Phase equilibria in the quasi-ternary system Cu₂S-In₂S₃-CdS

V.R. KOZER¹*, O.V. PARASYUK¹

¹ Department of General and Inorganic Chemistry, Lesya Ukrainka Volyn National University, Voli Ave. 13, Lutsk, Ukraine

* Corresponding author. E-mail: kozer_v@mail.ru

Received March 16, 2008; accepted June 26, 2009; available on-line November 16, 2009

The system $Cu_2S-In_2S_3-CdS$ was studied by X-ray powder diffraction and differential thermal analysis. This system is characterized by a considerable CdS solid solution along the $CuInS_2-CdS$ section and by a complite solid solution in the $CuIn_5S_8-CdIn_2S_4$ section.

Isothermal section / Solid solution / Crystal structure

Фазові рівноваги у квазіпотрійній системі Cu₂S-In₂S₃-CdS

В.Р. КОЗЕР¹*, О.В. ПАРАСЮК¹

¹ Кафедра загальної та неорганічної хімії, Волинський національний університет імені Лесі Українки, пр. Волі 13, Луцьк, Україна

* Контактна особа. E-mail: kozer_v@mail.ru

Система Cu₂S-In₂S₃-CdS досліджувалася методами РФА та ДТА. Дана система характеризується значною протяжністю твердого розчину CdS вздовж перерізу CuInS₂-CdS та утворенням HPTP на перерізі CuIn₅S₈-CdIn₂S₄.

Ізотермічний переріз / Твердий розчин / Кристалічна структура

Вступ

В системі Cu₂S-In₂S₃ існують дві тернарні сполуки: CuInS₂, CuIn₅S₈. Для CuInS₂ відомо три поліморфні модифікації: α -CuInS₂ (<1253 К) володіє структурою халькопіриту (ПГ $I\bar{4}2d$, a = 0,5523 нм, c = 1,1329 HM [1], β -CuInS₂ (1253-1318 K) кристалізується в кубічній структурі типу сфалериту (ПГ $F\bar{4}3m$, a = 0.551нм) [1] та γ -CuInS₂ (1318-1370 К) кристалізується в структурі типу (ПГ в'юрциту $P6_3mc$, *a* = 0,39065 нм, c = 0,64289 нм) [2]. CuIn₅S₈ кристалізується в структурному типі оберненої шпінелі (ПГ Fd3m, а = 1,0685 нм) [3]. При значно нижчих температурах структура CuIn₅S₈ була порахована в ΠГ *F*43*m* [4,5]. Сполука CuInS₂ володіє конгруентним типом плавлення, а $CuIn_5S_8$ утворюється за перитектичною реакцією [1].

Система In_2S_3 -CdS розглядалася в роботі [6]. Підтверджено існування сполуки CdIn₂S₄ зі структурою нормальної шпінелі (ПГ *Fd3m*, a = 1,0854 нм) та її конгруентний характер плавлення. Автори вказують на існування ендотермічної тернарної сполуки складу Cd₅In₂S₈, яка володіє поліморфним перетворенням при 1265 К. Температурний інтервал існування Cd₅In₂S₈ складає 1205-1390 К. Її кристалічна структура не відома.

Система Cu₂S-CdS досліджувалася авторами [7]; переріз Cu₂S-CdS – евтектичного типу (V тип класифікації за Розебомом). Координати евтектичної точки становлять 55 мол.% CdS і 1284 К. Проміжних тернарних сполук не виявлено. Розчинність в Cu₂S при низьких температурах є незначною (7 мол.% CdS при 800 K), та збільшується до 50 мол.% CdS при евтектичній температурі (1284 K). Твердий розчин на основі CdS практично відсутній і складає не більше 2,7 мол.% при 1284 К.

Ранні дослідження системи CuInS2-CdS були проведені авторами [8], де було показано що на даному перерізі існує фаза складу CuCd₂InS₄ із структурою типу в'юрциту. Пізніше автори [9] показали, що фаза складу CuCd₂InS₄ насправді є частиною твердого розчину на основі CdS (ПГ Р63mc). Одна з останніх робіт, присвячена дослідженню даного перерізу, була здійснена авторами [10]. В ній встановлено існування необмеженого ряду твердих розчинів між ВТ-CuInS₂ зі структурою в'юрциту та CdS, який є ізоструктурним їй вище температури фазового переходу сфалерит-в'юрцит CuInS₂ (1315 К). ВТ-CuInS₂ зі структурою типу сфалериту (ПГ $F\bar{4}3m$) стабілізується на перерізі CuInS2-CdS та має незначну розчинність до 7 мол.% (37-44 мол.% CdS) при 870 К. При 870 К протяжність твердого розчину на основі CdS становить 56-100 мол.% CdS. Протяжність твердих розчинів на основі НТ-CuInS₂ та CdS не сильно розбігаються із значеннями роботи [9].

