Crystal structure refinements and magnetic behavior of U₆Ni, UNi₅, UNi₂ and the substitution derivative UNi_{1.7}Si_{0.3}

A. PERRICONE¹, H. NOËL¹*

¹ Laboratoire de Chimie du Solide et Matériaux, UMR 6226 CNRS-Université de Rennes1, Avenue du Général Leclerc, 35042 Rennes, France

* Corresponding author. Tel: + 33 2 23 23 62 55; fax: + 33 2 99 63 57 04; e-mail: henri.noel@univ-rennes1.fr

Received January 15, 2008; accepted February 17, 2008; available on-line March 31, 2008

The crystal structures of the binaries U_6Ni , UNi_2 and UNi_5 have been refined for the first time from single crystal data. U_6Ni crystallizes in the tetragonal system, U_6Mn type, s.g. *I4/mcm*, with lattice parameters a = 10.3835(8) Å, c = 5.1565(4) Å. The uranium atoms occupy 8h (U1) and 16k (U2) Wyckoff positions, and the Ni atoms a 4*a* position. UNi_5 crystallizes in the cubic AuBe₅ type, s.g. $F\bar{4}$ 3*m*, with a = 6.7958(6) Å and the following atom site occupations: U in 4*a*, Ni1 in 16*e* and Ni2 in 4*c*. UNi_2 crystallizes in the hexagonal MgZn₂ type, s.g. $P6_3/mmc$, with a = 4.9701(4) Å, c = 8.2527(8) Å. Uranium occupies a 4*f* position and the nickel atoms are in 2*a* (Ni1) and 6*h* (Ni2) positions. The shortest interatomic U-U distances are 2.619(2) Å in U_6Ni , 3.026(1) Å in UNi_2 , and 4.805(1) Å in UNi_5 . UNi_2 shows itinerant ferromagnetism below 25 K, which vanishes with substitution of silicon for nickel.

Uranium compounds / Intermetallics / Crystal structure / Magnetic properties

1. Introduction

The crystal structure types of the binary uraniumnickel intermetallics U_6Ni , UNi_2 and UNi_5 are known, but to our knowledge their crystal structures had not been previously refined from single crystal data. This work is part of our program concerning a more detailed characterization of the binary uranium intermetallics. We have recently shown by single crystal X-ray diffraction [1-3] that the uranium-nickel compounds formerly reported as U_7Ni_9 and U_5Ni_7 [4] in fact correspond to $U_{10}Ni_{13}$ and $U_{11}Ni_{16}$ with original structure types, and that the phases denoted ϵ - δ corresponds to UNi_{5-x} (0.9 < x < 1) with the hexagonal CaCu₅ type.

2. Experimental

The elements used were depleted uranium plates (99.8% purity), cleaned in diluted HNO₃ before use), and nickel wire (99.5% purity). Samples with nominal compositions were prepared by direct melting of the two elements in an arc-furnace, under partial pressure of purified argon atmosphere. The buttons were inverted and remelted two times to ensure complete homogenization. Single crystals suitable for X-ray data collection were obtained by annealing U₆Ni and UNi₂ in sealed quartz tubes for

two weeks at 790°C and 820°C, respectively.

The single crystal X-ray diffraction data were collected on a Nonius Kappa CCD diffractometer. The unit-cell parameters and the orientation matrix were initially determined from the first ten measured frames of the data, and refined during the indexing and the intensity integration process of all the recorded images, using the program DENZO of the Kappa CCD software package [5]. All structure refinements were carried out using SHELXL-97 [6]. Crystal data and structure refinement parameters for all the studied compounds are gathered in Table 1. Magnetization measurements were performed using a SHE Squid magnetometer in the temperature and field ranges 2-300 K and 0-3 T.

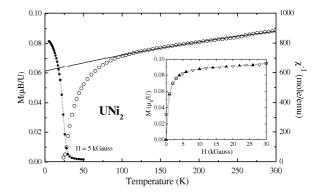
3. Results

3.1. U_6Ni

Single crystals suitable for X-ray data collection were obtained by annealing a sample of U_6Ni in a sealed quartz tube for two weeks at 790°C, which is the reported peritectic decomposition temperature [4]. U_6Ni crystallizes in the tetragonal system, U_6Mn type, s.g. *I4/mcm*, with lattice parameters a = 10.3835(8) Å, c = 5.1565(4) Å. The uranium atoms occupy 8h (U1) and 16k (U2) Wyckoff positions, and the Ni atoms a 4a position (Table 2a). Interatomic

