The new structure type Ce₅Co₄Ge₁₃

Bohdana BELAN¹*, Julia STĘPEŃ-DAMM², Roman GLADYSHEVSKII¹, Oksana BODAK¹

¹ Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya St. 6, 79005 Lviv, Ukraine

² W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences,

* Corresponding author. Tel.: +380-32-2394633; e-mail: belan@mail.lviv.ua

Received December 21, 2007; accepted February, 17, 2008; available on-line March 31, 2008

The crystal structure of Ce₅Co₄Ge₁₃ was refined from single-crystal X-ray diffraction data. This new orthorhombic structure type (space group Cmmm, a = 4.265(1), b = 45.175(9), c = 4.293(1) Å) is a filled-up derivative of the Nb₅Ga₁₃ type and contains AlB₂-, BaNiSn₃- and AuCu₃-type slabs intergrown along [010]. The "interstitial" Co atoms are characterized by bicapped square-antiprismatic [Ce₅Ge₅] coordination.

Cerium / Cobalt / Germanium / Intermetallic compound / Crystal structure

Introduction

The isothermal section at 670/870 K of the phase diagram of the Ce-Co-Ge system was found to contain eleven ternary intermetallic phases, four of which reported with unknown structure were and approximate composition [1]. The compound Ce₅Co₄Ge₁₃ investigated here probably corresponds to the phase $\sim Ce_3CoGe_6$.

Experimental details

Single crystals were found in a sample of nominal composition Ce₂₀Co₂₀Ge₆₀, which had been prepared from Ce (99.99%), Co (99.99%), and Ge (99.9999%) by induction melting under an Ar atmosphere.

Integrated intensities were measured with graphite monochromatized Mo Ka radiation on an Xcalibur CCD diffractometer. The cell parameters were refined from 6332 reflections. The crystal data and other parameters for the data collection and refinement are shown in Table 1. The intensity of the reflections was corrected for Lorentz and polarization effects. The structure was solved from Patterson maps and refined by the full-matrix least-squares method on F^2 using SHELX-97 [2]. The atomic positional parameters were standardized with the program STRUCTURE TIDY [3].

Table 1 Crystal data and details of the data collection and structural refinement for the Ce₅Co₄Ge₁₃ compound.

Crystal data	Data collection	Refinement
$M_{\rm r} = 1879.99$	Xcalibur diffractometer	R = 0.0413
Orthorhombic	CCD detector, ω -scan	wR = 0.0829
Space group Cmmm	Mo K α radiation	S = 1.082
a = 4.265(1) Å	T = 295(2) K	728 reflections with $I > 2\sigma(I)$
b = 45.175(9) Å	Analytical absorption correction	48 parameters
c = 4.293(1) Å	$T_{\min} = 0.045, T_{\max} = 0.342$	$w = 1/[\sigma^2 F_0^2 + (0.0224P)^2 +$
$V = 827.1(3) \text{ Å}^3$	6332 measured reflections	50.2126P], $P = (F_o^2 + 2F_c^2)/3$
Z = 2	971 independent reflections	$(\Delta/\sigma)_{\rm max} < 0.0001$
$D_{\rm x} = 7.548 {\rm ~Mg~m^{-3}}$	$R_{\rm int} = 0.0478$	$\Delta \rho_{\rm max} = +8.19 \text{ e } \text{\AA}^{-3}$
$\mu = 40.496 \text{ mm}^{-1}$	$\theta_{\rm max} = 33.72^{\circ}$	$\Delta \rho_{\rm min} = -3.15 \text{ e } \text{\AA}^{-3}$
F(000) = 1628	$-6 \le h \le 4, -70 \le k \le 60, -6 \le l \le 5$	Extinction coefficient
Metallic gray platelet,		(SHELXL): 0.00016(7)
0.110×0.070×0.028 mm ³		

