/(дм³·мин) (см. рис. 4, кривые 4, 5). Максимальная степень фотокаталитической деструкции АБС кислородом воздуха составляла 86; 51 и 54 % за 90 мин соответственно по C_{AFC} , ХПК и ООУ.

Рис. 3. Изменение концентрации АБС (а) и ХПК раствора (б) при фотокаталитическомозонировании (1), $O_{3}/УФ$ -обработке (2) ифотокаталитическом окислении кислородом (3). Скорость подачи азота — 0,7 — 0,8 мг/(дм^{3.} мин).

Рис. 4. Сравнение степени деструкции АБС по ООУ при фотокаталитическом озонировании (1, 3), $O_3/УФ$ -обработке (2, 4) и фотокаталитичес-ком окислении кислородом (5). Скорость подачи озона — 2,2 ± 0,2 (1, 2) и 0,7 — 0,8 мг/(дм^{3.} мин) (3, 4).

Константы скорости деструкции АБС по контролируемым показателям (табл. 2) при фотокаталитическом озонировании во всем диапазоне v_{03} (0,7 – 2,4 мг/(дм³·мин)) в 1,6 – 4,2 и 1,4 – 2,3 раза превышали таковые соответственно при фотокаталитическом окислении кислородом воздуха и O₃/УФ-обработке. Причем с ростом v_{03} преимущество фотокаталитического озонирования по сравнению с фотокаталитическим окислением кислородом увеличивалось, а по сравнению с O₃/УФ-обработкой, наоборот, уменьшалось (см. табл. 2).

Способ	V.,	<i>k</i> , мин ⁻¹ по			
окисления	мг/(дм ³ мин)	$C_{_{ m ABC}}$	ХПК	ООУ	
О ₃ /ТіО ₂ /УФ	0,7 - 0,8	0,051	0,019	0,014	
	1,2 – 1,4	0,076	0,026	0,028	
	2,1-2,4	0,079	0,036	0,038	
О ₃ /УФ	0,7 - 0,8	0,035	0,011	0,006	
	1,2 – 1,4	0,046	0,013	0,012	
	2,1-2,4	0,052	0,025	0,019	
$O_2/TiO_2/Y\Phi$	_	0,020	0,009	0,009	

Таблица 2. Константыскоростипсевдопервогопорядкадеструкции АБС при окислении его раствора разными способами

Примечание. Концентрация TiO₂ – 0,5 г/дм³; t - 1 ч; T – 20 ± 2°C; $R^2 > 0,95$.

Аналогично во всем изученном диапазоне значений v_{03} константы скорости деструкции АБС по C_{ABC} и ХПК при $O_3/У\Phi$ -обработке были в 1,2 – 2,8 раза выше таковых при фотокаталитическом окислении кислородом. Однако при снижении v_{03} до 0,7 – 0,8 мг/(дм³·мин) константа скорости деструкции АБС по ООУ в процессе $O_3/У\Phi$ -обработки была в ~ 1,5 раза меньше таковой при фотокаталитическом окислении кислородом (см. табл. 2).

Из табл. 1, 2 также следует, что константы скорости деструкции исходного вещества (по C_{ABC}) превышали таковые его деструкции по ООУ в 2,2, 2,1 – 3,6 и 2,7 – 5,8 раза при окислении соответственно O_2 /TiO₂/УФ, O_3 /TiO₂/УФ и O_3 /УФ. Причем, чем ниже скорость подачи озона (и, соответственно, концентрация озона в OBC), тем существеннее разница значений указанных констант.

При изученных параметрах $O_3/TiO_2/У\Phi$ - и $O_3/У\Phi$ -обработки раствора АБС степень его деструкции определялась дозой поглощенного озона ($Д_{03}$). При равных J_{03} в процессе фотокаталитического озонирования достигалась более высокая степень деструкции АБС по ООУ, чем при $O_3/У\Phi$ -обработке (рис. 5, δ), а удельный расход окислителя был меньшим (табл. 3).

Рис. 5. Зависимость степени деструкции АБС от дозы поглощенного озона по снижению концентрации исходного вещества (а) и ООУ (б) при $O_3/У\Phi$ -обработке (1) и фотокаталитическом озонировании (2). Скорость подачи озона — 0,7 — 2,4 мг/(дм³ мин).

