УДК [628.161.2:544.526.5:542.943]547.992:547.564.3

Ю.О. Швадчина, М.К. Черепивская, В.Ф. Вакуленко, А.Н. Сова, И.В. Столярова, Р.В. Приходько

ИЗУЧЕНИЕ СВОЙСТВ И КАТАЛИТИЧЕСКОЙ АКТИВНОСТИ ДИОКСИДА ТИТАНА, ДОПИРОВАННОГО СЕРОЙ

Институт коллоидной химии и химии воды им. А.В. Думанского НАН Украины, г. Киев vakulvera@ukr.net

Проведено сравнение активности TiO_2 , допированного серой (S- TiO_2), и чистого TiO_2 , синтезированных золь-гель методом, с TiO_2 Degussa P-25 в процессе фотокаталитического окисления кислородом воздуха водных растворов фульвокислот, гуминовой и пикриновой кислот при двух режимах облучения лампой CBД-120 ($\lambda > 200$ или $\lambda > 320$ нм). Показано, что при окислении фульвокислот и гуминовой кислоты активность S- TiO_2 существенно выше активности чистого TiO_2 при обоих режимах облучения, однако в условиях эксперимента данные образцы были малоэффективными при окислении пикриновой кислоты.

Ключевые слова: гуминовая кислота, диоксид титана, кислород, окисление, пикриновая кислота, фотокатализ, фульвокислоты.

Введение. В последнее время для эффективной деструкции органических и неорганических примесей воды широко исследуются гетерогенные фотокатализаторы на основе диоксида титана [1]. Химически стабильный, нетоксический, недорогой и доступный диоксид титана имеет широкую полосу поглощения света, но лишь в области ультрафиолетового (УФ) излучения ($200 < \lambda < 380$ нм). Использование энергии солнечного света позволило бы существенно улучшить экономические показатели фотокаталитического метода очистки воды. Однако энергия солнечного излучения в УФ-диапазоне ($\lambda > 290$ нм) у поверхности Земли составляет всего ~ 4%. Поэтому разработка способов синтеза новых фотокатализаторов на основе диоксида титана со сдвинутым в видимую область спектральным откликом является

[©] Ю.О. Швадчина, М.К. Черепивская, В.Ф. Вакуленко, А.Н. Сова, И.В. Столярова, Р.В. Приходько,2015

ISSN 0204–3556. Химия и технология воды, 2015, т.37, №6

актуальной задачей. Один из способов ее решения — это допирование ТіО, переходными металлами [2] или неметаллами [3, 4].

Допирование диоксида титана серой значительно повышает его фотокаталитическую активность, заметно сужает ширину запрещенной зоны TiO_2 и сдвигает спектральный отклик TiO_2 в видимую область (до 500 – 550 нм) [4 – 7]. Физико-химические свойства и активность допированных фотокатализаторов зависят от фазового состава TiO_2 , удельной поверхности, содержания и валентного состояния атомов S (S⁴⁺ или S⁶⁺), pH среды [6, 7].

Цель данной работы — синтез S-TiO₂ и сравнение его фотокаталитической активности с активностью TiO_2 , синтезированного по аналогичной методике, и коммерческого TiO_2 Degussa P-25 при фотокаталитическом окислении кислородом воздуха водных растворов органических веществ различной природы.

Методика эксперимента. Образец диоксида титана, допированный серой (S-TiO₂), получен гидролизом тетраизопропоксида титана в присутствии серосодержащего прекурсора (тиомочевины) по методике, аналогичной [5], с последующим прокаливанием твердого осадка при 773 К в течение двух часов со скоростью нагрева 3К в одну минуту. Образец сравнения (TiO₂) синтезирован по аналогичной методике без добавления тиомочевины.