	U ₆ Ni	UNi ₅	UNi ₂	UNi _{1.7} Si _{0.3}
Space group	<i>I4/mcm</i> (No 140)	$F\bar{4} 3m$ (No 216)	P6 ₃ /mmc (No 194)	<i>P</i> 6 ₃ / <i>mmc</i> (No 194)
Lattice parameters (Å)	a = 10.3835(8)	a = 6.7958(6)	a = 4.9701(4)	a = 5.1312(3)
-	c = 5.1565(3)		c = 8.2527(8)	c = 7.8207(6)
Cell volume ($Å^3$)	555.96	313.85	176.55(3)	178.33(2)
Formula units per cell	Z = 4	Z = 4	Z = 4	Z = 4
Formula weight (g)	1486.9	531.6	355.4	346.2
Density (calculated) (Mg/m ³)	17.76	11.25	13.37	12.89
Crystal size (mm ³)	$0.04 \times 0.04 \times 0.05$	$0.05\times0.05\times0.05$	$0.04 \times 0.06 \times 0.04$	$0.05 \times 0.06 \times 0.06$
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073
Scan range (deg.)	$3 < \theta < 35^{\circ}$	$5 < \theta < 35^{\circ}$	$5 < \theta < 35^{\circ}$	$5 < \theta < 35^{\circ}$
Range in <i>hkl</i>	-11≤ <i>h</i> ≤16	$-10 \le h \le 10$	$-7 \le h \le 8$	$0 \le h \le 8$
	$-8 \le k \le 11$	-10≤ <i>k</i> ≤10	-7≤ <i>k</i> ≤8	$-7 \le k \le 0$
	$-8 \le l \le 8$	$-10 \le l \le 8$	-12≤ <i>l</i> ≤ 13	$0 \le l \le 12$
Linear absorption coefficient (mm ⁻¹)	177.26	80.48	112.02	123.14
Total number of reflections	1161	1429	2607	263
Independent reflections	359	94	173	179
Reflections observed (> 2σ)	268	93	149	158
Goodness-of-fit	0.874	1.231	1.069	1.191
Conventional residual (F)	$R_{f} = 0.0389$	$R_{f} = 0.0194$	$R_{f} = 0.0340$	$R_{f} = 0.0396$
Weighted residual, $w = I/\sigma^2$ (F)	$R_{w} = 0.0946$	$R_{w} = 0.0413$	$R_{w} = 0.0838$	$R_{w} = 0.1001$

Table 1 Crystal data and structure refinement parameters.


U-U distances (Table 3a) are as short as those in uranium metal: U2-U2 = 2.619(2) Å, U1-U1 = 2.821(3) Å, U1-U2 = 2.872(7) Å, leading to a nearly temperature-independent paramagnetism in the range 2-300 K. The value of the magnetic susceptibility is 29 10^{-4} emu/mole at 300 K. This compound was reported to be exhibit superconductivity below $T_c = 0.33$ K [7].

3.2. UNi₅

Single crystals of UNi₅ could be obtained by annealing an arc-melted sample at 1300°C for 5 hours under vacuum in a high-frequency furnace. UNi₅ crystallizes in the cubic system, AuBe₅ type, s.g. $F\bar{4}$ 3*m*, with a = 6.7958(6) Å and atom site occupations: U in 4*a*, Ni1 in 16*e* and Ni2 in 4*c* (Table 2b). The shortest interatomic distances (Table 3b) are U-U = 4.805(1) Å, and U-Ni1 = 2.820(1) Å. UNi₅ is a quasi temperature-independent paramagnet from 2 K to 300 K with a value of the magnetic susceptibility of 25 10⁻³ emu/mole at 300 K. In UNi₅, the 5f delocalization results from the U(5f)-Ni(3d) hybridization.