Таблица 3. Зависимостьудельногорасходаозонаотстепенидеструкции АБС при фотокаталитическом озонировании и О_у/УФ-обработке его раствора

Способ окисления	<i>t,</i> мин	v ₀₃ , мг∕ (дм ^{3.} мин)	Степень деструк- ции АБС (%) по		Удельный расход озона (мг/мг) по	
			C _{АБС}	ООУ	С	ООУ
$O_{3}/TiO_{2}/Y\Phi$	90	$2,2\pm0,2$	100	100	2,3	4,0
$O_{3}/TiO_{2}/Y\Phi$	60 - 90	1,2 – 2,4	97 – 99	88 - 95	1,6 - 2,0	2,9-3,7
О ₃ /УФ	75 - 90	$2,2 \pm 0,2$	97 – 98	88 - 93	2,5 - 2,6	4,7
$O_{3}/TiO_{2}/Y\Phi$	45 - 90	0,7 - 2,4	97 – 99	77 – 84	1,1 – 1,3	2,2-2,6
О,/УФ	45 - 90	1,2 - 2,4	91 – 94	54 - 71	1,2 - 1,6	3,6-4,5

Полная деструкция АБС (на 100 % по ООУ) достигалась лишь при фотокаталитическом озонировании его раствора в течение 90 мин при $v_{03} = 2,2 \pm 0,2$ мг/(дм³·мин) (см. табл. 3). Удельный расход озона при этом составлял 2,3 мг/мг АБС, 1,3 мг/мг ХПК и 4,0 мг/мг ООУ. O₃ /УФ-обработка обеспечивала высокую степень деструкции АБС (97 – 98 % по C_{ABC} и 88 – 93 % по ООУ) при существенном (на ≥ 25 %) повышении удельного расхода окислителя по сравнению с O₃ /TiO₂ / УФ. Более низкую степень деструкции АБС (80 ± 3 % по ООУ) фотокаталитическое озонирование обеспечивало во всем диапазоне значений v_{03} (0,7 – 2,4 мг/(дм³·мин)) при близком удельном расходе озона (2,4 ± 0,2 мг O₃/мг ООУ) (см. табл. 3). Таким образом, при исследованных параметрах фотокаталитического озонирования раствора АБС скорость подачи озона, составляющая $2,2 \pm 0,2$ мг/(дм³·мин), была оптимальной. При более низкой (в два – три раза) величине v_{03} высокая степень разложения исходного соединения (99 %) достигалась при меньшем удельном расходе окислителя (1,3 – 1,7 мг O₃/мг АБС), однако степень деструкции АБС по ООУ заметно снижалась (см. табл. 3).

Деструкция АБС при окислении исследуемыми методами осуществлялась фотогенерированными "дырками" на поверхности TiO₂ и OH-радикалами как на поверхности фотокатализатора, так и в объеме раствора. Из сравнения значений констант скорости взаимодействия АБС с молекулярным озоном и OH-радикалами (соответственно 3,68 и 1,16·10¹⁰ M⁻¹·c⁻¹ [29]) следует, что прямое окисление молекулярным озоном возможно лишь непредельных альдегидов и кислот, образующихся после расщепления ароматического кольца.

Преимущество фотокаталитического озонирования по сравнению с $O_3/У\Phi$ -обработкой обусловлено более высоким теоретическим выходом OH-радикалов (соответственно 1,0 и 0,5 моль на 1 моль разложившегося O_3) [19] и возможностью использования более широкого спектра УФ-излучения (соответственно $\lambda < 380$ и $\lambda < 310$ нм) [11]. Преимущество фотокаталитического озонирования по сравнению с фотокаталитическим окислением кислородом обусловлено тем, что озон способен более эффективно улавливать фотогенерированные электроны, чем кислород, снижая тем самым скорость рекомбинации пары электрон – "дырка" и повышая концентрацию OH-радикалов [23]. Кроме того, озон дополнительно образует часть OH-радикалов при разложении под влиянием УФ-излучения или при взаимодействии с супероксид-анион-радикалом.