Методика експерименту

Фазові рівноваги в системі Cu₂S-In₂S₃-CdS досліджувалися при температурі відпалу 873 К. Компонування шихти проводили із високочистих металів та сірки. Синтез проводили однотемпературним методом у вакуумованих кварцових контейнерах в печі шахтного типу. Максимальна температура нагріву печі становила 1473 К, витримка 5 год. Відпал здійснювали при 873 К впродовж 250 год з подальшим гартуванням у холодній воді. Рентгенодифракційні масиви інтенсивностей та кутів відбить одержували на приладі ДРОН 4-13 в режимі покрокового сканування ($10 \le 2\theta \le 100^\circ$) із використанням Си Ка випромінювання (Ni-фільтр). Уточнення кристалічної структури фаз методом Рітвельда на основі одержаних дифрактограм здійснювали із застосуванням комплексу програм WinCSD [11], фазовий аналіз - за допомогою програми Powder Cell 2.3 [12]. Термічний аналіз проводився на дериватографі системи Paulik-Paulik-Erdey, контроль температури здійснювали платинаплатинородієвою термопарою (Pt/PtRh).

Результати та обговорення

Переріз 1/3CuIn₅S₈-1/2CdIn₂S₄

Дослідження перерізу 1/3CuIn₅S₈-1/2CdIn₂S₄ здійснювали на 11 зразках з кроком 10 мол.%. Переріз відноситься до системи з необмеженою розчинністю в твердому стані (Рис. 1). Внаслідок незначної різниці температур плавлення вихідних сполук (~50 K) лінії ліквідуса та солідуса характеризуються практично горизонтальним положенням відносно осі концентрацій.

Рис. 1 Діаграма стану системи 1/3CuIn₅S₈-1/2CdIn₂S₄: 1 – L, 2 – L+ α , 3 – L+ β , 4 – L+ α + β , 5 – γ .

При температурі відпалу всі сплави є однофазними і кристалізуються в кубічній структурі типу шпінелі (ПГ $Fd\overline{3}m$). Зміна параметру елементарної комірки дослідженого γ -твердого розчину перерізу носить лінійний характер (Рис. 2). Із збільшенням вмісту CdIn₂S₄ спостерігається лінійне збільшення параметру *a* та об'єму *V* комірки.

За характером розміщення атомів у кристалічній гратці структуру сполуки $CuIn_5S_8$ можна віднести до типу частково оберненої шпінелі (по відношенню до тетраедричних позицій), де атоми тривалентного індію займають тетраедричні та октаедричні положення, атоми одновалентного купруму – лише тетраедричні положення. Структура $CdIn_2S_4$ відноситься до типу нормальної (прямої) шпінелі. Утворення твердого розчину $Cu_{(1-x)}In_{(5-x)}Cd_{2x}S_8$ відбувається за рахунок утворення складних статистичних сумішей атомів

Рис. 2 Зміна параметра елементарної комірки для γ -твердого розчину переріза 1/3CuIn₅S₈-1/2CdIn₂S₄ при 873 К.

М1 (Cu+In+Cd) в тетраедричному положенні (8*a*), Іп займає кристалографічну позицію 16*d*, а халькоген – 32*e*. Заповнення кристалографічних позицій в уточненій моделі є повним. Сульфур міститься в тетраедричному оточенні [SM1In₃], координаційна сфера для статистичної суміші атомів M1 – тетраедр [M1S₄], для In – октаедр [InS₆] (Рис. 3).

Зміна параметру елементарної комірки у-твердого розчину визначається головним чином зміною довжини зв'язку в тетраедричному положенні 8а (Рис. 4). При збільшенні вмісту CdIn₂S₄ довжина зв'язку статистична суміш М1халькоген збільшується, як і значення параметру елементарної комірки. Довжина зв'язку In-S в октаедричному положенні залишається практично незмінною, і його вплив є незначним. Зміну довжини зв'язку M1-S можна пояснити тим, що усереднений радіус статистичної суміші атомів змінюється в залежності від її складу, оскільки змінюється співвідношення атомів різного сорту Cu, In та Cd, тоді як радіус атома в октаедричному змінюється, положенні не оскільки кристалографічна позиція 16 завжди заповнена атомами індію з постійним вмістом незалежно від складу твердого розчину. Тетраедричні радіуси для $Cu^+ - 0,060$ нм, $In^{3+} - 0,062$ нм, $Cd^{2+} - 0,078$ нм [13]. При збільшені вмісту CdIn₂S₄ вміст атомів Cd зростає, а вміст Си та Іп пропорційно зменшується.

