

Е. С. Проценко

Харьковский национальный университет имени В.Н. Каразина

© Проценко Е. С.

ИММУНОГИСТОХИМИЧЕСКИЕ ОСОБЕННОСТИ ЭНДОТЕЛИНА-1 И ФИБРОНЕКТИНА ПЕЧЕНИ ПЛОДОВ И НОВОРОЖДЕННЫХ ОТ МАТЕРЕЙ С ПРЕЭКЛАМПСИЕЙ

Резюме. Изучены иммуногистохимические особенностей эндотелина-1 и фибронектина в печени плодов и новорожденных, рожденных от матерей с преэклампсией различной степени тяжести. ЭТ-1 и фибронектин как маркеры эндотелиальной дисфункции указывают на наличие тяжести гипоксии плода при материнской ПЭ. Повышение уровня ЭТ-1 и фибронектина приводит к метаболическим нарушениям в гепатоцитах и развитию склеротических изменений в ткани печени плодов и новорожденных от матерей, начиная уже с легкой степени материнской ПЭ.

Ключевые слова: *печень, эндотелин-1, фибронектин, новорожденный, плод, преэклампсия.*

Введение

Преэклампсия (ПЭ) – грозное осложнение беременности, родов и послеродового периода, которое занимает одно из ведущих мест в структуре причин материнской и перинатальной заболеваемости и смертности [5]. ПЭ сопровождается нарушением плацентации, уменьшением перфузии плаценты, дисфункцией эндотелиальных клеток и системным вазоспазмом [6]. Морфологические исследования показали, что ПЭ сопровождается изменением микроциркуляторного русла плаценты, которое приводит к первичному нарушению васкуляризации и изменению метаболизма [1]. Осложнения беременности и родов приводят к быстрому и существенному срыву компенсаторно-приспособительных реакций с резким усилением изменений структурных элементов организма, в том числе гепатобилиарной системы, важнейшим органом которого является печень [4]. В отечественной и зарубежной научной литературе часто встречается мнение, что материнская ПЭ вызывает эндотелиальную дисфункцию в организме плода, при которой нарушается продукция эндотелиальных факторов, таких как эндотелин-1 (ЭТ-1) и фибронектин (ФН) [3, 2]. Фибронектин синтезируется преимущественно в печени и клетках ретикуло-эндотелиальной системы и, в качестве компонента межклеточного матрикса (его нерастворимой формы), способствует адгезии между клетками и основным веществом соединительной ткани [8]. ЭТ-1 является мощным вазоконстриктором, который секретируется эндотелиальными клетками и основными активаторами его синтеза являются гипоксия, ишемия, острый стресс [7]. На сегодняшний день остается не изученным морфо-функциональное состояние этих двух эндотелиальных факторов в печени плодов и новорожденных от матерей с ПЭ.

Целью настоящего исследования является изучение иммуногистохимических особенностей ЭТ-1 и ФН в печени плодов и новорожденных, рожденных от матерей с ПЭ различной степени тяжести.

Работа выполнена в рамках НИР кафедры патологической анатомии Харьковского национального медицинского университета «Влияние патологии матери на патологическое состояние отдельных систем плода и новорожденного» и в соответствии с национальной программой Украины «Улучшение положения женщин, охрана материнства и детства» (номер госрегистрации № 0195 ИО 2062).

Материалы и методы исследования

Исследование основано на изучении печени плодов и новорожденных детей, рожденных от матерей, беременность которых была осложнена ПЭ. В зависимости от степени тяжести материнской ПЭ весь исследуемый материал был разделен на следующие группы: G_1 – новорожденные от матерей с ПЭ легкой степени тяжести (18 случаев наблюдения), G_2 – новорожденные от матерей с ПЭ средней степени тяжести (26 случаев наблюдения), G_3 – новорожденные от матерей с ПЭ тяжелой степени тяжести (27 случаев наблюдения). Группу контроля (К) составили новорожденные, выношенные в условиях физиологически протекавшей беременности и погибшие в результате острого нарушения маточно-плацентарного и пуповинного кровообращения (22 случая).

