Er₃Si_{5-x} – a modulated derivative of the structure type AlB₂

Svitlana PUKAS¹*, Lev AKSELRUD¹, Radovan CERNY², Roman GLADYSHEVSKII¹

 ¹ Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya St. 6, 79005 Lviv, Ukraine
 ² Laboratoire de Cristallographie, Université de Genève,

Quai Ernest-Ansermet 24, CH-1211 Geneva, Switzerland

* Corresponding author. Tel.: +380-32-2394163; e-mail: s_pukas@franko.lviv.ua

Received January 21, 2008; accepted June 18, 2008; available on-line September 10, 2008

The crystal structure of the new compound Er_3Si_{5-x} (x = 0.24) obtained at 600°C was studied by X-ray singlecrystal diffraction. This orthorhombic structure can be derived from the structure type AlB₂ by considering an ordered distribution of vacancies on the small-atom sites and appeared to be modulated along one crystallographic direction: superspace group Amm2(a00), a = 0.40872(2), b = 1.13516(5), c = 0.65739(3) nm, q = 0.2223(1) a*. In contrast to the hexagonal structure type Th₃Pd₅ with empty triangular channels, in the structure of Er_3Si_{5-x} Si atoms move from one trigonal prism to a neighboring one according to the modulation wave, the direction of the modulation vector being parallel to the prism axes.

Erbium silicide / Modulated structure / Single-crystal diffraction

Er₃Si_{5-х} – модульована похідна структурного типу AlB₂

Світлана ПУКАС¹*, Лев АКСЕЛЬРУД¹, Радован ЧЕРНИ², Роман ГЛАДИШЕВСЬКИЙ¹

¹ Кафедра неорганічної хімії, Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, UA-79005 Львів, Україна

² Лабораторія кристалографії, Женевський університет, наб. Ернест-Ансерме, 24, СН-1211 Женева, Швейцарія

* Контактна особа. Тел.: +380-32-2394163; e-mail: s_pukas@franko.lviv.ua

Методом рентгеноструктурного аналізу монокристалу встановлено кристалічну структуру сполуки Er_3Si_{5-x} (x = 0.24) при 600°С. Вона є ромбічною дефектною похідною структурного типу AlB₂ із частковим впорядкуванням вакансій, яке описується неспіввимірним вектором модуляції: надпросторова група Amm2(a00), a = 0.40872(2), b = 1.13516(5), c = 0.65739(3) нм, q = 0.2223(1) а*. На відміну від гексагонального типу Th₃Pd₅ із незаповненими трикутними каналами, у структурі Er_3Si_{5-x} атом Si переходить з однієї тригональної призми в сусідню в межах хвилі модуляції, напрям вектора якої паралельний осям призм.

Вступ

У подвійних системах R—Si, де R рідкісноземельний метал, в області дисиліцидів (0.25-0.40 ат. частки R) відомо 34 сполуки [1,2]. Їхні кристалічні структури належать до шести структурних типів: AlB₂, α -ThSi₂, α -GdSi₂, V₂B₃, Th₃Pd₅ та Er₃Si₅. Тип AlB₂ (символ Пірсона hP3, просторова група P6/mmm [3]) має найбільшу кількість представників — 10 сполук, які утворюються при дефектному складі RSi2-x із Nd, Sm i Gd (x = 0.5), а також із рідкісноземельними металами ітрієвої підгрупи (Тb-Lu, х ≈ 0.3). Слід зазначити, що сполуки з Nd, Gd, Dy, Ho та Er ε диморфними, зокрема, для сполук 3 рідкісноземельними металами ітрієвої підгрупи структурний тип AlB_2 притаманний високотемпературним модифікаціям (>760, 800 і 805°С для Dy, Но та Er, відповідно). Структура низькотемпературних модифікацій цих сполук ще