Кристаллическое строение и фазовый состав синтезированных катализаторов исследовали с помощью рентгеновских дифрактограмм, полученных на дифрактометре ДРОН 3М (СоК_{α}-излучение, $\lambda = 0,179026$ нм) в диапазоне углов Брэгга (2 Θ) 20 – 80°. Массовую долю фаз анатаза и рутила определяли исходя из интегральных интенсивностей характеристических базальных отражений (101) и (110) с использованием компьютерной программы Match (Crystal Impact GbR). Электронные спектры диффузного отражения (ЭСДО) фотокатализаторов регистрировали на спектрофотометре Shimadzu 2405 (Япония) с интегрированной сферой ISR-2200, используя в качестве стандарта BaSO₄. Удельную поверхность фотокатализаторов ($S_{БЭТ}$) рассчитывали по изотермам адсорбции – десорбции азота, которые измеряли при 77К на вакуумной установке Micromeritics ASAP 2010 (США).

В качестве объектов исследования использовали природные органические вещества (ПОВ) – образец фульвокислот (ФК), выделенных из воды р. Днепр (элементный состав (%): С – 36,8, H – 3,9, N – 1,2, *S* – 1,9), и гуминовую кислоту (ГК) фирмы "Fluka" (элементный состав (%): С – 46,63, H – 4,3, N – 0,72, зольность ~ 20). Представителем устойчивых к химическому и биохимическому окислению примесей сточных вод был выбран 2,4,6-тринитрофенол, известный как пикриновая кислота (ПК) [8].

Таблица 1. Характеристика рабочих растворов речных фульвокислот, гуминовой кислоты фирмы "Fluka" и пикриновой кислоты

Вещество	Концент- рация, мг/дм ³	Цвет- ность, град	А ₂₅₄ , см ⁻¹	ООУ, мг/дм ³	рН
ФК	60	74	0,70	18,2	5,5
ГК	55	287	1,47	20,2	6,8
ПК	57,3	2025	2,33	20,6	3,6
	22,9	810	0,93	7,8	4,0

Фотокаталитическое окисление растворов ФК, ГК и ПК (табл. 1) в присутствии TiO, проводили при 18 – 20°С в открытом реакторе кислородом, самопроизвольно растворяющимся из атмосферы, при перемешивании магнитной мешалкой. УФ-облучение суспензии $(V = 70 \text{ см}^3, \text{ толщина слоя } (l) = 1 \text{ см})$ осуществляли сверху с помощью ртутно-кварцевой лампы высокого давления СВД-120, закрепленной на расстояния 24 см от поверхности раствора. Облучение проводили как полным спектральным излучением лампы СВД-120 ($\lambda > 200$ нм), так и фильтрованным светом ($\lambda > 320$ нм) с целью имитации облучения солнечным светом. Суммарная освещенность поверхности раствора составляла 5,38 мBт/см² (λ > 200 нм). Плотность мощности УФ-излучения ($I_{v\phi}$) – соответственно 3,05 (λ = 200 − 400 нм) и 1,08 мВт/см² (λ = 320 − 400 нм). Концентрация TiO, составляла 1,0 г/дм³, продолжительность окисления -0.5 - 1.5 ч. Катализатор отделяли от растворов исследуемых соединений центрифугированием (8000 об/мин).

Степень первичной деструкции ГК и ФК оценивали по изменению цветности растворов (A_{364}) и оптической плотности в УФ-области (A_{254}). Изменение концентрации ПК контролировали спектрофотометрическим методом (по A_{355}). Степень глубокой деструкции (минерализации) исследуемых веществ оценивали по изменению концентрации общего органического углерода (ООУ). Спектры поглощения растворов ГК,

ISSN 0204—3556. Химия и технология воды, 2015, т.37, №6

ФК и ПК регистрировали с помощью спектрофотометра Shimadzu UV-2450. Концентрацию ООУ определяли анализатором Shimadzu TOC- V_{CSN} .

