The ternary Eu-Cu-Si system at 400°C

Bohdana BELAN¹*, Mykola MANYAKO¹, Roman GLADYSHEVSKII¹

¹ Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya St. 6, UA-79005 Lviv, Ukraine

* Corresponding author. Tel.: +8-032-2394633; e-mail: bohdana@franko.lviv.ua

Received November 25, 2008; accepted December 29, 2008; available on-line March 19, 2009

Based on X-ray diffraction and microstructure analysis the isothermal section at 400°C of the phase diagram of the system Eu-Cu-Si was built. The compound EuCu₂Si₂ (CeAl₂Ga₂ structure type) was confirmed and its homogeneity region was determined (EuCu_{2.25-1.50}Si_{1.75-2.50}). The compound EuCu_{0.80-0.20}Si_{1.20-1.80} (AlB₂ structure type) is also characterized by a variable content of copper and silicon. In addition, four new compounds with unknown structure were found in this system. The effective valence of europium was studied.

Isothermal section / Crystal structure / Effective valence

1. Introduction

The results presented in this paper are part of a systematic investigation of Eu-M-Si (where M is a transition element) systems. The peculiar properties of europium distinguish this element from the other rareearth metals. The investigation of the interaction of europium with other elements, the conditions under which compounds are formed and the crystal structures and properties of these, makes it possible to establish relations between the properties of the compounds and their electronic structure.

The binary systems bordering the ternary system Eu-Cu-Si are well established. Phase diagrams have been constructed for Eu-Cu [1] and Cu-Si [2]; five compounds have been reported in the system Eu-Si [3-6].

Three ternary compounds were previously known in the Eu-Cu-Si system: EuCu₂Si₂ [7] and EuCu_{0.5}Si_{1.5} [8] crystallizing with the structure types CeAl₂Ga₂ and AlB₂, respectively, and EuCu_{1.6}Si_{1.4} with unknown structure [7].

2. Experimental

The samples were prepared by arc melting under argon on a water-cooled copper hearth. The starting materials were the elements: europium 98.8%, copper 99.99%, and silicon 99.9999%. The alloys were annealed for 2 weeks in evacuated quartz ampoules at 400°C, and subsequently quenched into water.

Phase analysis by X-ray powder diffraction was performed for 160 samples (RKD-57.3, Cr *K* radiation; DRON-2.0, Fe $K\alpha$ radiation). The lattice parameters were refined from diffractometer data (DRON-2.0, Fe $K\alpha$ radiation; DRON-3.0, Cu $K\alpha$ radiation) and a few complete crystal structure determinations were carried out (diffractometer HZG-4a, Cu $K\alpha$ radiation; program DBWS-9807 [9]). The microstructures were studied visually using a Neophot-30 microscope.

The effective valence of europium was determined by L_{III} -absorption spectroscopy at room temperature.

3. Results and discussion

The system Eu-Cu-Si is characterized by the formation of six ternary compounds and a relatively extended solid solution based on the binary phase $EuCu_{5-x}$ (Fig. 1, Table 1).

According to the isothermal section of the phase diagram of the Eu-Cu-Si system at 400°C the binary compounds of the boundary systems Cu-Si, Eu-Si, and Eu-Cu dissolve not more than 5 at.% of the third component. The only exception is EuCu_{5-x} with CaCu₅-type structure (space group *P6/mmm*), which dissolves 8 at.% silicon along the isoconcentrate 16.7 at.% europium. In addition, it was found that the binary phase EuCu_{5-x} is characterized by a variable content of copper, ranging from 80 to 83.3 at.% (Figs. 2 and 3).

In addition to the already known europium silicides EuSi₂ (α -ThSi₂ type, space group *I*4₁/*amd*) and EuSi (Table 2), two new binary compounds with approximate compositions Eu₇Si₃ and Eu₄Si (unknown structures) were found in the system Eu-Si [3]. It should be noted that the binary compound Eu₂Si [5,6] with PbCl₂ structure type (space group *Pnma*) was not observed in this study.

No.	Compound	Structure	Space	Cell parameters, nm		
		type	group	а	b	С
1	$\sim Eu_8Cu_{77}Si_{15}$					
2	$\sim Eu_7Cu_{68}Si_{25}$					
3	EuCu _{2.25-1.50} Si _{1.75-2.50}	CeAl ₂ Ga ₂	I4/mmm	0.4047(2)-	-	0.9913(6)-
				0.4132(2)		0.9971(5)
4	EuCuSi					
5	EuCu _{0.80-0.20} Si _{1.20-1.80}	AlB ₂	P6/mmm	0.4107(1)-	-	0.4447(1)-
				0.4051(1)		0.4489(1)
6	$\sim Eu_{40}Cu_{40}Si_{20}$					

 $\label{eq:table1} \textbf{Table 1} Crystallographic data of the ternary compounds in the Eu-Cu-Si system.$

Fig. 1 Isothermal section of the phase diagram of the Eu-Cu-Si system at 400°C.