3.3. UNi₂ and UNi_{1.7}Si_{0.3}

Single crystals of UNi₂ were obtained after annealing an arc-melted stoichiometric sample at 820°C for one week. Refinement of the crystal structure confirmed that UNi₂ crystallizes with the hexagonal MgZn₂ type (s.g. $P6_3/mmc$), whereas the other Laves phases UM₂ with M = Mn, Fe, Co crystallize in the cubic MgCu₂ type. The lattice parameters are: a = 4.9701(4) Å, c =8.2527(8) Å. Uranium occupies a 4*f* position and the nickel atoms are in 2*a* (Ni1) and 6*h* (Ni2) positions (Table 2c). The shortest interatomic distances are U- U = 3.026(1) Å and U-Ni1 = 2.909(1) Å (Table 3c). In agreement with previous reports [8], our magnetization measurements on polycrystalline annealed samples indicated weak ferromagnetism, with a Curie temperature $T_{\rm C}$ = 25 K (Fig. 1). The value of the magnetization is 0.095 $\mu_{\rm B}$ at 5 K under 3 T. A rather large anisotropy of the magnetization was revealed by magnetization on single crystal [9]. Considering that the U-U distances are far below the Hill limit (3.40 Å) implying a very large 5f electron delocalization, the unusual magnetic correlations observed in UNi₂ have been interpreted in terms of itinerant ferromagnetism, associated with a large orbital moment of the 5f electrons [10].

Fig. 1 Thermal variation of the magnetization (filled circles) and of the reverse susceptibility (empty circles) under 5 kGauss for UNi₂. Inset: Magnetization as a function of the applied field at T = 5 K. Filled triangles = field up; empty triangles = field down.