P.O. Box 1410, 50-950 Wrocław 2, Poland

Atom	WP	x	у	z	$U_{ m eq}$	$U_{11}{}^{\mathrm{a}}$	U_{22}	U_{33}
Ce1	4 <i>j</i>	0	0.39371(2)	1/2	0.0072(2)	0.0068(3)	0.0076(3)	0.0071(3)
Ce2	4i	0	0.21248(2)	0	0.0072(2)	0.0067(3)	0.0078(3)	0.0072(4)
Ce3	2a	0	0	0	0.0068(2)	0.0066(4)	0.0066(4)	0.0072(5)
Co1	4 <i>j</i>	0	0.31950(4)	1/2	0.0061(3)	0.0053(7)	0.0069(8)	0.0061(8)
Co2	4i	0	0.07067(5)	0	0.0115(4)	0.0111(9)	0.0113(9)	0.0121(9)
Ge1	4 <i>j</i>	0	0.04975(4)	1/2	0.0125(3)	0.0163(8)	0.0124(8)	0.0088(7)
Ge2	4 <i>j</i>	0	0.15874(3)	1/2	0.0078(3)	0.0047(6)	0.0091(7)	0.0096(7)
Ge3	4 <i>j</i>	0	0.26692(3)	1/2	0.0072(3)	0.0059(6)	0.0059(6)	0.0096(7)
Ge4	4i	0	0.12104(4)	0	0.0107(3)	0.0083(6)	0.0141(7)	0.0099(7)
Ge5	4i	0	0.34110(3)	0	0.0079(3)	0.0094(7)	0.0087(7)	0.0058(7)
Ge6	4i	0	0.45018(4)	0	0.0141(3)	0.0093(7)	0.0151(8)	0.0178(8)
Ge7	2c	1/2	0	1/2	0.0260(7)	0.0104(11)	0.057(2)	0.0111(12)
Ge5 Ge6 Ge7	$ \begin{array}{c} 4i \\ 4i \\ 2c \\ \hline \end{array} $	0 0 1/2	0.34110(3) 0.45018(4) 0	0 0 1/2	0.0079(3) 0.0141(3) 0.0260(7)	0.0094(7) 0.0093(7) 0.0104(11)	0.0087(7) 0.0151(8) 0.057(2)	0.0058(7) 0.0178(8) 0.0111(12)

Table 2 Atomic positional and displacement parameters ($Å^2$) for Ce₅Co₄Ge₁₃ (space group *Cmmm*).

^a $U_{12} = U_{13} = U_{23} = 0.$

Results and discussion

Cell parameters, final positional parameters and displacement parameters of $Ce_5Co_4Ge_{13}$ are listed in Tables 1 and 2. A projection of the unit-cell content along [001] and the coordination polyhedra of the atoms in the asymmetric unit are shown in Figs. 1 and 2, respectively.

The new structure type represented by Ce₅Co₄Ge₁₃, Pearson symbol oS44 and Wyckoff sequence Cmmm $j^5 i^5 ca$ (#65), can be obtained considering the insertion of additional atoms (Co atoms) into the orthorhombic structure type Nb₅Ga₁₃ ("Ce₅Ge₁₃"), oS36, Cmmm $j^4 i^4 ca \ (\#65), \ a = 3.778, \ b = 40.335, \ c = 3.778 \ \text{\AA} \ [4].$ The parent type Nb₅Ga₁₃, Gd₃Sn₇ [5], Ce₃Sn₇, and Ce_2Sn_5 [6] are members of a homologous structural series based on an intergrowth of slabs characteristic of the simple structure types AlB₂, AuCu₃, and CaF₂ [3]. The structure of Ce₅Co₄Ge₁₃ contains slabs of the types AlB₂, BaAl₄ (or its ternary variant BaNiSn₃), and AuCu₃ (Fig. 1). The first two structure types have representatives in the Ce-Co-Ge system: CeCo_{0.5}Ge_{1.5} and CeCoGe₃ [1]. Similar segments are also present in the orthorhombic structures of La₃Co₂Sn₇ [7] and $Ho_3Co_2Si_7$ [8], in monoclinic $Lu_5Co_4Si_{14}$ [9], and in tetragonal $Sc_5Co_4Si_{10}$ [10]. In the structure of Ce₅Co₄Ge₁₃, the Co and Ge atoms are characterized by square-antiprismatic, cubooctahedral, and trigonalprismatic coordinations (Table 3, Fig. 2).

High residual electron densities (+8.19 and -7.06 e Å⁻³) were observed at (0 0.1054 0) and (1/2 0.0370 1/2). These positions are located between the site Co2 in the mixed BaNiSn₃-AuCu₃ slab and its nearest neighbor Ge4 in the BaNiSn₃ slab, and on both sides of the Ge7 site at the interface of two neighboring BaNiSn₃-AuCu₃ slabs. A refinement considering partial replacement of pairs Co2-Ge4 by single Ge atoms, related to a partial replacement of single atoms Ge7 by Co-Co pairs, improved the agreement with the observed intensities (R = 0.0295, wR = 0.0544, S = 1.090, $\Delta \rho_{max} = +2.59$ e Å⁻³, $\Delta \rho_{min} = -2.20$ e Å⁻³, extinction coefficient: 0.00051(7)).

Fig. 1 Projections of the structures of $Ce_5Co_4Ge_{13}$ and Nb_5Ga_{13} along [001]. The segments of simple structure types intergrown along [010] are outlined; Ce atoms: large light spheres, Co atoms: small spheres, Ge and Ga atoms: medium dark spheres, Nb atoms: medium light spheres.