N⁰	Хімічний склад, ат. %		Фарарий андад	Параметри елементарної комірки			
	Er	Si	Фазовии склад	а, нм	С, НМ	<i>V</i> , нм ³	
1	33.3	66.7	$Er_3Si_{5-x} + Si$	0.37876(4)	0.40923(7)	0.05084(1)	
2	35.0	65.0	$Er_3Si_{5-x} + Si$	0.37879(3)	0.40936(7)	0.05086(1)	
3	37.0	63.0	$Er_3Si_{5-x} + Si$	0.37875(3)	0.40931(5)	0.05085(1)	
4	39.0	61.0	Er ₃ Si _{5-x}	0.37943(4)	0.40911(7)	0.05099(1)	
5	40.0	60.0	Er ₃ Si _{5-x}	0.37881(2)	0.40894(1)	0.05081(1)	
6	41.0	59.0	$Er_3Si_{5-x} + ErSi$	0.37851(3)	0.40883(5)	0.05072(1)	

Таблиця 1 Хімічний і фазовий склади досліджених сплавів і параметри елементарної комірки сполуки Er₃Si_{5-х} (структура типу AlB₂).

не визначена. Виняток становить Er₃Si₅: при 15 К (метод порошку, нейтрони) її структура належить до власного типу ErSi_{1.67} (*оР*6, *Рттт*) [4]. Аналогічний результат було отримано при рентгенівському дослідженні монокристалу, виділеного з литого сплаву [5]. У системі Yb-Si при температурі <965°С та складі Yb₃Si₅ (YbSi_{1.67}) [6] реалізується структура типу Th₃Pd₅ (hP8, $P\overline{6}2m$ структури Обидві характеризується [7]). (частковим) впорядкованим розміщенням атомів Si та вакансій. Мета цієї роботи – встановлення кристалічної структури сполуки Er₃Si₅ (ErSi_{1.67}) при 600°С.

Методика експерименту

Нами проведено детальне дослідження системи Er-Si в області існування дефектного дисиліциду. Серію зразків було виготовлено шляхом сплавляння шихти з компактних металів високої (Er > 99.82%)Si > 99.999%) чистоти в електродуговій печі в атмосфері аргону під тиском ~50 кПа. Сплави гомогенізовано у вакуумованих кварцових ампулах відпалюванням при 600°С впродовж 720 годин із наступним гартуванням у холодній воді. Рентгенівський фазовий аналіз проведено за порошкограмами, одержаними на дифрактометрі ДРОН-2.0М (проміння Fe Ka). Індексування дифрактограм уточнення i параметрів елементарних комірок проведено з використанням програм POWDER CELL [8] i LATCON [9], а також баз даних TYPIX [10] i PAULING FILE [2]. Визначення кристалічної структури сполуки Er₃Si₅ здійснено методом монокристалу. Початкове дослідження монокристалу проведено методами Лауе та обертання (камера РКВ-86, проміння Мо Кα). Для повного встановлення кристалічної структури використано масив інтенсивностей, отриманий дифрактометрі STOE IPDS II (проміння Mo K α), а також кристалографічну програму WinCSD [11].

Результати

Фазовий склад сплавів при 600°С і параметри елементарної комірки фази Er₃Si₅ (ErSi₁₆₇), уточнені по основним відбиттям дифрактограми (які відповідають структурі типу AlB₂), представлено в таблиці 1. Два зразки (№ 4 та 5) виявилися однофазними; область гомогенності сполуки Er₃Si₅ є невеликою та дещо зміщеною в сторону меншого вмісту Si (до 60 ат. %) в порівнянні з наведеною на діаграмі стану системи Er-Si в [1,12] (61-64 ат. % Si). Тому, склад досліджуваної сполуки описується формулою Er₃Si_{5-х}. При зменшенні вмісту Si (збільшення кількості вакансій) спостерігається тенденція до зменшення параметрів елементарної комірки.

На дифрактограмах сплавів, окрім основних відбить, присутні сателіти. Це вказує, що дійсна структура сполуки Er₃Si_{5-х} є більш складною, ніж гексагональна структура типу AlB₂. Спроби уточнити структуру синтезованої сполуки в моделі Er₃Si₅ (ErSi_{1.67}, *оР*6, *Рттт*) не привели до суттєвих змін у порівнянні з моделлю AlB₂. Подальше структурне дослідження проведено на основі масиву дифракційних даних від монокристалу, виділеного з відпаленого при 600°С сплаву Er₃₉Si₆₁. Індексування інтенсивних відбить вказало на ромбічну базоцентровану комірку, об'єм якої в шість разів більший за об'єм комірки структури типу AlB₂; можливі просторові групи: C222, Стт2, Атт2 та Сттт [13]. Усі відбиття вдалося проіндексувати з використанням четвертого, неспіввимірного вектора вздовж одного з базових напрямів.