Результаты и их обсуждение. Рентгеновские дифрактограммы синтезированных образцов катализаторов (рис. 1) содержат базальные отражения (101), (004), (200), (105), (211) и (204), характерные для TiO₂ кристаллической модификации анатаза. Кроме того, на дифрактограмме присутствуют слабые рефлексы, относящиеся к модификации рутила (110) и (101). Введение серы в структуру диоксида титана приводит к снижению степени кристалличности материала (наблюдается характерное уширение базальных отражений), что, вероятно, связано с локальным разрушением кристаллической решетки [5]. Средний размер кристаллитов S-TiO₂ и TiO₂, определенный по формуле Шеррера [9], составил соответственно 10 и 19 нм. Используемый образец TiO, Degussa P-25 содержит 81% анатаза, 19% рутила; $S_{\text{БЕТ}} - 56 \text{ м}^2/\text{г}$; размер частиц — 30 нм. Значительное отличие удельной поверхности TiO_2 ($S_{\text{БЕТ}} = 3,7 \text{ м}^2/\text{г}$) от S-TiO₂ ($S_{\text{БЕТ}} =$ 66,4 м²/г) можно объяснить увеличением поверхности при разрушении комплекса $(NH_2)_2$ CS с Ti(IV) во время прокаливания ксерогеля. Наличие этого комплекса подтверждается появлением желтой окраски в результате гелеобразования и сушки допированного образца [5].

Рис. 1. Рентгеновские дифрактограммы катализаторов: *S*-*TiO*₂(1), *TiO*₂(2) и *TiO*₂*P*-25 (3). I – интенсивность.

На рис. 2 представлены электронные спектры диффузного отражения синтезированных образцов и TiO_2 P-25, преобразованные в соответствии с функцией Кубелки-Мунка [9]. ЭСДО синтезированного образца S-TiO₂ характеризуется смещением полосы поглощения в видимую область относительно спектра недопированного TiO_2 и сужением запрещенной зоны до 2,85 эВ. Увеличение интенсивности фундаментальной полосы S-TiO₂ может быть вызвано дополнительной абсорбцией излучения атомами серы. Отличие энергий запрещенных зон синтезированного TiO_2 и TiO_2 P-25 (соответственно 3,0 и 3,22 эВ) связано с наличием фазы рутила во втором образце.

Рис. 2. Электронные спектры диффузного отражения: S-TiO₂ (1), TiO₂ (2) и TiO₂ P-25 (3).

Количества ФК и ГК (в расчете на ООУ), адсорбированных на S-TiO₂ и TiO₂ P-25, отличались незначительно (табл. 2). Третий образец (TiO₂) адсорбировал значительно меньшее количество указанных ПОВ, очевидно, из-за существенно меньшей удельной поверхности. ПК слабо сорбировалась на всех трех образцах TiO₂ ($\leq 3\%$ за 1,5 ч), несмотря на меньшее по сравнению с ГК или ФК значение pH растворов (см. табл. 1), способствующее адсорбции диссоциированной формы субстрата (р K_a ПК – 0,8 [8]) на положительно заряженных в кислой среде частицах TiO₂.

В условиях эксперимента все три вещества были устойчивыми к воздействию УФ-излучения: степень первичной их деструкции при облучении полным спектром излучения лампы СВД-120 ($\lambda > 200$ нм) составляла 1 — 8% за 1,5 ч.

В процессе фотокаталитического ($O_2/TiO_2/У\Phi$) окисления ПОВ активность образца, допированного серой, значительно превышала активность чистого TiO₂, синтезированного по аналогичной методике, при обоих режимах облучения (т.е. при $\lambda > 200$ или $\lambda > 320$ нм). В частности, при облучении полным спектром излучения лампы CBД-120 ($\lambda > 200$ нм) степени обесцвечивания раствора ФК и его деструкции по ООУ в присутствии 1 г/дм³ S-TiO₂ (соответственно 94 и 55% за 1,5 ч) были соответственно в 1,4 и 2,5 раза выше, чем при использовании чистого TiO₂ (рис. 3, *a*, *б*). При имитации облучения солнечным светом ($\lambda > 320$ нм) степени первичной деструкции и минерализации ФК на образце S-TiO₂ превышали аналогичные показатели на чистом TiO₂ соответственно в 3,9 и 2,9 раза (см. рис. 3).