При деструкции молекул линейных алкилбензолсульфонатов в процессе фотокаталитического окисления и других Advanced Oxidation Processes [9, 30 – 32] были идентифицированы сульфофенилкарбоновые кислоты (HOOC–(CH₂)n–C₆H₄–SO₃⁻) с более коротким алкильным радикалом (n = 8 - 10), алифатические аддукты типа CH₃–(CH₂)_m–SO₃⁻, где *m* равно 3 или 6 [30, 31], гидрокси- и дигидроксипроизводные АБС [32], пероксиды [9], алифатические альдегиды и кислоты [9, 31, 32]. Состав промежуточных продуктов указывает на протекание реакций α -, β - и ω -окисления (аналогично биохимическому окислению [33]), деалкилирования, гидроксилирования и расщепления аро-

матического кольца, а также параллельных с указанными реакций десульфонирования промежуточных продуктов [32]. В процессе фотокаталитического окисления молекулы АБС ароматическое кольцо подвергается гидроксилированию и расщеплению в первую очередь [9, 32], что приводит к образованию альдегидов, предельных и непредельных алифатических кислот и оксикислот с постепенно уменьшающимся числом атомов углерода в молекулах (от C_6 до C_1) и завершается образованием CO_2 , H_2O и SO_4^{2-} [2, 32, 34]. При фотокаталитической деструкции алкильного радикала OH-радикалы могут неселективно атаковать все атомы углерода с образованием смеси окси- и карбонильных промежуточных продуктов [9, 31], карбоновых кислот и, в конечном итоге, CO_2 . Поэтому можно было ожидать существенного отличия в кинетике деструкции АБС по ХПК и ООУ.

Однако проведенное исследование показало, что после снижения концентрации исходного соединения на ≥ 90 % в процессе фотокаталитического озонирования раствора АБС степень его деструкции по ХПК (> 50 %) практически совпадает ($\pm 1 - 4$ %) со степенью его деструкции по ООУ, в отличие от О₃/УФ-обработки (рис. 6).

Рис. 6. Степень деструкции АБС по ХПК (1, 3) и ООУ (2, 4) при фотокаталитическом озонировании (1, 2) и $O_3/У \Phi$ -обработки (3, 4). Скорость подачи озона — 1,3 ± 0,1 мг/(дм³ мин); концентрация TiO₂ — 0,5 г/дм³.

Исходя из структуры молекулы АБС, две трети концентрации ООУ составляет углерод алифатического радикала ($C_{12}H_{25}$). Указанная корреляция между степенью деструкции АБС по ХПК и ООУ (см. рис. 6) свидетельствует о преобладающем механизме деструкции его промежуточных продуктов, образованных после расщепления ароматиче-

ского кольца, по реакции фото-Кольбе, которая заключается в окислении концевой CH₃-группы алифатической цепи последовательно до карбонильной и карбоксильной групп с последующим декарбоксилированием (т.е. отщеплением CO₂) [15, 34]:

$$\begin{split} \mathrm{H_3C}-(\mathrm{CH_2})_n &-\mathrm{COOH} \rightarrow \mathrm{H_3C}-(\mathrm{CH_2})_{n-1}-\mathrm{CHO}+\mathrm{CO_2} \rightarrow \\ \mathrm{H_3C}-(\mathrm{CH_2})_{n-1}-\mathrm{COOH} \rightarrow \mathrm{H_3C}-(\mathrm{CH_2})_{n-2}-\mathrm{CHO}+\mathrm{CO_2} \rightarrow \\ \ldots \rightarrow \mathrm{H_3C}-\mathrm{COOH} \rightarrow \mathrm{H}-\mathrm{CO}-\mathrm{H}+\mathrm{CO_2} \rightarrow \mathrm{H}-\mathrm{COOH} \rightarrow \\ \mathrm{CO_2}+\mathrm{H_2O} \end{split}$$

В процессе фотокаталитической минерализации низкомолекулярных алифатических карбоновых кислот концентрация растворенного озона и, соответственно, концентрация озона в OBC существенно влияют на кинетику глубокой деструкции субстрата. Следовательно, изменять скорость подачи озона целесообразно лишь путем изменения скорости подачи OBC при сохранении высокой концентрации озона в последней. Однако в случае СПАВ варьирование скорости подачи озона указанным путем ограничено, так как для предотвращения пенообразования необходимо поддерживать минимальную скорость подачи OBC. Исходя из результатов исследования, рациональная концентрация озона в OBC составляет ≥ 15 мг/дм³.