Як видно з таблиці 2, знайдена ромбічна базоцентрована комірка (центросиметрична модель III) виводиться з гексагональної комірки типу AlB₂ (I) через ортогональну базоцентровану комірку (II) за допомогою співвідношень групапідгрупа між просторовими групами [13]. Модель II*, яка відповідає типу Er_3Si_5 ($ErSi_{1.67}$, *oP6*, *Pmmm*), отримується з моделі II пониженням симетрії від базоцентрованої до примітивної, тоді

Модель	Ι	II	II*	III	III*
	1 0 0	1 0 0	1 0 0	3 0 0	0 0 1
Матриця	0 1 0	1 2 0	$0 \ 0 \ -1$	1 2 0	3 0 0
перетворення	0 0 1	0 0 1	1 2 0	0 0 1	1 2 0
Просторова група	(191) <i>P6/mmm</i>	(65) <i>Cmmm</i>	(47) <i>Pmmm</i>	(65) <i>Cmmm</i>	(38) <i>Amm</i> 2
D 1	a_{I}	$a_{\mathrm{II}} = a_{\mathrm{I}}$	$a_{\mathrm{II}^*} = a_{\mathrm{I}}$	$a_{\rm III} = 3a_{\rm I}$	$a_{\mathrm{III}^*} = c_{\mathrm{I}}$
Взаємозв'язок	$(b_{\rm I} = a_{\rm I})$	$b_{\rm II} = \sqrt{3} a_{\rm I}$	$b_{\mathrm{II}^*} = c_{\mathrm{I}}$	$b_{\rm III} = \sqrt{3} a_{\rm I}$	$b_{\mathrm{III}*} = 3a_{\mathrm{I}}$
параметрів	c_{I}	$c_{\mathrm{II}} = c_{\mathrm{I}}$	$c_{\mathrm{II}^*} = \sqrt{3} a_{\mathrm{I}}$	$c_{\mathrm{III}} = c_{\mathrm{I}}$	$c_{\rm III^*} = \sqrt{3} a_{\rm I}$
Порометри	$a_{\rm I} = 0.3785$	$a_{\rm II} = 0.3785$	$a_{\rm II^*} = 0.3785$	$a_{\rm III} = 1.1355$	$a_{\rm III^*} = 0.4088$
параметри	$b_{\rm I} = 0.3785$	$b_{\rm II} = 0.6556$	$b_{\rm II^*} = 0.4088$	$b_{\rm III} = 0.6556$	$b_{\rm III^*} = 1.1355$
компрки (нм)	$c_{\rm I} = 0.4088$	$c_{\rm II} = 0.4088$	$c_{\rm II^*} = 0.6556$	$c_{\rm III} = 0.4088$	$c_{\rm III^*} = 0.6556$
A.T.O.M.	Er 1 <i>a</i> <u>0,0,0</u>	Er 2 <i>a</i> <u>0,0,0</u>	Er(1) 1 <i>a</i> <u>0,0,0</u>	Er(1) 2a <u>0,0,0</u>	Er(1) 2a <u>0,0</u> ,0
Аюм,			Er(2) 1 <i>d</i> <u>1/2,0,1/2</u>	Er(2) 4g 1/3, <u>0,0</u>	Er(2) 4d <u>0</u> ,1/3,0
правильпа	Si 2d <u>1/3,2/3,1/2</u>	Si 4 <i>j</i> <u>0</u> ,1/3, <u>1/2</u>	Si(1) 2r <u>0,1/2</u> ,1/3	Si(1) 4 <i>j</i> <u>0</u> ,1/3, <u>1/2</u>	Si(1) 2b <u>1/2,0</u> ,1/3
тонок			Si(2) 2t <u>1/2,1/2</u> ,1/6		Si(2) 2b <u>1/2,0</u> ,2/3
roopuulatu				Si(2) 8q 1/6,1/6, <u>1/2</u>	Si(3) 4e <u>1/2</u> ,1/6,1/6
координати					Si(4) 4e <u>1/2</u> ,1/3,1/3

Таблиця 2 Співвідношення між структурою типу AlB_2 (модель I) і надструктурами Er_3Si_5 (II*) та Er_3Si_{5-x} (III*) (підкреслено фіксовані координати атомів).