Рис. 3 Розміщення S-центрованих та M1центрованих тетраедрів, Іп-центрованих октаедрів та розташування атомів у *у*-твердому розчині.

Рис. 4 Зміна довжини зв'язку M1-S та In-S у структурі γ -твердого розчину Cu_(1-x)In_(5-x)Cd_{2x}S_{8.}

Враховуючи, що тетраедричний радіус Cd²⁺ найбільший, зростає усереднене значення радіусу статистичної суміші M1 (Cu, In, Cd), а отже, і довжина зв'язку M1-S та параметр елементарної комірки (Табл. 1).

Координати атомів, параметри елементарної комірки та довжини зв'язків для твердого розчину $Cu_{(1-x)}In_{(5-x)}Cd_{2x}S_8$ подані в Табл. 1. Експериментальна, розрахована та різницева дифрактограми зразків перерізу 1/3CuIn₅S₈-1/2CdIn₂S₄ подані на Рис. 5.

Ізотермічний переріз квазіпотрійної системи Cu₂S-In₂S₃-CdS при 873 К

Ізотермічний переріз квазіпотрійної системи Cu_2S -In₂S₃-CdS є результатом відносно простої взаємодії фаз, що утворюють дану систему (Рис. 6).

Ізоструктурність CuIn₅S₈, CdIn₂S₄ та In₂S₃ (ПГ *Fd*3*m*) зумовило утворення твердого розчину зі структурою типу шпінелі в системі CuIn₅S₈-CdIn₂S₄-In₂S₃, і цю підсистему можна розглядати як однофазну область. При переході від сплавів перерізу CuIn₅S₈-CdIn₂S₄ до In₂S₃ співвідношення катіонів до аніонів буде змінюватися від 3:4 до 2:3, тобто кількість тетраедричних та октаедричних пустот буде збільшуватися.

Рис. 5 Експериментальна, розрахована та різницева дифрактограма зразків перерізу 1/3CuIn₅S₈-1/2CdIn₂S₄.

		$ \begin{array}{c} 8a \\ (\frac{1}{2} \frac{1}{2} \frac{1}{2}) \end{array} $			16d		32 <i>e</i>			
мол.%	Склад твердого				$(\frac{5}{8}, \frac{5}{8}, \frac{5}{8})$	$ \begin{array}{c} 5/_8 & 5/_8 \\ = 6 \\ K \\ K \\ = 4 \end{array} $		$\delta_{ m M1-S}$,	$\delta_{\text{In-S}}$,	а,
$CdIn_2S_4$	розчину	КЧ = 4		КЧ = 6	HM			HM	HM	
		Cu	In	Cd	In	S	x			
0	$Cu_4In_{20}S_{32}$	4	4	-	16	32	0,7454	0,2398	0,2621	1,0698
10	$Cu_{3,7}In_{19,7}Cd_{0,6}S_{32}$	3,7	3,7	0,6	16	32	0,7444	0,2427	0,2615	1,0705
20	$Cu_{3,4}In_{19,4}Cd_{1,3}S_{32}$	3,4	3,4	1,3	16	32	0,7440	0,2445	0,2615	1,0723
30	$Cu_{3,0}In_{19,0}Cd_{2,0}S_{32}$	3,0	3,0	2,0	16	32	0,7436	0,2443	0,2610	1,0733
40	Cu _{2,7} In _{18,7} Cd _{2,7} S ₃₂	2,7	2,7	2,7	16	32	0,7434	0,2461	0,2620	1,0751
50	$Cu_{2,3}In_{18,3}Cd_{3,4}S_{32}$	2,3	2,3	3,4	16	32	0,7431	0,2460	0,2619	1,0765
60	$Cu_{1,9}In_{17,9}Cd_{4,2}S_{32}$	1,9	1,9	4,2	16	32	0,7428	0,2468	0,2621	1,0786
70	Cu _{1,4} In _{17,4} Cd _{5,1} S ₃₂	1.4	1.4	5.1	16	32	0,7418	0,2498	0,2616	1,0796
80	$Cu_1In_{17}Cd_6S_{32}$	1,0	1,0	6,0	16	32	0,7414	0,2503	0,2616	1,0814
90	$Cu_{0,5}In_{16,5}Cd_7S_{32}$	0.5	0.5	7.0	16	32	0,7412	0,2512	0,2620	1,0829
100	$Cd_{8}In_{16}S_{32}$	-	-	8,0	16	32	0,7405	0,2529	0,2617	1,0854

Таблиця 1 Кристалографічні параметри фаз твердих розчинів $Cu_{(1-x)}In_{(5-x)}Cd_{2x}S_8$ зі структурою шпінелі (ПГ $Fd\bar{3}m$).

