Crystal structure of the Tl₄GeSe₄ ternary compound

O.S. GLUKH¹, M.Yu. SABOV¹, I.E. BARCHIJ¹, V.V. PAVLYUK^{2,3}*, B. MARCINIAK³

¹ Uzhgorod National University, Department of Inorganic Chemistry, Pidgirna St. 46, 88000 Uzhgorod, Ukraine ² Ivan Franko National University of Lviv, Department of Inorganic Chemistry,

Kyryla i Mefodia St. 6, 79005 Lviv, Ukraine

³ Częstochowa Jan Długosz University, Institute of Chemistry and Environmental Protection,

Al. Armii Krajowej 13/15, 42200 Częstochowa, Poland

* Corresponding author. E-mail: pavlyuk@franko.lviv.ua

Received December 3, 2008; accepted June 25, 2009; available on-line November 16, 2009

The crystal structure of the Tl₄GeSe₄ compound was determined by X-ray single crystal diffraction. The title compound crystallizes with the Tl₄SiSe₄ structure type (space group C2/c). The Tl⁺ cations are coordinated by four separate [GeSe₄]⁴ anions, whereas the [GeSe₄]⁴ anion is surrounded by nine Tl⁺ cations. Strengthening of the cation-anion interactions was observed with respect to the Si-compound.

Intermetallics / Crystal structure / X-ray diffraction / Thallium / Germanium / Selenium

1. Introduction

Ternary compounds Tl₄XY₄ are known in the Tl-X-Y systems where X = Si, Ge, Sn and Y = S, Se [1-9]. The crystal structures have been investigated for all of these compounds, except for Tl₄GeSe₄. The structures are monoclinic and contain isolated $[XY_4]^4$ tetrahedra. Tl_4SiS_4 crystallizes in space group Cc, with a = 12.518(3), b = 11.241(2), c = 7.567(2) Å, and $\beta = 112.80(2)^{\circ}$, Z = 4. The compound is isostructural with Tl_4GeS_4 and contains $[SiS_4]^{4-}$ anions held together by Tl⁺ cations in irregular 6-fold coordination. Tl₄SiSe₄ crystallizes in space group C2/c, with $a = 11.664(9), \quad b = 7.277(4),$ c =24.903(12) Å, and $\beta = 99.93(5)^{\circ}$, Z = 8 [6]. According to Kulieva and Babanly [3,5], Tl₄GeSe₄ exists and melts congruently at 661 K.

2. Experimental details

2.1. Synthesis

Tl₄GeSe₄ was synthesised from binary phases (Tl₂Se and GeSe₂) in evacuated quartz ampoules at 1043 K, and annealed at 703 K for 96 hours. Thallium(I) selenide and germanium diselenide were prepared from appropriate amounts of high-purity (Tl 99.997 wt.%, Ge 99.9998 wt.%, Se 99.9998 wt.%) elemental solids by encapsulating them under vacuum in quartz ampoules and melting in a flame. Tl₂Se obtained this way was annealed at 703 for 24 hours. GeSe₂ was annealed for 24 hours at 1043 K, then the ampoule was turned and again annealed. This procedure was repeated 3-4 times. A Tl₄GeSe₄ single crystal was obtained using the Bridgman technique.

2.2. X-ray diffraction

Single-crystal X-ray diffraction data for Tl₄GeSe₄ were collected at room temperature on a four-circle diffractometer Xcalibur Oxford Diffraction equipped with a CCD detector (graphite monochromatized Mo K α radiation). Scans were taken in the ω mode. The crystal structure was successfully solved by direct methods and refined using programs from the SHELX-97 package [10,11].

2.3. Chemical analysis

The weighted (0.1-0.5 g) crystal was dissolved in a 50 ml mixture of concentrated HCl and 30% H₂O₂. Germanium was extracted by CCl₄ and then reextracted by water from the extract. A drop of phenolphthalein was added and then NaOH was added until the solution became pink. The alkali was neutralized by 2-3 drops of 1 N HCl, and 2.5 ml 1 N HCl was added. The solution was diluted to a volume of 50 ml, 25 ml EDTA was added and the solution was heated at fuming temperature for 15 minutes. The amount of EDTA was titrated by a ZrOCl₂ solution using xylenol orange as indicator. Selenium was reduced to the elemental state in a stream of SO₂ and weighed after drying. Thallium was oxidized by KIO₃ in acid solution and the equivalent point was determined by potentiometric measurements. A platinum electrode was used as indicator electrode and

O.S. Glukh et al., Crystal structure of the Tl₄GeSe₄ ternary compound

Table 1	Results	of the	chemical	analysis	(mass%).
---------	---------	--------	----------	----------	----------

Compound	Calculated			Observed		
Tl ₄ GeSe ₄	Tl	Ge	Se	Tl	Ge	Se
	67.8	6.0	26.2	67.7(1)	5.9(1)	26.4(1)

Table 2 Crystallographic data for Tl₄GeSe₄ and experimental details of the structure determination.