Таблиця 3 Експериментальні умови та результати дослідження кристалічної структури сполуки Er₃Si_{5-x}.

Уточнений склад	Er ₃ Si _{4.76} (Er ₃₉ Si ₆₁)			
Відносна маса формульної одиниці М	635.47			
Символ Пірсона	oS18			
Надпросторова група		$Amm2(\alpha 00)$		
Параметри комірки а, b, c, нм		0.40872(2), 1.13516(5), 0.65739(3)		
q		0.2223(1) a *		
Об'єм комірки V, нм ³		0.30500(4)		
Кількість формульних одиниць Z		2		
Густина D_X , г см ⁻³		6.918(1)		
Дифрактометр		STOE IPDS II		
Проміння, довжина хвилі λ, нм		Μο Κα, 0.071073		
Температура Т, К		293(2)		
Коефіцієнт абсорбції μ , мм ⁻¹		43.17		
Розміри кристалу, мм		0.010×0.030×0.035		
Кількість відбить, використаних для в	изначення	5547		
параметрів комірки				
Метод сканування		φ -обертання		
Кількість відбить заміряних		5547		
незалежних (основн	і, сателіти)	737 (171, 566)		
is $F > 6\sigma(F)$		521 (152, 369)		
Максимальне значення кута 2θ , °		58.21		
Програма		WinCSD		
Уточнення на основі		F		
Фактори достовірності R, wR	загальний	0.0423, 0.0485		
	hkl0	0.0170, 0.0181		
	hkl1	0.1086, 0.1101		
Кількість відбить, використаних для у	521			
Кількість уточнених параметрів	52			
Вагова схема	$w = 1/(\sigma F_{\rm o}^2 + P F_{\rm o}^2)$			
Різницева електронна густина	1.90			
	-1.80			
Коефіцієнт екстинкції [15]	0.00030(1)			

Атом	ПСТ	x_0	Уo	Z_0	КЗП (р ₀)
Er(1)	2a	0	0	0,0	1
Er(2)	4d	0	0.3332(1)	0.0010(3)	1
Si(1)	2b	1/2	0	0.3954(12)	0.47(2)
Si(2)	2b	1/2	0	0.6299(13)	0.53(1)
Si(3)	4e	1/2	0.1475(3)	0.1921(4)	1
Si(4)	4e	1/2	0.3496(3)	0.3379(5)	0.88(1)

Таблиця 4 Координати атомів у базовій структурі сполуки Er₃Si_{5-x}.

Таблиця 5 Параметри модуляції у структурі сполуки Er₃Si_{5-х}.

Атом	x	у	Z	КЗП (р)	Δ, x_4
Er(1)	$x_0 + \sin(2\pi x_4) \times$	Уо	$z_0 - \cos(2\pi x_4) \times$	p_0	-
	0.0169(2)		0.0001(1)		
Er(2)	$x_0 + \sin(2\pi x_4) \times$	$y_0 + \cos(2\pi x_4) \times$	$z_0 + \cos(2\pi x_4) \times$	p_0	-
	0.0207(2)	0.0081(1)	0.0221(1)		
Si (1)	$x_0 + \sin(2\pi x_4) \times$	Уо	$z_0 - \cos(2\pi x_4) \times$	$p_0 + \cos(2\pi x_4) \times$	0.40, 0.38
	0.004(3)		0.059(2)	0.14(4)	
Si(2)	$x_0 + \sin(2\pi x_4) \times$	Уо	$z_0 + \cos(2\pi x_4) \times$	$p_0 + \cos(2\pi x_4) \times$	0.60, 0.88
	0.024(4)		0.052(2)	0.489(1)	
Si(3)	$x_0 - \sin(2\pi x_4) \times$	$y_0 - \cos(2\pi x_4) \times$	$z_0 + \cos(2\pi x_4) \times$	p_0	-
	0.004(1)	0.0040(3)	0.0050(6)		
Si(4)	$x_0 + \sin(2\pi x_4) \times$	$y_0 - \cos(2\pi x_4) \times$	$z_0 + \cos(2\pi x_4) \times$	$p_0 + \cos(2\pi x_4) \times$	0.85, 0.37
	0.016(2)	0.0210(4)	0.0393(6)	0.12(1)	

Таблиця 6 Еквівалентні та анізотропні параметри теплового коливання атомів (10^{-2} нм^2) у базовій структурі сполуки $\text{Er}_3\text{Si}_{5-x}$.