Постановка иммуногистохимической реакции осуществлялась по стандартному протоколу с использованием моноклональных антител к ФН и ЭТ-1 и системы визуализации. Использованы положительные и отрицательные контроли. Получены микрофотографии образцов ткани при увеличении ×200 с помощью микро-

скопа и цифровой камеры. Фотосъемку проводили после настройки освещения по Келлеру с полным закрытием апертурной диафрагмы при поднятом конденсоре. Дальнейшее количественное исследование проводили с помощью компьютерного анализа изображения. Распространенность экспрессии исследуемых маркеров оценивалась по показателю относительной площади кадра (отношение площади занятой иммунопозитивными структурами к общей площади кадра, %), а интенсивность экспрессии - по показателю оптической плотности (А), который рассчитывался по формуле:

 $A = -\ln (I / Io),$

где I — интенсивность светового потока, прошедшего через слой светопоглощающего вещества в области локализации иммунопозитивных структур; Іо – интенсивность падающего светового потока (интенсивность светового потока, прошедшего через иммунопозитивные участки цитоплазмы). Оптическую плотность измеряли при различных длинах волн для выбора оптимальной длины волны и лучшей разницы иммунопозитивных и имунонегативних структур, а также иммунопозитивных структур различной интенсивности окраски. Статистическую обработку данных проводили с использованием методов описательной статистики. Для оценки межгрупповых различий применили t-критерий Стьюдента, критерий Манна-Уитни, ранговый дисперсионный анализ Краскела-Уоллиса и медианный тест. При сравнении частотных величин использовали χ^2 -критерий Пирсона и двусторонний точный критерий Фишера. Зависимость между количественными признакам оценивали с помощью рангового коэффициента корреляции Спирмена. Статистическую обработку выполняли с использованием программы Statistica for Windows 6.0.

Результаты исследований и их обсуждение

Анализируя показатели оптической плотиммуногистохимических реакций в печени плодов и новорожденных от матерей с ПЭ (табл.) можно отметить тот факт, что оптическая плотность фибронектина достоверно повышается (по сравнению с контрольной группой) уже с легкой степени материнской ПЭ и достигает максимума при тяжелой. Причем, разница в показателях также является достоверной и в группах G_2 и G_3 по сравнению с группой G₁. Учитывая тот факт, что ПЭ всегда протекает на фоне той или иной степени фето-плацентарной недостаточности и гипоксии, мы приходим к выводу, что степень тяжести гипоксии, которая сопровождает материнскую ПЭ, напрямую связана с интенсивностью склеротических изменений в ткани печени и жировой дистрофии гепатоцитов и, соответственно, оптической плотностью фибронектина, который принимает участие в формировании соединительнотканного матрикса. Таким образом, чем тяжелее материнская гипоксия при ПЭ, тем выше оптическая плотность фибронектина и процентное содержание соединительной ткани в печени плодов и новорожденных и, как следствие, ниже процентное содержание паренхиматозного компонента, что ухудшает постнатальную функциональность печени и приводит к той или иной степени гепатоцеллюлярной недостаточности.

Анализируя показатели оптической плотности иммуногистохимических реакций в печени плодов и новорожденных от матерей с ПЭ (табл.) можно отметить тот факт, что экспрессия ЭТ-1 в сосудах печени плодов и новорожденных достоверно повышается начиная уже с легкой степени материнской ПЭ. Причем, разница в показателях также является достоверной и в группах G_2 и G_3 по сравнению с группой G₁. Учитывая тот факт, что ЭТ-1 является вазоконстриктором и одним из активаторов его секреции и синтеза является гипоксия, повышение уровня экспрессии ЭТ-1 мы расцениваем как компенсаторное проявление организма на гипоксию. Однако в данном случае, нами наблюдалось, развитие порочного круга по отношению к ткани печени плодов и новорожденных, поскольку постоянная вазоконстрикция приводит к уменьшению объема притекаемой оксигенированной крови в печень и усугубляет уровень фоновой гипоксии, уже имеющей место при материнской ПЭ. Таким образом, высокий уровень экспрессии ЭТ-1 в сосудах печени плодов и новорожденных от матерей с ПЭ следует рассматривать с одной стороны, как маркер уровня материнской гипоксии, так и как прогностически неблагоприятный признак, указывающий на степень повреждения тканей печени плодов и новорожденных и нарушения ее функциональности.

Таблииа

Показатели оптической плотности иммуногистохимических реакций в печени плодов и новорожденных от матерей с ПЭ (усл. ед. опт. пл)

Показатель	Контроль	Группа G₁	Группа G₂	Группа С₃
Оптическая плотность свечения ЭТ-1	1,123±0,03	1,169 ±0,01*	1,198±0,02^*	1,199±0,01*^
Оптическая плотность свечения фибронек- тина	2,002±0,02	2,101±0,02*	2,234±0,04^*	2,321±0,06*"^

- * P<0,05 по сравнению с аналогичными показателями группы контроля К.
- ^ P<0,05 по сравнению с аналогичным показателем группы G_1 .
- " P<0,05 по сравнению с аналогичным показателем группы G_2 .

Таким образом, клиницистам следует учитывать степень тяжести материнской ПЭ и развивающийся уровень повреждения тканей печени плодов и новорожденных и проводить соответствующую коррекционную терапию, чтобы в постнатальном периоде и в периоде роста и развития ребенка избежать адаптационных осложнений и повысить качество жизни таких пациентов.