Empirical formula	Tl_4GeSe_4
Structure type	Tl_4SiSe_4
Formula weight (g/mol)	1205.91
Space group	<i>C</i> 2/ <i>c</i> (15)
Pearson symbol	mS72
Crystal dimensions (mm ³)	0.11×0.09×0.02
Unit cell dimensions (Å, deg.)	a = 11.6700(2)
	b = 7.3170(1)
	c = 25.6030(10)
	$\beta = 106.54(1)$
Unit cell volume ($Å^3$)	2095.76(14)
Number of formula units, Z	8
Calculated density, D_x (g/cm ³)	7.644
Absorption coefficient, μ (mm ⁻¹)	77.955
Scan mode	ω
Theta range for data collection (deg.)	3.30 ÷ 26.37
<i>F</i> (000)	2032
Range in <i>h k l</i>	$-13 \le h \le 13, -8 \le k \le 8, -18 \le l \le 32$
Total number of reflections	5606
Independent reflections	2891 ($R_{\rm int} = 0.0507$)
Reflections with $I > 2\sigma(I)$	2151 ($R_{\text{sigma}} = 0.0214$)
Weighting scheme	$1/[\sigma(F_0)^2 + (0.0386 \times P)^2 + 31.3272 \times P]$
Data/parameters	2151/84
Goodness-of-fit on F^2	0.9260
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0147$
	$wR_2 = 0.0551$
Final <i>R</i> indices [all data]	$R_1 = 0.04172$
	$wR_2 = 0.0789$
Largest electron density peak and hole $(e/Å^3)$	0.573 and -0.161


a standard calomel electrode as reference electrode. The results of the chemical analysis are given in Table 1.

3. Results and discussion

The analysis of the systematic absences and the statistical test of the distribution of E-values [12] suggest that the structure of Tl_4GeSe_4 is centrosymmetric. Structure solution and refinement were also performed in the non-centrosymmetric space group *Cc*. The results clearly indicate that Tl_4GeSe_4 crystallizes in the centrosymmetric space group *C2/c*. Table 2 contains crystallographic data and details of the data collection and structure refinement. Atomic parameters and anisotropic displacement parameters are listed in Table 3. A projection of the

structure of Tl₄GeSe₄ onto the *xz* plane is shown in Fig. 1a, emphasizing the packing of [GeSe₄] tetrahedra and the shortest distances between Tl⁺ cations. Each Tl⁺ cation in the structure is coordinated by four separate [GeSe₄]⁴⁻ anions (Fig. 1b). They adopt slightly different forms of anion coordination, which may, however, all be described as strongly distorted octahedra. The [GeSe₄]⁴⁻ anions are surrounded by nine Tl⁺ cations in the shape of an irregular coordination polyhedron (Fig. 1c).

A list of interatomic distances is reported in Table 4. The TI-TI, TI-Se and Ge-Se distances do not show considerable deviation from the sums of radii of the components. When we compare the Tl_4GeSe_4 compound with the Tl_4SiSe_4 prototype we notice a relative shortening of the TI-Se distances (2.8654 Å for Tl_4GeSe_4 but 3.000 Å for Tl_4SiSe_4), which indicates strengthening of the cation-anion interaction.

Fig. 1 Crystal structure of Tl_4GeSe_4 projected on the *xz* plane. Packing of [GeSe₄] tetrahedra and Tl^+ split nets (a), surrounding of the Tl^+ ions by [GeSe₄] tetrahedra (b), and surrounding of the [GeSe₄] tetrahedra by Tl^+ cations (c).