Атом	$B_{e_{\rm KB}}$	B_{11}	B ₂₂	B ₃₃	B_{12}	B_{13}	B ₂₃
Er(1)	0.61(2)	0.84(3)	0.56(3)	0.42(3)	0	0	0
Er(2)	0.43(1)	0.22(1)	0.80(1)	0.28(2)	0	0	-0.01(2)
Si(1)	0.4(2)	0.4(3)	0.3(3)	0.5(3)	0	0	0
Si(2)	0.8(2)	0.5(3)	0.8(4)	1.0(3)	0	0	0
Si(3)	0.66(8)	0.4(1)	0.8(2)	0.8(1)	0	0	-0.37(7)
Si(4)	0.46(8)	0.2(1)	0.5(1)	0.6(2)	0	0	-0.11(6)

 $B_{\text{екв.}} = 1/3 (B_{11} \mathbf{a}^{*2} a^2 + ... + 2B_{23} \mathbf{b}^* \mathbf{c}^* b c \cos \alpha)$

як модель III* є одним із нецентросиметричних варіантів моделі III. Структурне уточнення вказало саме на модель Ш* з двома незалежними положеннями атомів Er і чотирма положеннями атомів Si як базову та на надпросторову групу $Amm2(\alpha 00)$ [11,14]. Умови зйомки на дифрактометрі з детектором – пластиною зображення та результати дослідження кристалічної структури сполуки Er₃Si_{5-х} подано в таблиці 3. Для всіх положень атомів (таблиця 4) уточнювали параметри модуляції застосовуючи синусоїдальні функції (таблиця 5). Напрям вектора модуляції кристалографічним співпадає 3

напрямом [1 0 0], а його трансляція 1/q ≈ 4.5a. Три положення атомів Si виявилися частково вакантними. Для них уточнено модуляцію заповнення застосовуючи функції хвилі та так званої crenel function [16]. Остання ($x_4 \pm \Delta/2$) вказує, що положення Si(1) і Si(2) зайняті в різних областях четвертої координати (0.18-0.58 і 0.58-1.18, відповідно). Положення Si(4) заповнено на 88%; функція "кренел" вказує, що це положення є вакантним при $x_4 = 0.80-0.95$. Для параметрів теплового коливання формалізм анізотропії атомів використано (таблиця 6).

Рисунок 1 Проекції структур дефектних дисиліцидів ербію та ітербію: $ErSi_{1.67}$ і $Yb_3Si_5 - вздовж$ напряму [0 0 1], $Er_3Si_5 - [0 1 0]$, $Er_3Si_{5-x} - [1 0 0]$.

Обговорення

На рисунку 1 зображено проекцію структури сполуки Er_3Si_{5-x} (x = 0.24) вздовж напряму [1 0 0]. Частково заповнені положення Si(1) і Si(2) (47 і 53%, відповідно) не можуть бути зайняті одночасно. Як видно з таблиці 7, координаційний многогранник Er(1) – гексагональна призма складу Si₁₂, всі грані якої центровані атомами Er, аналогічний многограннику великого атома в структурі типу AlB_2 . Поліедром Er(2)£ пентагональна призма з атомів Si з 8 додатковими атомами Er. Навколо положень атомів Si атоми Er утворюють тригональні призми. У випадку Si(3) і Si(4) навпроти усіх бокових граней знаходяться атоми Si (як для атомів малого розміру в структурі типу AlB₂), тоді як у випадку Si(1) і Si(2) – лише навпроти двох.