(a) Atom) ((;)									
AIOT			meters for U ₆	IN1	1					U_{eq} (Å ²)
	1	Site	<i>x</i>		0.50(0)	$\frac{y}{y}$	0	Z.	0.01	
U1		8h	0.09603(6)		0.59603		0			37(3)
U2		16 <i>k</i>	0.10622(6)		0.21545	5(6)	0			30(2)
Ni		4a	0		0		1/4		0.01	36(8)
(b) Atc	mic n	osition para	meters for U	Ni.						
Atom		Site		15		v		7		U_{eq} (Å ²)
U	1	4 <i>a</i>	0		0	у	0	Z	0.01	37(3)
Ni1			-		-	$\tau(\mathbf{a})$	ů,	5(2)		
		16e	0.62385(2)		0.62385	5(2)	0.623	55(2)		68(4)
Ni2		4 <i>c</i>	1/4		1/4		1/4		0.02	44(7)
(c) Ato	omic p		meters for UI	Ni ₂						
Atom	1	Site	x			у		z		U_{eq} (Å ²)
U		4f	1/3		2/3		0.558	13(7)	0.01	93(4)
Ni1		2a	0		0		0		0.01	30(2)
Ni2 6h		0.1658(2)		0.3316((4)	1/4		0.01	56(5)	
(d) Ato Atom	-	osition para Site	meters for U	$N1_{1.7}Si_{0.3}$	1	22	1	7		U_{eq} (Å ²)
U Atom	1		1/3 x		2/3	у	0.569	$\frac{z}{z}$	0.01	$\frac{U_{eq}(A)}{38(4)}$
M1 ^a		4f						$\theta(1)$		
Ni2		2a	0 0 1(70(2)		0 0.3358($(\cap $	0 1/4			30(2)
	200/1	6h Ni+61%Si	0.1679(3)		0.5558((0)	1/4		0.01	21(5)
U1	1	T T 1								
01		U1 2U2	2.821(3) 2.872(7)	U2	- 1U - 2N		2.619(2) 2.808(6)	Ni - 2	2Ni 3U2	2.579(9) 2.808(6)
	- 2			U2		li				
	- 2 - 4	2U2	2.872(7)	U2	- 2N	i 1	2.808(6)			
	- 2 - 4 4	U2 U2 U1	2.872(7) 3.240(6) 3.260(7)		- 2N - 1U	i 1	2.808(6) 2.872(7)			
(b) Ma	- 2 - 4 	U2 U2 U1 eratomic dis	2.872(7) 3.240(6)	UNi5	- 2N - 1U - 2U	fi 1 12	2.808(6) 2.872(7) 3.037(7)			2.808(6)
	- 2 - 4 4 <u>in inte</u> - 1	U2 U2 U1 eratomic dis 2Ni1	2.872(7) 3.240(6) 3.260(7)	UNi ₅	- 2N - 1U - 2U	i 1	2.808(6) 2.872(7) 3.037(7) - 3Ni1			2.808(6)
(b) Ma	- 2 - 4 <u>4</u> <u>in inte</u> - 1 - 4	U2 U2 U1 eratomic dis 2Ni1 Ni2	2.872(7) 3.240(6) 3.260(7)	UNi ₅ 2.820(1 2.943(1	- 2N - 1U - 2U	fi 1 12	2.808(6) 2.872(7) 3.037(7) - 3Ni1 - 3Ni1			2.808(6) 2.381(3) 2.425(3)
(b) Ma	- 2 - 4 <u>4</u> <u>in inte</u> - 1 - 4	U2 U2 U1 eratomic dis 2Ni1	2.872(7) 3.240(6) 3.260(7)	UNi ₅	- 2N - 1U - 2U	fi 1 12	2.808(6) 2.872(7) 3.037(7) - 3Ni1 - 3Ni1 - 3Ni2			2.808(6) 2.381(3) 2.425(3) 2.815(1)
(b) Ma U	- 2 - 4 4 <u>in inte</u> - 1 - 4 - 1	U2 U2 U1 eratomic dis 2Ni1 Ni2 2U	2.872(7) 3.240(6) 3.260(7)	UNi ₅ 2.820(1 2.943(1 4.805(1)	- 2N - 1U - 2U	fi 1 12	2.808(6) 2.872(7) 3.037(7) - 3Ni1 - 3Ni1			2.808(6) 2.381(3) 2.425(3)
(b) Ma	- 2 - 4 4 <u>in inte</u> - 1 - 4 - 1	2U2 2U1 eratomic dis 2Ni1 2Ni2 2U 2Ni1	2.872(7) 3.240(6) 3.260(7)	UNi ₅ 2.820(1 2.943(1 4.805(1 2.815(1	- 2N - 1U - 2U	fi 1 12	2.808(6) 2.872(7) 3.037(7) - 3Ni1 - 3Ni1 - 3Ni2			2.808(6) 2.381(3) 2.425(3) 2.815(1)
(b) Ma U	- 2 - 4 4 <u>in inte</u> - 1 - 4 - 1	U2 U2 U1 eratomic dis 2Ni1 Ni2 2U	2.872(7) 3.240(6) 3.260(7)	UNi ₅ 2.820(1 2.943(1 4.805(1)	- 2N - 1U - 2U	fi 1 12	2.808(6) 2.872(7) 3.037(7) - 3Ni1 - 3Ni1 - 3Ni2			2.808(6) 2.381(3) 2.425(3) 2.815(1)