Таблица 2. Степень адсорбции исследуемых веществ на разных образцах фотокатализатора

Ofmanau	Степень адсорбции субстрата по ООУ, %				
Образец	ФК	адсорбции субст <u>ГК</u> 20 25 34	ПК (0,1 – 0,25 мМ)		
TiO ₂	15	20	≤ 3		
S-TiO ₂	29	25	3		
TiO_{2} P-25	28	34	≤ 1		

Примечание. Концентрация TiO₂ – 1 г/дм³; продолжительность адсорбции – 1,5 ч.

Рис. 3. Сравнение степени фотолитической и фотокаталитической деструкции фульвокислот за 1,5 ч по A_{364} *(а) и ООУ (б) на разных образцах ТіО*₂ *при* $\lambda > 200$ (**n**) $u \lambda > 320$ нм (\Box).

В процессе фотокаталитической деструкции ГК активность образцов S-TiO₂ и TiO₂ при первом режиме облучения (λ > 200 нм) отличалась незначительно (рис. 4). Однако при втором режиме облучения (λ > 320 нм) степени первичной деструкции и минерализации ГК на образце S-TiO₂ были соответственно в ~ 3 и 1,7 раза выше, чем на чистом TiO₂ (см. рис. 4, *a*, *б*). Меньшая степень деструкции ГК по сравнению с ФК при идентичных условиях фотокаталитического окисления обусловлена, по-видимому, более сложным строением и более высокой молекулярной массой ГК.

Рис. 4. Сравнение степени фотолитической и фотокаталитической деструкции гуминовой кислоты "Fluka" за 1,5 ч по A_{254} (а) и ООУ (б) на разных образцах TiO₂ при $\lambda > 200$ (**n**) и $\lambda > 320$ нм (\Box).

Фотокаталитическое окисление раствора ПК при $C_0 = 0,25$ ммоль/дм³ на образцах S-TiO₂ и TiO₂ происходило значительно медленнее, чем деструкция ФК и ГК. При первом режиме облучения раствора ПК ($C_0 = 0,25$ ммоль/дм³) в присутствии обоих синтезированных фотокатализаторов ее концентрация снижалась на 17 – 18% за 1,5 ч (табл. 3), а при втором режиме облучения – практически не изменялась. Степень минерализации ПК на образце S-TiO₂ не превышала 15% по ООУ и при обоих режимах облучения была лишь на 3 – 4% выше, чем на чистом TiO₂ (см. табл. 3). Поскольку оптическая плотность указанного раствора ПК значительно превышала таковую растворов ФК и ГК (см. табл. 1), возможно, что лишь незначительная доля УФ-излучения достигала поверхности фотокатализатора.

Действительно, в процессе фотокаталитического окисления разбавленного раствора ПК ($C_0 = 0,1$ ммоль/дм³), при первом режиме облучения, степень первичной ее деструкции ($\Delta C_{\Pi K}$) повышалась до 53% за 1,5 ч для обоих образцов (S-TiO₂ и TiO₂), а степень минерализации ПК на S-TiO₂ возрастала до 24% за 1,5 ч и в два раза превышала таковую на другом образце (см. табл. 3). Однако при втором режиме облучения указанного раствора ПК синтезированные образцы были малоэффективны.

Наиболее высокую среди изученных фотокатализаторов и практически равную степень фотокаталитической деструкции кислородом воздуха трех исследованных органических веществ (ФК, ГК и ПК) при начальной их концентрации 18 – 20 мг/дм³ по ООУ обеспечивал стандартный TiO₂ P-25 (см. рис. 3, 4; табл. 3). При первом режиме облучения ($\lambda > 200$ нм) степени обесцвечивания растворов ФК, ГК и ПК, деструкции их ароматической структуры и минерализации на TiO₂ P-25 составляли соответственно 99 – 100; 96 – 100 и 87 – 89% за 1,5 ч. Однако при втором режиме облучения ($\lambda > 320$ нм) степень минерализации ФК и ГК на TiO₂ P-25 снижалась в 1,6 – 1,9 раза, а степень минерализации ПК – в 1,5 – 2,9 раза (см. рис. 3, 4; табл. 3). Фотокаталитическое окисление разбавленного раствора ПК ($C_0 = 0,1$ ммоль/дм³) на TiO₂ P-25 обеспечивало максимальную степень ее деструкции – 94 и 62% по ООУ за 1,5 ч соответственно при первом и втором режиме облучения (см. табл. 3).