Ato	oms	δ	Ato	oms	δ	Ate	oms	δ
Ce1	4Ge4	3.098(1)	Co1	2Ge2	2.348(1)	Ge3	1Co1	2.375(3)
	2Ge2	3.188(1)		2Ge5	2.358(1)		2Ge3	2.624(2)
	2Ge5	3.202(1)		1Ge3	2.375(3)		4Ce2	3.166(1)
	2Ge1	3.327(2)		1Ce1	3.352(2)		2Ce2	3.264(1)
	2Ge6	3.334(2)		4Ce2	3.353(1)	Ge4	1Co2	2.276(3)
	1Co1	3.352(2)	Co2	1Ge4	2.276(3)		2Ge5	2.734(2)
	4Co2	3.427(1)		2Ge6	2.331(1)		2Ge2	2.740(2)
	2Ce1	4.265(1)		2Ge1	2.345(1)		4Ce1	3.098(1)
	2Ce1	4.293(1)		1Ce3	3.193(2)	Ge5	2Co1	2.358(1)
Ce2	4Ge3	3.166(1)		4Ce1	3.427(1)		2Ge4	2.734(2)
	2Ge5	3.226(1)	Ge1	2Co2	2.345(1)		4Ge2	3.026(1)
	2Ge2	3.240(1)		4Ge6	3.026(1)		2Ce1	3.202(1)
	2Ge2	3.240(1)		4Ge6	3.026(1)		2Ce1	3.202(1)
	2Ge3	3.264(1)		2Ge7	3.098(1)		2Ce2	3.226(1)
	4Co1	3.353(1)		2Ce3	3.108(1)	Ge6	2Co2	2.331(1)
	2Ce2	4.005(1)		2Ce1	3.327(2)		4Ge1	3.026(1)
	2Ce2	4.265(1)	Ge2	2Co1	2.348(1)		2Ce3	3.100(1)
	2Ce2	4.293(1)		2Ge4	2.740(2)		2Ge7	3.110(1)
Ce3	4Ge7	3.026(1)		4Ge5	3.026(1)		2Ce1	3.334(2)
	4Ge6	3.100(1)		2Ce1	3.188(1)	Ge7	4Ce3	3.026(1)
	4Ge1	3.108(1)		2Ce2	3.240(1)		4Ge1	3.098(1)
	2Co2	3.193(2)					4Ge6	3.110(1)
	2Ce3	4.265(1)						
	2Ce3	4.293(1)						

Table 3 Interatomic distances (Å) in $Ce_5Co_4Ge_{13}$.

[GeCe6CoGe2]

[GeCe4Co2Ge6]

[GeCe4CoGe4]

Fig. 2 Coordination polyhedra of the atoms in $Ce_5Co_4Ge_{13}$. Ce atoms: large light spheres, Co atoms: small spheres, and Ge atoms: medium dark spheres; the numbers inside the spheres correspond to the labels used in Table 2.

References

- M.B. Konyk, O.I. Bodak, J. Alloys Compd. 267 (1998) 189-191.
- [2] G.M. Sheldrick, SHELX-97 WinGX Version. Release 97-2. University of Göttingen, Germany, 1997.
- [3] E. Parthé, L. Gelato, B. Chabot, M. Penzo, K. Cenzual, R. Gladyshevskii, TYPIX Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. Gmelin Handbook of Inorganic and Organometallic Chemistry, Vol. 1-4, Berlin, Springer-Verlag, 1993/1994, 1596 p.
- [4] H.G. Meissner, K. Schubert, Z. Metallkd. 56 (1965) 475-484.
- [5] R.V. Skolozdra, L.G. Akselrud, V.K. Pecharskii, O.E. Koretskaya, *Dopov. Akad. Nauk Ukr. RSR*, Ser. B (12) (1986) 48-52.
- [6] J.X. Boucherle, F. Givord, P. Lejay, J. Schweizer, A. Stunault, *Acta Crystallogr. B* 44 (1998) 377-380.
- [7] W. Dörrscheidt, H. Schäfer, J. Less-Common Met. 70 (1980) 1-10.
- [8] V.I. Yarovets, *PhD Thesis*, University of Lviv, Ukraine, 1978.
- [9] B. Chabot, E. Parthé, Acta Crystallogr. C 42 (1986) 945-949.
- [10] H.F. Braun, K. Yvon, R.M. Braun, *Acta Crystallogr. B* 36 (1980) 2397-2399.

Proceeding of the IX International Conference on Crystal Chemistry of Intermetallic Compounds, Lviv, September 20-24, 2005.