(b) Ma U Ni2	- 2 - 4 4 - 1 - 1 - 4 - 1 - 1 - 1 - 1 - 4	2U2 2U1 eratomic dis 2Ni1 2Ni2 2U 2Ni1 2U 2Ni1 2U	2.872(7) 3.240(6) 3.260(7)	UNi ₅ 2.820(1 2.943(1 4.805(1) 2.815(1 2.943(1)	- 2N - 1U - 2U	i 12 Ni1	2.808(6) 2.872(7) 3.037(7) - 3Ni1 - 3Ni2 - 3U	- {	3U2	2.808(6) 2.381(3) 2.425(3) 2.815(1)
(b) Ma U Ni2	- 2 - 4 4 - 1 - 1 - 4 - 1 - 1 - 1 - 1 - 4	2U2 2U1 eratomic dis 2Ni1 2Ni2 2U 2Ni1 2U 2Ni1 2U	2.872(7) 3.240(6) 3.260(7) tances (Å) in	UNi ₅ 2.820(1 2.943(1 4.805(1) 2.815(1 2.943(1)	- 2N - 1U - 2U	i 12 Ni1	2.808(6) 2.872(7) 3.037(7) - 3Ni1 - 3Ni2 - 3U	- {	8U2 6Si)	2.808(6) 2.381(3) 2.425(3) 2.815(1)
(b) Ma U Ni2	- 2 - 4 in inte - 1 - 4 - 1 - 1 - 1 - 1 in inte	2U2 2U1 eratomic dis 2Ni1 2Ni2 2U 2Ni1 2U 2Ni1 2U	2.872(7) 3.240(6) 3.260(7) tances (Å) in	UNi ₅ 2.820(1 2.943(1 4.805(1) 2.815(1 2.943(1)	$ \begin{array}{c} - & 2N \\ - & 1U \\ - & 2U \\ \hline 1) \\ 1) \\ 1) \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	i 12 Ni1 nd UNi _{1.7}	2.808(6) 2.872(7) 3.037(7) - 3Ni1 - 3Ni2 - 3U	- { 39%Ni+619	8U2 6Si)	2.808(6) 2.381(3) 2.425(3) 2.815(1)
(b) Ma U Ni2 (c) Mai	- 2 - 4 <u>in inte</u> - 1 - 4 - 1 - 1 <u>- 4</u> <u>in inte</u> - 3	2U2 2U2 2U1 2Ni1 2Ni1 2U 2Ni1 2U 2Ni1 2U 2Ni1 2U 2Ni1 2U 2Ni1 2U 2Ni1	2.872(7) 3.240(6) 3.260(7) tances (Å) in	UNi ₅ 2.820(1 2.943(1 4.805(1) 2.815(1 2.943(1)	$ \begin{array}{c} - & 2N \\ - & 1U \\ - & 2U \\ \hline 1) \\ 1) \\ 1) \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \end{array} $	i 12 Ni1 <u>nd UNi_{1.7}</u> JNi ₂	2.808(6) 2.872(7) 3.037(7) - 3Ni1 - 3Ni2 - 3U	- { 39%Ni+619 UNi _{1.7} Si ₀	8U2 6Si)	2.808(6) 2.381(3) 2.425(3) 2.815(1)
(b) Ma U Ni2 (c) Mai	- 2 - 4 4 - 1 - 4 - 1 - 4 - 1 - 4 - 1 - 3 - 3 - 3	2U2 2U1 eratomic dis 2Ni1 2Ni2 2U 2Ni1 2U 2Ni1 2U eratomic dist 2M1 2Ni2	2.872(7) 3.240(6) 3.260(7) tances (Å) in	UNi ₅ 2.820(1 2.943(1 4.805(1) 2.815(1 2.943(1)	$ \begin{array}{c} - & 2N \\ - & 1U \\ - & 2U \\ \hline 1) \\ 1) \\ 1) \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \end{array} $	nd UNi _{1.7} JNi ₂ 909(1) 924(1)	2.808(6) 2.872(7) 3.037(7) - 3Ni1 - 3Ni2 - 3U	- { 39%Ni+619 UNi _{1.7} Si _{0.1} 3.012(1) 2.902(2)	8U2 6Si)	2.808(6) 2.381(3) 2.425(3) 2.815(1)
(b) Ma U Ni2 (c) Mai	- 2 - 4 4 - 1 - 4 - 1 - 4 - 1 - 4 - 1 - 3 - 3 - 3 - 6	2U2 2U1 eratomic dis 2Ni1 Ni2 2U 2Ni1 2U 2Ni1 2U eratomic dist M1 Ni2 Ni2 Ni2 Ni2 Ni2 Ni2	2.872(7) 3.240(6) 3.260(7) tances (Å) in	UNi ₅ 2.820(1 2.943(1 4.805(1) 2.815(1 2.943(1)	$ \begin{array}{c} - & 2N \\ - & 1U \\ - & 2U \\ \end{array} $ 1) 1) 1) 1) 1 1 1 1 2 2 2 2 2	nd UNi _{1.7} JNi ₂ JNi ₂ 2.909(1) 2.924(1) 2.946(1)	2.808(6) 2.872(7) 3.037(7) - 3Ni1 - 3Ni2 - 3U	- { 39%Ni+619 UNi _{1.7} Si _{0.1} 3.012(1) 2.902(2) 2.927(1)	8U2 6Si)	2.808(6) 2.381(3) 2.425(3) 2.815(1)