Модуляцію структури сполуки Er₃Si_{5-х} представлено на рисунку 2 у вигляді зміни

міжатомних відстаней взловж четвертої координати. Міжатомні відстані добре узгоджуються з радіусами атомів Er і Si. При збільшенні x₄ від 0.18 до 0.58 (положення Si(1) Si(1)-Si(3) заповнено) відстань спочатку збільшується від 0.2219 до 0.2456 нм ($x_4 = 0.39$), а потім зменшується до 0.2252 нм. Аналогічно змінюється відстань Si(1)-Er(1) (від 0.3373 до 0.3592 та 0.3428 нм), тоді як Si(1)-Er(2) спочатку дещо зменшується (від 0.2787 до 0.2768 нм при x_4 = 0.27), а далі збільшується до 0.2893 нм. В областях, де положення Si(2) та Si(4) заповнені, відстані між ними знаходяться в межах 0.2140-0.2302 нм. Стосовно відстаней від Si(2) до Er(1) і Er(2), то синусоїдальні хвилі їхньої зміни знаходяться в протифазі, причому мінімальне значення $\delta_{Si(2)-Er(1)} = 0.2952$ нм приблизно дорівнює максимальному значенню $\delta_{Si(2)-Er(2)} = 0.2995$ нм при $x_4 \approx 0.84$. Обидві криві залежності відстаней Si(3)-Si(4) досягають максимуму (0.2567 і 0.2593 нм)

Атоми		δ , нм	Многогранник	A	томи	δ , нм	Многогранник
Er(1)	-4 Si(4) -4 Si(3) -2 Si(2)	0.2868 0.2928 0.3177	Si4 Si4 Si2 Si2 Si4	Si(1)	-2 Si(3) -4 Er(2)	0.2142(5) 0.2871(2) 0.3306	Er2 Er1 Er1
	-2 SI(2) -2 SI(1) -2 Er(2) -2 Er(2) -2 Er(2)	0.3306 0.3782 0.3788 0.3799	Er2 Er2 Er2 Er2 Er2 Er2 Er2 Er2 Er2 Er2		2 EI(1)	0.5500	Si3 Sil Si3 Er2 Er1 Er2
Er(2)	-2 Er(1) ^a -2 Si(1) ⁶ -2 Si(3) -2 Si(2) ⁶ -2 Si(4) -2 Si(4) -2 Si(4) -1 Er(1) -1 Er(2)	0.4087 0.2871(2) 0.2889(2) 0.2912(3) 0.3019(3) 0.3104(2) 0.3194(2) 0.3782 0.3787(1)	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	Si(2)	-2 Si(4) -4 Er(2) -2 Er(1)	0.2187(6) 0.2912(3) 0.3177	Er2 Si4 Si2 Er2 Er2 Er2 Er2
	-1 Er(1) -2 Er(2) -1 Er(1) -2 Er(2) ^a	0.3788 0.3791(2) 0.3799 0.4087		Si(3)	-1 Si(1) -1 Si(4) -1 Si(4) -2 Er(2) -2 Er(1) -2 Er(2)	0.2142(5) 0.2329(4) 0.2487(4) 0.2889(2) 0.2928 0.3194(2)	Erl Er2 Sil Sid Sid Erl Er2 Er2
^а На рисунку атоми Er, які центрують основи призми, не зображені. ^б Положення Si(1) і Si(2) виключають один одного.				Si(4)	-1 Si(2) -1 Si(3) -1 Si(3) -2 Er(1) -2 Er(2) -2 Er(2)	0.2187(6) 0.2329(4) 0.2487(4) 0.2868 0.3019(3) 0.3104(2)	Er2 Er2 Si3 Si4 Si2 Er2 Er2 Er1 Er2

Таблиця 7 Міжатомні відстані та координаційні многогранники атомів у базовій структурі сполуки Ег₃Si_{5-х}.

при x₄ = 0.39, проте мінімальні відстані

відрізняються: 0.2140 і 0.2417 нм, відповідно. В області коротких відстаней Si(3)-Si(4) з'являється дефектність положення Si(4). Відстані від Si(3) до атомів Ег реалізуються в повному діапазоні значень координати надпростору. Хвиля, яка характеризує зміну відстані Si(3)-Er(1), має найменшу амплітуду (від 0.2877 до 0.2981 нм). Для відстаней Si(3)-Er(2) є дві криві залежності відстаней від x₄; вони змінюються в одній фазі, але відрізняються значеннями: 0.2797-0.2981 і 0.3100-0.3289 нм, відповідно. Відстані Si(4)-Er(2) також описуються двома синусоїдальними кривими, однак вони знаходяться в протифазі. Мінімальні значення $\delta_{{
m Si}(4)-{
m Er}(2)}$ = 0.2885 і 0.2966 нм, а максимальні $\delta_{\mathrm{Si}(4)-\mathrm{Er}(2)} = 0.3173$ і 0.3256 нм. Меншою амплітудою характеризується хвиля залежності від x₄ відстані Si(4)-Er(1) (0.2811-0.2960 нм).