Таблиця 2 Координати атомів, ізотропні параметри теплового коливання атомів і параметри елементарної комірки для складу $Cu_3In_3Cd_2S_8$ твердого розчину зі структурою сфалериту (ПГ $F\bar{4}3m$).

Атом	ПСТ	x	у	Z.	Заповнення	$B_{i30} \times 10^2$, HM ²	Параметри комірки, нм/нм ³	R _i	<i>R</i> _p
M1	4 <i>a</i>	0	0	0 0,375 Cu 0,375 In 0,250 Cd		0,56(5)	a = 0,56194(4) V = 0,17744(4)	3,21	7,04
S	4 <i>c</i>	1⁄4	1⁄4	1⁄4	1	0,87(5)			
M1	-4S	0,2433(1) нм		1					
S	-3M1	0,2433(1) нм		1					

Рис. 6 Ізотермічний переріз квазіпотрійної системи $Cu_2S-In_2S_3$ -CdS при 870 К.

Підсистема $Cu_2S-CuIn_5S_8-CdIn_2S_4-CdS$ характеризується стабілізацією BT-CuInS₂ зі структурою типу сфалериту ($F\bar{4}3m$) на перерізі CuInS₂-CdS і тому взаємодія фаз в даній системі

буде визначена присутністю BT-CuInS₂. розрахована та Експериментальна, різницева Cu₃In₃Cd₂S₈ дифрактограма сплаву складу зображена на Рис. 7. Параметри елементарної комірки та довжини зв'язків для складу Cu₃In₃Cd₂S₈ твердого розчину подані в Табл. 2. ВТ-CuInS₂ утворює рівноваги з Cu₂S, CdS, CuInS₂ та з одним із сплавів НРТР, що утворюється на перерізі CuIn₅S₈-CdIn₂S₄. CdS кристалізується в структурному типі в'юрциту (ПГ Р63mc). Твердий розчин на основі CdS володіє розчинністю, яка складає 40-44 мол.% вздовж перерізу CuInS₂-CdS, що добре узгоджується 3 попередніми результатами роботи [10].

Досліджувана нами система є подібною до раніше вивченої системи Ag₂S-CdS-In₂S₃ при 870К [14]. Переріз $AgIn_5S_8$ -CdIn₂S₄ відноситься до I типу за класифікацією Розебома з необмеженою розчинністю в рідкому та твердому стані. Система AgIn₅S₈-In₂S₃-CdIn₂S₄ при даній температурі ϵ однофазною, сполуки оскільки vci три кристалізуються € ізоструктурними та в структурному типі шпінелі (ΠΓ $Fd\overline{3}m$). Теоретично можливим залишається також утворення взаємної розчинності усіх трьох сполук

Рис. 7 Експериментальна, розрахована та різницева дифрактограма сплаву складу $Cu_3In_3Cd_2S_8$.

у системах Cu(Ag)In₅S₈-In₂S₃-Hg(Fe)In₂S₄, оскільки $HgIn_2S_4$ та FeIn₂S₄ володіють ПГ *Fd*3*m*. В роботі [15] досліджувався переріз FeS-In₂S₃ і встановлено утворення НРТР між FeIn₂S₄ та In₂S₃ в певному температурному інтервалі. Теоретично можливим ϵ утворення HPTP у системах Cu(Ag)In₅S₈-In₂S₃-ZnIn₂S₄, оскільки для ZnIn₂S₄ відома ПГ $Fd\bar{3}m$, однак в більшості випадків твердий розчин на основі ZnIn₂S₄ вдається отримати у вигляді суміші політипів. В селенідних системах Cu(Ag)₂Seподібної $Cd(Hg)Se-In_2Se_3$ взаємодії між $Cu(Ag)In_5S_8-In_2S_3-Cd(Hg)In_2S_4$ не спостерігається, однак в даній області знайдені тетрарні сполуки складу Cu_{0,6}Cd_{0,7}In₆Se₁₀, Ag_{0,4}Cd_{0,4}In_{6,3}Se₁₀ та Cu_{1,4}HgIn_{16,6}Se_{26,6} шаруватою 3 структурою [16-18].