Table 2 Crystall	lographic	data of the	compound	EuSi.
------------------	-----------	-------------	----------	-------

Structure type			CrB				
Space group			Стст				
Cell parameters <i>a</i> , nm			0.46958(3)				
	<i>b</i> , nm		1.11242(5)				
	<i>c</i> , nm		0.39799(2)				
Cell volume V, nr	n ³		0.20790(2)				
Formula units per	cell Z		4	4			
Density $D_{\rm x}$, g cm ⁻³			5.754				
Texture parameter G [direction]			0.831(4) [0 1 0]				
Peak shape parameters U, V, W			0.043(8), -0.026(9), 0.019(2)				
Mixing parameter η			0.89(3)				
Asymmetry parameter $C_{\rm M}$			-0.109(14)				
Number of reflections			273				
Number of refined parameters			15				
Reliability factors $R_{\rm p}$			0.0149				
R_{wp}^{P}			0.0192				
Goodness of fit S			0.36				
Atomic parameters							
Atom	Wyckoff	x	у	Z	$B_{\rm iso},{\rm nm}^2$		
Eu	4 <i>c</i>	0	0.3600(2)	1/4	0.0076(5)		

0.0649(8)

1/4

4c

Si

0

Fig. 2 Cell parameters within the homogeneity range of the binary phase $EuCu_{5-x}$.

The previously reported compound EuCu₂Si₂ [7] with CeAl₂Ga₂-type structure was confirmed and its homogeneity region was determined (Fig. 4). The compound EuCu_{0.80-0.20}Si_{1.20-1.80} is characterized by a variable content of copper and silicon along the isoconcentrate 33.3 at.% Eu [10-12] (Fig. 5). The compound EuCu_{1.6}Si_{1.4} [7] was not observed at 400°C.

0.008(2)

Fig. 3 Cell parameters of the solid solution of Si in EuCu_{5-x}: a - 16.7 at.% Eu; b - 18 at.% Eu; c - 20 at.% Eu.

The effective valence of europium in alloys of composition EuCuSi₃, EuCu_{1.50}Si_{2.50}, and EuCu_{2.25}Si_{1.75} was determined by X-ray L_{III} -absorption spectroscopy [13,14].

The spectra of $EuCu_{2.25}Si_{1.75}$ are characterized by two maxima (Fig. 6). Taking into account information obtained by ¹⁵¹Eu Mössbauer spectroscopy on

EuCu₂Si₂ [15,16], which showed the presence of interconfiguration fluctuation in the 4*f*-configuration of europium with the frequency 10^{13} Hz, one may conclude that Eu in EuCu_{2.25}Si_{1.75} is present in a status of dynamic intermediate valence, with the effective valence 2.6. The correlation between the ratio of intensities $I(\text{Eu}^{3+})/I(\text{Eu}^{2+})$ and the effective valence of europium in EuCu_{2.25-1.50}Si_{1.75-2.50} decreases with increasing silicon content (Fig. 7).

Fig. 4 Cell parameters within the homogeneity region of $EuCu_{2.25-1.50}Si_{1.75-2.50}$.

Fig. 6 X-ray L_{III} -absorption spectra of europium in the samples: $1 - \text{EuCuSi}_3$; $2 - \text{EuCu}_{1.50}\text{Si}_{2.50}$; $3 - \text{EuCu}_{2.25}\text{Si}_{1.75}$.

Fig. 7 Effective valence (v_{eff}) of europium in samples with 20 at.% Eu.

References

- [1] G.A. Costa, E.A. Franceschi, A. Tawansi, J. Less-Common Met. 106 (1985) 175-182.
- [2] T.B. Massalski, H. Okamoto, P.R. Subramanian (Eds.), *Binary Alloys Phase Diagrams*, American Society for Metals, Metals Park, OH, 1990.
- [3] B.D. Belan, *Ph.D. Thesis*, University of Lvov, 1988.
- [4] P. Villars (Ed.), *Pearson's Handbook, Desk Edition, Crystallographic Data of Intermetallic Phases*, American Society for Metals, Metals Park, OH, 1997.
- [5] R. Mishra, R.D. Hoffmann, R. Pöttgen, H. Trill, B.D. Mosel, Z. Anorg. Allg. Chem. 628 (2002) 741-744.
- [6] F. Merlo, A. Palenzona, M. Pani, J. Alloys Compd. 348 (2003) 173-175.

- [7] O.I. Bodak, E.I. Gladyshevskii, Ya.M. Kalychak, Coll. Abstr. All-Union Conf. Cryst. Chem. Intermet. Compd., Lvov, 1971, pp. 40-41 (in Russian).
- [8] I. Mayer, I. Felner, J. Solid State Chem. 8 (1973) 355-356.
- [9] R.A. Young, A.C. Larson, C.O. Paiva-Santos, *Rietveld Analysis of X-Ray and Neutron Powder Diffraction Patterns*, School of Physics, Georgia Institute of Technology, Atlanta, GA, 1998.
- [10] T.V. Zhuk, B.D. Belan, O.I. Bodak, V.G. Synyushko, Visn. Lviv. Univ., Ser. Fiz. 21 (1987) 42-45.
- [11] B.D. Oniskovets, T.V. Zhuk, P.Yu. Zavaliy, *Coll. Abstr. XI Ukr. Conf. Inorg. Chem.*, Kiev, 1986, p. 162 (in Russian).

- [12] B. Belan, Yu. Stępień-Damm, O. Bodak, Coll. Abstr. "Lvivs'ki Khimichni Chytannya – 2003", Lviv, 2003, p. H23.
- [13] E.M. Levin, I.N. Stets', O.I. Bodak, B.D. Oniskovets, *Fiz. Tverd. Tela* 26 (1984) 2347-2350.
- [14] E.M. Levin, B.S. Kuzhel', B.D. Belan, Coll. Abstr. IV All-Union Conf. "Fizika i Khimiya Redkozemel'nykh Poluprovodnikov", Novosibirsk, 1987, p. 65.
- [15] B.C. Sales, R. Viswanathan, J. Low Temp. Phys. 23 (1976) 449-467.
- [16] I. Mayer, I. Felner, J. Phys. Chem. Solids 38 (1977) 1031-1034.