Новий структурний тип Er_3Si_{5-x} (просторова група *Amm2*) є частково впорядкованим дефектним варіантом структурного типу AlB₂ (див. рисунок 1). В той же час його можна розглядати як частково невпорядкований варіант типу Th_3Pd_5 . У структурі цього типу кожна шоста тригональна призма вакантна, тоді як у структурі Er_3Si_{5-x} атом Si переходить з положення Si(1) в Si(2) (центри сусідніх призм із спільною прямокутною гранню) в межах хвилі модуляції. На відміну від типу Th_3Pd_5 в Er_3Si_{5-x} відсутні незаповнені канали вздовж осей тригональних призм, які паралельні напряму вектора модуляції. Стосовно структурного типу $ErSi_{1.67}$ (*Pmmm*), то частково вакантними є також положення в центрах

Рисунок 2 Залежності міжатомних відстаней в структурі сполуки Er₃Si_{5-х} від координати надпростору.

сусідніх призм, однак їхня трансляція описується ромбічною елементарною коміркою.

Подяка

Робота виконана в рамках гранту Міністерства освіти і науки України № 0107U002052.

Літературні посилання

- H. Okamoto, *Desk Handbook: Phase Diagrams for Binary Alloys*, American Society for Metals, Materials Park, OH, 2000, 828 p.
- [2] P. Villars, K. Cenzual, J.L.C. Daams, F. Hulliger, H. Okamoto, K. Osaki, A. Prince, S. Iwata, *Pauling File, Inorganic Materials Database and Design System, Binaries Edition*, Crystal Impact (Distributor), Bonn, 2001.
- [3] E.J. Felten, J. Am. Chem. Soc. 78 (1956) 5977-5978.
- [4] S. Auffret, J. Pierre, B. Lambert, J.L. Soubeyroux, J.A. Chroboczek, *Physica B* 162 (1990) 271-280.
- [5] V. Ghetta, É. Houssay, A. Rouault, R. Madar, B. Lambert, *C.R. Acad. Sci.*, *Ser. II* 309 (1989) 995-1000.
- [6] R. Pöttgen, R.D. Hoffmann, D. Kussmann, Z. *Anorg. Allg. Chem.* 624 (1998) 945-951.
- [7] J.R. Thompson, *Acta Crystallogr.* 16 (1963) 320-321.
- [8] W. Kraus, G. Nolze, *PowderCell for Windows*, Federal Institute for Materials Research and Testing, Berlin, 1999.
- [9] D. Schwarzenbach, *Program LATCON: Refine Lattice Parameters*, University of Lausanne, Lausanne, 1966.
- [10] E. Parthé, L. Gelato, B. Chabot, M. Penzo, K. Cenzual, R. Gladyshevskii, *TYPIX. Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types*, Vols. 1-4, Springer-Verlag, Heidelberg, 1993, 1596 p.
- [11] L.G. Akselrud, P.Y. Zavalii, Yu.N. Grin, V.K. Pecharsky, B. Baumgartner, E. Wolfel, *Mater. Sci. Forum* 133-136 (1993) 335-340.
- [12] S.P. Luzan, V.E. Listovnichii, Yu.I. Buyanov, P.S. Martsenyuk, J. Alloys Compd. 239 (1996) 77-82.
- [13] Th. Hahn (Ed.), International Tables for Crystallography, Vol. A, Kluwer, Dordrecht, 2002, 911 p.
- [14] A.J.C. Wilson, E. Prince (Eds.), International Tables for Crystallography, Vol. C, Kluwer, Dordrecht, 1999, 992 p.
- [15] G.M. Sheldrick, SHELX-97 WinGX Version. Release 97-2, University of Göttingen, Göttingen, 1997.
- [16] V. Petřiček, A. van der Lee, M. Evain, Acta Crystallogr. A 51 (1995) 529-535.