(b) Ma U Ni2 (c) Mai	- 2 - 4 4 - 1 - 1 - 4 - 1 - 1 - 4 - 1 - 3 - 3 - 3 - 6 - 3	2U2 U2 U1 eratomic dist 2Ni1 Ni2 2U 2Ni1 U eratomic dist M1 Ni2 SNi2 SNi2 U	2.872(7) 3.240(6) 3.260(7) tances (Å) in	UNi ₅ 2.820(1 2.943(1 4.805(1) 2.815(1 2.943(1)	$ \begin{array}{c} - & 2N \\ - & 1U \\ - & 2U \\ \end{array} $ 1) 1) 1) 1) 1 1 1 1 2 2 2 2 3	nd UNi _{1.7} Ni1 <u>I</u> JNi ₂ .909(1) .924(1) .946(1) .026(1)	2.808(6) 2.872(7) 3.037(7) - 3Ni1 - 3Ni2 - 3U	- 8 39%Ni+619 UNi _{1.7} Si _{0.3} 3.012(1) 2.902(2) 2.927(1) 3.158(1)	8U2 6Si)	2.808(6) 2.381(3) 2.425(3) 2.815(1)
(b) Ma U Ni2 (c) Mai	- 2 - 4 4 - 1 - 1 - 4 - 1 - 1 - 4 - 1 - 3 - 3 - 3 - 6 - 3	2U2 2U1 eratomic dis 2Ni1 Ni2 2U 2Ni1 2U 2Ni1 2U eratomic dist M1 Ni2 Ni2 Ni2 Ni2 Ni2 Ni2	2.872(7) 3.240(6) 3.260(7) tances (Å) in	UNi ₅ 2.820(1 2.943(1 4.805(1) 2.815(1 2.943(1)	$ \begin{array}{c} - & 2N \\ - & 1U \\ - & 2U \\ \end{array} $ 1) 1) 1) 1) 1 1 1 1 2 2 2 2 3	nd UNi _{1.7} JNi ₂ JNi ₂ 2.909(1) 2.924(1) 2.946(1)	2.808(6) 2.872(7) 3.037(7) - 3Ni1 - 3Ni2 - 3U	- { 39%Ni+619 UNi _{1.7} Si _{0.1} 3.012(1) 2.902(2) 2.927(1)	8U2 6Si)	2.808(6) 2.381(3) 2.425(3) 2.815(1)
(b) Ma U Ni2 (c) Mai U	- 2 - 4 4 - 1 - 1 - 4 - 1 - 1 - 4 - 1 - 3 - 3 - 3 - 6 - 3 - 1	2U2 2U1 eratomic dist 2Ni1 Ni2 2U 2Ni1 2U 2Ni1 2U eratomic dist 2Ni2 2Ni1 2U 2Ni1 2U 2Ni1 2U 2Ni1 2U 2Ni1 2U 2Ni1 2U 2U 2Ni1 2U 2U 2U 2U 2U 2U 2U 2U 2U 2U 2U 2U 2U	2.872(7) 3.240(6) 3.260(7) tances (Å) in	UNi ₅ 2.820(1 2.943(1 4.805(1) 2.815(1 2.943(1)	$ \begin{array}{c} - & 2N \\ - & 1U \\ - & 2U \\ \end{array} $ 1) 1) 1) 1) 1 1 1 1 2 2 2 3 3 3	i 1 2 Ni1 Ni1 nd UNi _{1.7} JNi ₂ .909(1) .924(1) .924(1) .926(1) .026(1) .167(1)	2.808(6) 2.872(7) 3.037(7) - 3Ni1 - 3Ni2 - 3U	- 8 39%Ni+619 UNi _{1.7} Si _{0.1} 3.012(1) 2.902(2) 2.927(1) 3.158(1) 2.817(2)	8U2 6Si)	2.808(6) 2.381(3) 2.425(3) 2.815(1)
(b) Ma U Ni2 (c) Mai	- 2 - 4 - 4 - 1 - 4 - 1 - 4 - 1 - 4 - 1 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	2U2 U2 U1 eratomic dist 2Ni1 Ni2 2U 2Ni1 U eratomic dist M1 Ni2 SNi2 SNi2 U	2.872(7) 3.240(6) 3.260(7) tances (Å) in	UNi ₅ 2.820(1 2.943(1 4.805(1) 2.815(1 2.943(1)	$ \begin{array}{c} - & 2N \\ - & 1U \\ - & 2U \\ \end{array} $ 1) 1) 1) 1) 1) 1 1 1 2 2 2 3 3 3 2	nd UNi _{1.7} Ni1 <u>I</u> JNi ₂ .909(1) .924(1) .946(1) .026(1)	2.808(6) 2.872(7) 3.037(7) - 3Ni1 - 3Ni2 - 3U	8 39%Ni+619 UNi _{1.7} Si _{0.1} 3.012(1) 2.902(2) 2.927(1) 3.158(1) 2.817(2) 2.459(2)	8U2 6Si)	2.808(6) 2.381(3) 2.425(3) 2.815(1)
(b) Ma U Ni2 (c) Mai U	- 2 - 4 - 4 - 1 - 4 - 1 - 4 - 1 - 4 - 1 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	U2 U2 U1 eratomic dist 2Ni1 Ni2 2U 2Ni1 U eratomic dist M1 Ni2 Ni2 Ni2 U U U U	2.872(7) 3.240(6) 3.260(7) tances (Å) in	UNi ₅ 2.820(1 2.943(1 4.805(1) 2.815(1 2.943(1)	$ \begin{array}{c} - & 2N \\ - & 1U \\ - & 2U \\ \end{array} $ 1) 1) 1) 1) 1) 1 1 1 2 2 2 3 3 3 2	nd UNi _{1.7} JNi ₂ .909(1) .924(1) .946(1) .026(1) .167(1)	2.808(6) 2.872(7) 3.037(7) - 3Ni1 - 3Ni2 - 3U	- 8 39%Ni+619 UNi _{1.7} Si _{0.1} 3.012(1) 2.902(2) 2.927(1) 3.158(1) 2.817(2)	8U2 6Si)	2.808(6) 2.381(3) 2.425(3) 2.815(1)