Перерізи, подібні до CuInS₂-CdS, досліджувалися в багатьох роботах. Переріз AgInS₂-CdS досліджувалися в роботі [19], протяжність твердого розчину на основі бінарного халькогену CdS складає 40 мол.%. В іншій системі, CuInSe₂-CdSe [20], подібно системі CuInS₂-CdS, спостерігається стабілізація ВТ-CuInSe₂ на даному перерізі. В галієвих системах утворюються тетрарні сполуки складу CuCd₂GaS₄ [19], AgCd₂GaS₄ [21], AgCd₂GaSe₄ [22].

Літературні посилання

- В.Б. Лазарев, З.З. Киш, Е.Ю. Переш,
 Е.Е. Семрад, Сложные халькогениды в системах А^{II}-В^{III}-С^{VI}, В.Б. Лазарев (ред.), М., Металлургия, 1993, 140 с.
- [2] Y. Qi, Q. Liu, K. Tang, J. Phys. Chem. 113(10) (2009) 3939-3944.
- [3] S. Kitamura, S. Endo, T. Irie, J. Phys. Chem. Solids 46 (1985) 881-885.
- [4] L. Gastaldi. Acta Crystallogr. B 36 (1980) 2751-2753.

- [5] P. Kistaiah, K. Satyanarayana Murthy, J. Mater. Sci. Lett. 1 (1982) 279-281.
- [6] В.Р. Козер, І.Д. Олексеюк, О.В. Парасюк, Наук. Вісн. Волин. Нац. Унів. 16 (2008) 10-15.
- [7] І.Д. Олексеюк, О.В. Парасюк, Л.В. Піскач. *Квазіпотрійні халькогенідні системи*, Луцьк, Вежа, 1999, 164 с.
- [8] E. Parthé, K. Yvon, R.H. Deitch, Acta Crystallogr. B 25 (1969) 1164-1174.
- [9] M. Robbins, V.G. Lambrecht. J. Solid State Chem. 6 (1973) 402-405.
- [10] I.D. Olekseyuk, H.Ye. Davidyuk, O.V. Parasyuk, S.V. Voronyuk, V.O. Halka, V.A. Oksyuta, J. Alloys Compd. 309(1-2) (2000) 39-44.
- [11] L. Akselrud, P. Zavalii, Yu. Grin, V. Pecharsky, B. Baumgartner, E. Wolfel, *Mater. Sci. Forum* 133-136 (1993) 335-340.
- [12] W. Kraus, G. Nolze, *Powder Cell for Windows*, Berlin, 1999.
- [13] В.С. Усуров, Теоретичская кристалохимия, М., МГУ, 1987, 275 с.
- [14] V.R. Kozer, A. Fedorchuk, I.D. Olekseyuk, O.V. Parasyuk, J. Alloys Compd. 480(2) (2009) 360-364.
- [15] V. Raghavan. J. Phase Equilib. 19(3) (1998) 270.
- [16] I.A. Ivashchenko, L.D. Gulay, O.F. Zmiy, I.D. Olekseyuk, J. Alloys Compd 394 (2005) 186-193.
- [17] I.A. Ivashchenko, O.F. Zmiy, I.D. Olekseyuk, *Chem. Met. Alloys.* 1(3-4) (2008) 274-282.
- [18] V.O. Halka, I.D Olekseyuk., O.V Parasyuk, J. Alloys Compd. 302 (2000) 173-176.
- [19] В.О. Галка, Фазові рівноваги в квазіпотрійних системах $A_{2}^{I}X-B^{II}X-C^{III}_{2}X_{3}$ (A^{I} – Cu, Ag; B^{II} – Zn, Cd, Hg; C^{III} – Ga, In; X – S, Se, Te), Автореф. дис. канд. хім. наук, Львів, 2001, 20 с.

- [20] I.D. Olekseyuk, O.V. Parasyuk, O.A. Dzham, L.V. Piskach, J. Solid State Chem. 179(1) (2006) 315-322.
- [21] S.I. Chykhrij, O.V. Parasyuk, V.O. Halka, *J. Alloys Compd.* 312 (2000) 189-195.
- [22] I.D. Olekseyuk, L.D. Gulay, O.V. Parasyuk, O.A. Husak, E.M Kadykalo, J. Alloys Compd. 343 (2002) 125-131.