Выводы. Фотокаталитическое озонирование (O₃ /TiO₂ /УФ) является более эффективным способом деструкции АПАВ – алкилбензолсульфоната натрия в водной среде, чем фотокаталитическое окисление кислородом воздуха (O₂ /TiO₂ /УФ) или O₃ /УФ-обработка. Константа скорости псевдопервого порядка деструкции АБС по ООУ при фотокаталитическом озонировании в 1,6 – 4,2 и 2,0 – 2,3 раза выше, чем при окислении соответственно O₂ /TiO₂ /УФ и O₃ /УФ. При этом преимущество фотокаталитического озонирования по сравнению с фотокаталитическим окислением кислородом усиливается при повышении скорости подачи озона в диапазоне 0,7 – 2,4 мг/(дм³·мин), а по сравнению с O₃ /УФ-обработкой, наоборот, уменьшается. Повышение степени деструкции АБС по ООУ при фотокаталитическом озонировании достигается при меньшем удельном расходе окислителя по сравнению с O₃/УФ-обработкой.

Фотокаталитическое озонирование при скорости подачи озона $2,2 \pm 0,2$ мг/(дм³·мин) обеспечивает полную деструкцию АБС (на 100 % по ООУ) за 1,5 ч при удельном расходе озона 4,0 мг/мг ООУ. Макси-

мальная степень фотокаталитической деструкции АБС кислородом воздуха в аналогичных условиях составляет 54 % по ООУ за 1,5 ч. При равной продолжительности окисления степень деструкции АБС в фотокаталитической системе $O_3/TiO_2/У\Phi$ превышает таковую в двух других системах ($O_2/TiO_2/Y\Phi$ и $O_3/Y\Phi$) в 1,4 – 1,7 и 1,5 – 2,1 раза соответственно по концентрации исходного вещества и ХПК.

Резюме. Досліджено фотокаталітичну деструкцію аніонної ПАР – алкілбензолсульфонату натрію (АБС) у водному середовищі озоном на TiO_2 Degussa P-25 при УФ-опроміненні за допомогою ртутно-кварцової лампи низького тиску ДБ-15. Визначено параметри фотокаталітичного озонування, що забезпечують повну деструкцію АБС (100 % за загальним органічним вуглецем). Оцінено переваги фотокаталітичного озонування розчину АБС у порівнянні з фотокаталітичним окисненням киснем та O_3 /УФ-обробкою.

Yu.O. Shvadchina, V.F. Vakulenko, A.N. Sova, V.V. Goncharuk

THE PHOTOCATALYTIC DEGRADATION OF ANIONIC SURFACTANTS BY OZONE AND OXYGEN

Summary

The process of photocatalytic degradation of anionic surfactant – sodium alkylbenzenesulphonate (ABS) in aqueous medium by ozone on TiO₂ Degussa P-25 under UV irradiation with a low-pressure mercury lamp DB-15 has been investigated. The parameters of photocatalytic ozonation that ensure complete destruction of ABS (100 % in terms of TOC) have been determined. The advantages of photocatalytic ozonation of ABS solution compared to its photocatalytic oxidation by oxygen and O₃/UV-treatment have been evaluated.

Список использованной литературы

- Chong M.N., Jin B., Chow C.W.K., Saint C. // Water Res. 2010. 44, N 10. P. 2997 3027.
- [2] Ahmed S., Rasul M.G., Martens W. N. et al. // Desalination. 2010. 261, N1. P. 3 18.