$C_{\pi\nu},$	Режим об-	05	Степень деструкции (%) по	
ммоль/дм ³	лучения, нм	Образец	С _{пк} (по А ₃₅₅)	ООУ
	$\lambda > 200$	TiO ₂ P-25	100	94
		S-TiO ₂	53	24
0.1		TiO ₂	53	12
0,1	λ > 320	TiO ₂ P-25	99	62
		S-TiO ₂	5	9
		TiO ₂	4	6
	$\lambda > 200$	TiO ₂ P-25	99	87
		S-TiO ₂	18	15
0.25		TiO ₂	17	11
0,25	λ > 320	TiO ₂ P-25	42	30
		S-TiO ₂	1	10
		TiO ₂	1	7

Таблица 3. Степень фотокаталитической ($O_2/TiO_2/Y\Phi$) деструкции пикриновой кислоты

Примечание. Продолжительность окисления – 1,5 ч.

Очевидно, параметры фотокаталитического окисления, выбранные в данном исследовании с учетом активности стандартного TiO₂ P-25 для ПОВ, не являются оптимальными для деструкции трудноокисляемых соединений типа ПК на синтезированных образцах и требуют дополнительных уточнений. Согласно [8] скорость первичной деструкции ПК на двухфазном TiO₂ P-25 была в 1,5 раза выше, чем на TiO₂ Millennium PC500 (~100% анатаза) с более высокой удельной поверхностью ($S_{\rm EЭT} = 320 \text{ m}^2/\text{r}$). Однако эффективная фотокаталитическая деструкция ПК ($C_0 = 0,2 \text{ ммоль/дм}^3$) на образце TiO₂ TP-2 (~ 100% анатаза, $S_{\rm EЭT} = 17,3 \text{ m}^2/\text{r}$) была возможна при более интенсивном облучении ($I_{\rm yo} =$ 18 мВт/см² при $\lambda = 330 - 390 \text{ нм}$) [10] по сравнению с нашим экспериментом ($I_{\rm yop} = 1,08 \text{ мВт/см}^2$ при $\lambda = 320 - 400 \text{ нм}$). В этих условиях практически полная первичная деструкция и минерализация ПК достигались в течение соответственно 1,5 и 3 ч.

Из полученных данных следует, что при облучении светом, близким по спектру к солнечному ($\lambda > 320$ нм), активность синтезированного образца S-TiO₂ приближается к таковой стандартного TiO₂ P-25 при фотокаталитическом окислении ПОВ. В частности, при таком режиме облучения степень фотокаталитической минерализации ФК и ГК на образце S-TiO₂ была лишь на 11 – 13% ниже, чем на TiO₂ P-25 (см. рис. 3, *б*, 4, *б*).

Выводы. Таким образом, выбранные прекурсоры, методика синтеза фотокатализаторов и последующая термическая обработка позволили получить диоксид титана, допированный серой, с заданными структурными и физико-химическими свойствами.

Образец TiO₂, допированный серой (S-TiO₂), обеспечивал более высокую степень деструкции ФК и ГК по сравнению с чистым TiO₂ при облучении как полным спектром излучения лампы CBД-120 ($\lambda >$ 200 нм), так и фильтрованным светом, близким по спектру к солнечному ($\lambda > 320$ нм). Степень фотокаталитической минерализации ФК и ГК на образце S-TiO₂ (соответственно 43 – 55 и 31 – 35% за 1,5 ч) превышала таковую на чистом TiO₂ соответственно в 2,5 – 2,9 и 1,2 – 1,7 раза, в зависимости от режима облучения.