(b) Ma U Ni2 (c) Mai U	$ \begin{array}{r} - & 2 \\ - & 4 \\ & 4 \\ \hline & 1 \\ - & 1 \\ - & 1 \\ - & 1 \\ - & 1 \\ - & 1 \\ - & 3 \\ - & 3 \\ - & 3 \\ - & 6 \\ - & 3 \\ - & 6 \\ - & 6 \\ - & 6 \\ \end{array} $	U2 U2 U1 eratomic dist 2Ni1 Ni2 2U 2Ni1 U eratomic dist M1 Ni2 Ni2 Ni2 U U U U	2.872(7) 3.240(6) 3.260(7) tances (Å) in	UNi ₅ 2.820(1 2.943(1 4.805(1) 2.815(1 2.943(1)	$ \begin{array}{c} - & 2N \\ - & 1U \\ - & 2U \\ \hline 1) \\ 1) \\ 1) \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	nd UNi _{1.7} JNi ₂ .909(1) .924(1) .946(1) .026(1) .167(1)	2.808(6) 2.872(7) 3.037(7) - 3Ni1 - 3Ni2 - 3U	8 39%Ni+619 UNi _{1.7} Si _{0.1} 3.012(1) 2.902(2) 2.927(1) 3.158(1) 2.817(2) 2.459(2)	8U2 6Si)	2.808(6) 2.381(3) 2.425(3) 2.815(1)
(b) Ma U Ni2 (c) Mai U M1	$\begin{array}{r} - 2 \\ - 4 \\ 4 \\ - 1 \\ - 4 \\ - 1 \\ - 4 \\ - 1 \\ - 4 \\ - 1 \\ - 3 \\ - 6 \\ - 3 \\ - 6 \\ - 3 \\ - 1 \\ - 6 \\ - 6 \\ - 6 \\ - 2 \end{array}$	2U2 -U2 -U1 eratomic dist 2Ni1 -Ni2 2U 2Ni1 -U eratomic dist M1 -Ni2 -U Eratomic dist -U -U Eratomic dist -U -U Eratomic dist -U -U -U -U -U -U -U -U -U -U	2.872(7) 3.240(6) 3.260(7) tances (Å) in	UNi ₅ 2.820(1 2.943(1 4.805(1) 2.815(1 2.943(1)	$ \begin{array}{c} - & 2N \\ - & 1U \\ - & 2U \\ \hline 1) \\ 1) \\ 1) \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	nd UNi _{1.7} Ni1 Ni1 Ni2 .909(1) .924(1) .924(1) .946(1) .026(1) .167(1) .509(1) .909(1)	2.808(6) 2.872(7) 3.037(7) - 3Ni1 - 3Ni2 - 3U		8U2 6Si)	2.808(6) 2.381(3) 2.425(3) 2.815(1)
(b) Ma U Ni2 (c) Mai U M1	$\begin{array}{r} - 2 \\ - 4 \\ 4 \\ \hline \\ - 1 \\ - 4 \\ - 1 \\ - 4 \\ - 1 \\ - 4 \\ - 1 \\ - 3 \\ - 6 \\ - 3 \\ - 6 \\ - 3 \\ - 1 \\ - 6 \\ - 6 \\ - 2 \\ - 2 \\ - 2 \end{array}$	U2 U2 U1 eratomic dist 2Ni1 Ni2 2U 2Ni1 U eratomic dist M1 Ni2 Ni2 Ni2 Ni2 U U SNi2 U U	2.872(7) 3.240(6) 3.260(7) tances (Å) in	UNi ₅ 2.820(1 2.943(1 4.805(1) 2.815(1 2.943(1)	$\begin{array}{c} - & 2N \\ - & 1U \\ - & 2U \end{array}$	i i i i i i i i i i i i i i	2.808(6) 2.872(7) 3.037(7) - 3Ni1 - 3Ni2 - 3U	8 39%Ni+619 UNi _{1.7} Si _{0.3} 3.012(1) 2.902(2) 2.927(1) 3.158(1) 2.817(2) 2.459(2) 3.012(1) 2.547(5)	8U2 6Si)	2.808(6) 2.381(3) 2.425(3) 2.815(1)
(b) Ma U Ni2 (c) Ma U M1	$\begin{array}{r} - 2 \\ - 4 \\ 4 \\ \hline \\ - 1 \\ - 4 \\ - 1 \\ - 4 \\ - 1 \\ - 4 \\ - 1 \\ - 3 \\ - 6 \\ - 3 \\ - 6 \\ - 3 \\ - 1 \\ - 6 \\ - 6 \\ - 2 \\ - 2 \\ - 2 \\ - 2 \\ - 2 \end{array}$	U2 U2 U1 eratomic dist 2Ni1 Ni2 2U 2Ni1 U eratomic dist M1 Ni2 Ni2 Ni2 U U U U SNi2 U U U U SNi2 Ni2 Ni2 Ni2 Ni2 Ni2 Ni2 Ni2 Ni2 Ni2	2.872(7) 3.240(6) 3.260(7) tances (Å) in	UNi ₅ 2.820(1 2.943(1 4.805(1) 2.815(1 2.943(1)	$\begin{array}{c} - & 2N \\ - & 1U \\ - & 2U \end{array}$	i i i i i i i i i i i i i i	2.808(6) 2.872(7) 3.037(7) - 3Ni1 - 3Ni2 - 3U		8U2 6Si)	2.808(6) 2.381(3) 2.425(3) 2.815(1)