ISSN 0204—3556. Химия и технология воды, 2013, т.35, №5

- [3] Dionysiou D.D., Suidan M. T., Baudin I., Laine J.-M. // Appl. Catal., B 2004. –
 50, N 4. P. 259 269.
- [4] Agustina T.E., Ang H.M., Vareek V.K. // J. Photochem. and Photobiol., C. 2005. 6, N 4. P. 264 273.
- [5] Zhang T., Oyama T., Horikoshi S. et al. // Appl. Catal., B. 2003. 42, N 1. –
 P. 13 24.
- [6] Yamazaki S., Mori T., Katou T. et al. // J. Photochem. and Photobiol., A. 2008. – 199, N 2/3. – P. 330 – 335.
- [7] Shvadchina Yu.O., Vakulenko V.F., Levitskaya E.E., Goncharuk V.V. // J. Water Chem. and Technol. – 2012. –34, N 5. – P. 218 – 226.
- [8] Perkowski J., Bzdon S., Bulska A., Jozwiak W.K. // Polish. J. Environ. Stud. 2006. – 15, N 3. – P. 457 – 465.
- [9] Zhang R., Gao L., Zhang Q. // Chemosphere. 2004. 54, N 3. P. 405 411.
- [10] Beltran F.J., Rivas F.J., Gimeno O., Carbajo M. // Ind. Eng. Chem. Res. 2005. –
 44. P. 3419 3425.
- [11] Sanchez L., Peral J., Domenech X. // Appl. Catal., B. 1998. 19, N1. P. 59 – 65.
- [12] Cernigoj U., Stangar U. L., Trebse P. // Ibid. 2007. 75, N 1/2. P. 229 238.
- [13] Giri R.R, Ozaki H., Ishida T. et al. // Chemosphere. 2007. 66, N 9. P. 1610 1617.
- Beltran F. J., Aguinaco A., Garcia-Araya J.F., Oropesa A. // Water Res. 2008. 42, N 14. P. 3799 3808.
- [15] Ilisz I., Bokros A., Dombi A. // Ozone: Sci. and Eng. 2004. 26. P. 585 – 594.
- [16] Addamo M., Augugliaro V., Garcia-Lopez E. et al. // Catal. Today. 2005. 107/108. – P. 612 – 618.
- [17] Skoumal M., Cabot P.-L., Centellas F. et al. // Appl. Catal., B. 2006. 66. –
 P. 228 240.
- [18] Abd El-Raady A.A., Nakajima T. // Ozone: Sci. and Eng. 2006. 28. P. 53 – 58.
- [19] Piera E., Calpe J.C., Brillas E. et al. // Appl. Catal., B. 2000. 27, N3. P. 169 177.
- [20] Rajeswari R., Kanmani S. // Desalination. 2009. 242, N 1/3. P. 277 – 285.
- [21] Li L., Zhu W., Zhang P. et al. // Water Res. 2003. 37, N 15. P. 3646 3651.

- [22] Li L., Zhu W., Chen L. et al. // J. Photochem. and Photobiol., A. 2005. 175, N 2/3. – P. 172 – 177.
- [23] Ye M., Chen Z., Liu X. et al.// J. Hazard. Materials. 2009. 167. P. 1021 1027.
- [24] Kopf P., Gilbert E., Eberle S.H. // J. Photochem. and Photobiol., A. 2000. 136. – P. 163 – 168.
- [25] Tong S.-P., Xie D.-M., Wei H., Liu W.-P. // Ozone: Sci. and Eng. 2005. 27. P. 233 – 238.
- [26] Sitnichenko T.N., Vakulenko V.F., Goncharuk V.V. // J. Water Chem. and Technol. – 2011. – 33, N 4. – P. 236 – 247
- [27] Goncharuk V.V., Vakulenko V.F., Sitnichenko T.N. et al. // Ibid. 2013. 35, N 2. – P. 110 – 124.
- [28] *СанПиН№ 4630-88*. Санитарные правила охраны поверхностных вод от загрязнения. М.: Минздрав. СССР, 1988. 69 с.
- [29] Beltran F.J., Garcia-Araya J.F., Alvarez P.M. // Ind. Eng. Chem. Res. 2000. –
 39, N 7. P. 2214 2220.
- [30] Fernandez J., Riu J., Garcia-Calvo E. et al. // Talanta. 2004. **64**. P. 69 79.
- [31] Cuzzola A., Raffaelli A., Salvadori P. // Appl. Catal., B. 2005. 59. P. 113 120.
- [32] Szabo-Bardos E., Markovics O., Horvath O. et al. // Water Res. 2011. 45, N 4. - P. 1617 - 1628.
- [33] Ставская С.С., Удод В.М., Таранова Л.А., Кривец И.А. Микробиологическая очистка воды от поверхностно-активных веществ. – К.: Наук. думка, 1988. – 184 с.
- [34] Franch M.I., Ayllon J.A., Peral J., Domenech X. // Catal. Today. 2002. 76. P. 221 – 233.

Поступила в редакцию 05.12.2012 г.