Перспективным является изучение иммуногистохимических особенностей ЭТ-1 и ФН в печени плодов и новорожденных, рожденных от матерей с сахарным диабетом различной степени тяжести.

Выводы

- 1. ЭТ-1 и фибронектин как маркеры эндотелиальной дисфункции, указывают на наличие тяжести гипоксии плода при материнской ПЭ.
- 2. Повышение уровня ЭТ-1 и фибронектина приводит к метаболическим нарушениям в гепатоцитах и развитию склеротических изменений в ткани печени плодов и новорожденных от матерей, начиная уже с легкой степени материнской ПЭ.
- 3. Чем тяжелее материнская гипоксия при ПЭ, тем выше оптическая плотность фибронектина в ткани печени плодов и новорожденных.
- 4. Чем тяжелее материнская гипоксия при ПЭ, тем выше оптическая плотность ЭТ-1 в ткани печени плодов и новорожденных.

ЛИТЕРАТУРА

- 1. *Мазурская Н.М.* Особенности системной гемодинамики у беременных с артериальной гипертензией при неосложненном течении беременности и беременности, осложненной гестозом / Н.М. Мазурская, В.И. Краснопольский, В.А. Петрухин // Вестник Российской ассоциации акушер-гинекологов. 2005. № 5. С. 3-10.
- 2. *Себко Т.В.* Фибронектин и беременность / Т.В. Себко, В.А. Алиев // Вестн. АМН СССР. 1991. №2. С. 46-49
- 3. *Хецуриани Т.* Роль нарушений окислительного метаболизма в развитии эндотелиальной дисфункции преэклампсии / Т. Хецуриани // Georgian Medical News. Tbilisi-New York. 2004. Vol.115. P.21-24;
- 4. *Richter C*. Eclampsia complicated abdominal compartment syndrome / C. Richter // Am. J. Perinatology. 2009. Vol. 26, №. 10. P. 751-753;

- 5. *Methodological* and technical issues related to the diagnosis, screening, prevention, and treatment of pre-eclampsia and eclampsia / J. Villar, L. Say [et al.]// International journal of G&Ob. 2004. Vol. 85. P.28-41;
- 6. *Fall* in mean arterial pressure and fetal growth restriction in pregnancy hypertension: a meta-analysis / P. von Dadelszen, M.P. Ornstein, S.B. Bull [et al.] // Lancet. 2000. Vol.8. P.87—92;
- 7. Willey K.E. Davenport A.P. Nitric oxide-medulation of the endothelin-1 signaling pathway in the human cardiovascular system / K.E. Willey, A.P. Davenport // Brit. J. Pharmacology. 2001. Vol. 132. P. 213-220;
- 8. *Yong Mao*, Jean E. Schwarzbauer. Fi bronectin fibrillogenesis, a cell-mediated matrix assembly process / Mao Yong, E. Jean // Matrix Biology. 2005. Vol. 24. —P. 389—399.

ІМУНОГІСТОХІМІЧНІ ОСОБЛИВОСТІ ЕНДОТЕЛІНУ-І І ФІБРОНЕКТИНУ ПЕЧІНКИ ПЛОДІВ І НОВОНАРОДЖЕНИХ ВІД МАТЕРІВ З ПРЕЕКЛАМПСІЄЮ

Е.С. Проценко

IMMUNOHISTOCHEMICAL FEATURES OF ENDOTHELIN-1 AND FIBRONECTIN OF FETUSES AND NEWBORNS LIVER FROM MOTHERS WITH PREECLAMPSIA

E. S. Protsenko

Резюме. Вивчено імуногістохімічні особливості ендотеліну-1 і фібронектину в печінці плодів і новонароджених від матерів з прееклампсією різного ступеня тяжкості. ЕТ-1 і фібронектин як маркери ендотеліальної дисфункції вказують на наявність тяжкості гіпоксії плоду при материнської ПЕ. Підвищення рівня ЕТ-1 і фібронектину призводить до метаболічних порушень в гепатоцитах та розвитку склеротичних змін в тканині печінки плодів і новонароджених від матерів, починаючи вже з легкого ступеня материнської ПЕ.

Ключові слова: печінка, ендотелін-1, фібронектин, новонароджений, плід, прееклампсія.

Summary. Studied the immunohistochemical features of endothelin-1 and fibronectin in the liver of fetuses and infants born to mothers with preeclampsia of varying severity. ET-1 and fibronectin as markers of endothelial dysfunction, indicate the presence of the severity of fetal hypoxia with maternal PE. Increased ET-1 and fibronectin leads to metabolic disturbances in hepatocytes and the development of sclerotic changes in the liver of fetuses and newborns from their mothers, starting with mild maternal PE.

Key words: liver, endothelin-1, fibronectin, newborn, fetus, pre-eclampsia.