При облучении светом с $\lambda > 320$ нм активность образца S-TiO₂ приближалась к активности стандартного TiO₂ P-25 при фотокаталитическом окислении гуминовых и фульвокислот, что подтверждает его перспективность для фотокаталитической очистки воды от ПОВ при облучении солнечным светом. Фотокаталитическая деструкция ПК кислородом воздуха на синтезированных образцах (S-TiO₂ и TiO₂) протекала значительно медленнее по сравнению с деструкцией ФК и ГК. Максимальные степени первичной деструкции и минерализации ПК на образце S-TiO₂ при первом режиме облучения ($\lambda > 200$ нм) ее разбавленного раствора ($C_{\Pi K} =$ 0,1 ммоль/дм³) составляли соответственно 53 и 24% за 1,5 ч. Степень минерализации ПК на чистом TiO₂ была в два раза ниже. Однако в условиях эксперимента оба образца являлись малоэффективными в отношении ПК при втором режиме облучения ($\lambda > 320$ нм).

Резюме. Проведено порівняння активності TiO_2 , допованого сіркою (S-TiO₂), і чистого TiO₂, синтезованих золь-гель методом, з TiO₂ Degussa P-25 у процесі фотокаталітичного окиснення киснем повітря водних розчинів фульвокислот, гумінової і пікринової кислот при двох режимах опромінення лампою CBД-120 ($\lambda > 200 \text{ чи } \lambda > 320 \text{ нм}$). Показано, що при окисненні фульвокислот і гумінової кислоти активність S-TiO₂ істотно перевищувала активність чистого TiO₂ при обох режимах опромінення, однак в умовах експерименту обидва зразки були малое-фективними при окисненні пікринової кислоти.

Yu.O. Shvadchina, M.K. Cherepivskaya, V.F. Vakulenko, A.N. Sova, I.V. Stolyarova, R.V. Prihodko

STUDY OF THE PROPERTIES AND THE CATALYTIC ACTIVITY OF TITANIUM DIOXIDE DOPED WITH SULFUR

Summary

The activity of titanium dioxide doped with sulphur (S-TiO₂) and pure TiO₂, both synthesized by sol-gel method, was compared with TiO₂ Degussa P-25 during the photocatalytic oxidation of aqueous solutions of fulvic, humic and picric acids by air oxygen under two regimes of irradiation by a lamp SVD-120 ($\lambda > 200$ or $\lambda > 320$ nm). It was shown that activity of S-TiO₂ during the oxidation of fulvic and humic acids significantly exceeded that of pure TiO₂ at both regimes of irradiation, but both samples were ineffective for oxidation of picric acid under experimental conditions.

Список использованной литературы

- Chong M.N., Jin B., Chow C.W.K., Saint C. // Water Res. 2010. 44, N 10. -P. 2997 - 3027.
- [2] Rauf M.A., Meetani M.A., Hisaindee S. // Desalination. 2011. 276. P. 13 27.
- [3] Ananpattarachai J., Kajitvichyanukul P., Seraphin S. // J. Hazard. Materials. 2009. 168. P. 253 261.
- [4] Hamal D.B., Klabunde K.J. // J. Colloid and Interface Sci. 2007. 311, N 2. – P. 514 – 522.
- [5] Ohno T., Akiyoshi M., Umebayashi T. et al. // Appl. Catal., A. 2004. 265. –
 P. 115 121.
- [6] *Hamadanian M., Reisi-Vanani A., Majedi A. //* Mater. Chem. and Phys. 2009. **116**. P. 376 382.
- [7] Klauson D., Portjanskaja E., Budarnaja O. et al. // Catal. Communic. 2010. –
 11, N 8. P. 715 720.
- [8] Lachheb H., Houas A., Herrmann J.-M. // Int. J. Photoenergy. 2008. Article ID 497895. – P. 1 – 9.
- [9] Streethawong T., Suzuki Y., Yoshikawa S. // J. Solid State Chem. 2005. 178.–
 P. 329 338.
- [10] Tanaka K., Luesaiwong W., Hisanaga T. // J. Molecul. Catal., A. 1997. 122. – P. 67 – 74.

Поступила в редакцию 11.07.2014 г.