Table 2

A complete investigation of the isothermal section at $T = 900^{\circ}$ C of the U-Ni-Si ternary system [11] revealed that Si may substitute for Ni in UNi2, forming the solid solution $UNi_{2-x}Si_x$ up to x = 0.3, keeping the MgZn₂ type. Refinement of the crystal structure of a single crystal having the limiting composition UNi_{1.7}Si_{0.3} and lattice parameters a =5.1312(3) Å, c = 7.8207(6) Å (Table 1) showed that Si replaces 61% of the Ni1 atoms on the 2a position. This substitution induces an increase of the U-M1 distance from 2.909(1) Å to 3.012(1) Å and a concomitant change of the shortest U-U distances, from 3.026(1) Å to 3.158(1) Å and from 3.167(1) Å to 2.817(2) Å (Table 2). Magnetic measurements for UNi_{1.7}Si_{0.3} indicated a nearly temperatureindependent paramagnetism from 2 to 300 K, with a value of the magnetic susceptibility of $9 \cdot 10^{-4}$ emu/mole at 300 K. Consequently, the ferromagnetic correlations are strongly dependant on the modification of the band structure induced by the changes of the U-U distances from UNi2 to UNi_{1.7}Si_{0.3}.

References

- [1] A. Perricone, H. Noël, *J. Nucl. Mater.* 299 (2001) 260.
- [2] A. Perricone, M. Potel, H. Noël, J. Alloys Compd. 340 (2002) 39.
- [3] A. Perricone, H. Noël, *Intermetallics* 10 (2002) 519.
- [4] T.B. Massalski (Ed.), Binary Alloy Phase Diagrams, ASM, Materials Park, OH, USA, 1991, Vol. 3.
- [5] *Nonius Kappa CCD Program Package*, Nonius Delft, The Netherlands, 1998.
- [6] G.M. Sheldrix, *SHELX-97, Program for Crystal Structure Refinement*, University of Göttingen, Germany, 1997.
- [7] L.E. DeLong, R.P. Guertin, S. Hasanain, T. Fariss, *Phys. Rev. B* 31(11) (1985) 7059.
- [8] L. Havela, J. Hrebik, J. Sternberk, A. Menovsky, A. Zentko, *Phys. Status Solidi* 59 (1980) k165.
- [9] P.H. Frings, J.J.M. Franse, A. Menovsky, S. Zemirli, B. Barbara, J. Magn. Magn. Mater. 54 (1986) 541.
- [10] J.M. Fournier, A. Boeuf, P. Frings, M. Bonnet, J.X. Boucherle, A. Delapalme, A. Menovsky, J. Less-Common Met. 121 (1986) 249.
- [11] A. Perricone, *PhD thesis*, University of Rennes, 2002.

Proceeding of the IX International Conference on Crystal Chemistry of Intermetallic Compounds, Lviv, September 20-24, 2005.