Atom	Wyckoff	x/a	y/b z/c		/c	U_{eq}	
T11	8 <i>f</i>	0.19374(2)	0.53903(4) 0.00248(1)) 0.0)4637(9)	
T12	8 <i>f</i>	0.38974(3)	0.27749(5)	0.17946(1)) 0.0)591(1)	
T13	8f	0.31210(3)	0.37192(4)	0.33578(1)) 0.0)538(1)	
Tl4	4a	0	0	0	0.0	0813(2)	
T15	4e	0	0.16948(5)	1/4	0.0)496(1)	
Se1	8 <i>f</i>	0.19790(5)	0.21966(9)	0.08228(3)) 0.0	0.0402(1)	
Se2	8f	0.51317(5)	0.15659(7)	0.07569(2)) 0.0	0310(1)	
Se3	8 <i>f</i>	0.10385(5)	0.19769(10)	0.38092(3)) 0.0	0423(2)	
Se4	8f	0.15477(5)	0.45964(9)	0.21225(2)) 0.0)379(1)	
Ge	8f	0.06410(7)	0.38029(12)	0.12404(3)) 0.0)526(2)	
Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}	
Tl1	0.03733(15)	0.04239(15)	0.05897(17)	-0.0073(1)	0.01304(11)	0.00104(11)	
T12	0.04252(16)	0.0594(2)	0.0716(2)	0.00087(13)	0.01016(14)	-0.00916(14)	
T13	0.05127(17)	0.05009(17)	0.05178(17)	0.01150(12)	0.00125(12)	0.00351(12)	
T14	0.0460(2)	0.0443(2)	0.1232(5)	-0.0231(2)	-0.0251(3)	0.0263(3)	
T15	0.0651(2)	0.03818(19)	0.04411(19)	0	0.01301(17)	0	
Se1	0.0356(3)	0.0404(3)	0.0417(3)	0.0128(3)	0.0059(2)	-0.0046(3)	
Se2	0.0368(3)	0.0136(2)	0.0458(3)	0.01685(19)	0.0166(2)	0.00818(19)	
Se3	0.0219(3)	0.0493(4)	0.0539(4)	0.0227(2)	0.0075(2)	-0.0009(3)	
Se4	0.0331(3)	0.0404(3)	0.0297(3)	-0.0016(2)	-0.0084(2)	0.0006(2)	
Ge	0.0402(4)	0.0526(5)	0.0592(5)	0.0021(3)	0.0045(3)	0.0165(4)	

Table 3 Atomic coordinates and displacement parameters (\AA^2) for Tl₄GeSe₄.

 U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor. The anisotropic displacement factor exponent takes the form $-2\pi^2[(ha^*)^2U_{11} + ... + 2klb^*c^*U_{23}]$.

T11	Se2	3.0222(6)	Se1	Ge	2.4317(12)
	Se1	3.0953(8)		T12	2.8654(7)
	Se2	3.3079(7)		T11	3.0953(8)
	T11	3.3715(4)		T14	3.0959(6)
	Se1	3.3844(8)		T13	3.3209(8)
	Se3	3.4386(8)		T11	3.3844(8)
	Se3	3.5552(8)			
	T14	3.6040(3)			
T12	Se1	2.8654(7)	Se2	Ge	2.3567(10)
	Se4	3.3631(7)		T11	3.0222(6)
	T15	3.4381(5)		T13	3.0243(6)
	Se3	3.4518(8)		T14	3.1501(5)
	Se2	3.4779(7)		T11	3.3079(7)
	T13	3.6756(5)		T12	3.4779(7)
T13	Se2	3.0243(6)	Se3	Ge	2.3454(11)
	Se3	3.2352(8)		T15	3.2302(8)
	Se4	3.2372(6)		T13	3.2352(8)
	Se1	3.3209(8)		T11	3.4386(8)
	Se4	3.3215(7)		T12	3.4518(8)
	T12	3.6756(5)		T11	3.5552(8)
T14	Se1	3.0959(6)	Se4	Ge	2.2796(9)
	Se1	3.0959(6)		T15	3.1141(7)
	Se2	3.1501(5)		T13	3.2372(6)
	Se2	3.1501(5)		T13	3.3215(7)
	T11	3.6040(3)		T12	3.3631(7)
	T11	3.6040(3)			
T15	Se4	3.1141(7)	Ge	Se4	2.2796(9)
	Se4	3.1141(7)		Se3	2.3454(11)
	Se3	3.2302(8)		Se2	2.3567(10)
	Se3	3.2302(8)		Se1	2.4317(12)
	T12	3.4381(5)			
	T12	3.4381(5)			

4. Conclusions

The Tl_4GeSe_4 compound crystallizes in space group C2/c (Tl_4SiSe_4 structure type). The structure consists of separate [GeSe_4] tetrahedra, which occupy voids between Tl^+ split nets. Strengthening of the cationanion interactions was observed with respect to closely related compounds.

References

- A.A. Gotuk, M.B. Babanly, A.A. Kuliev, *Izv. Akad. Nauk SSSR, Neorg. Mater.* 15(3) (1979) 530-531.
- [2] V.B. Lazarev, E.Yu. Peresh, V.I. Starosta, Zh. Neorg. Khim. 28(8) (1983) 2097-2099.
- [3] N.A. Kulieva, M.B. Babanly, *Izv. Akad. Nauk SSSR, Neorg. Mater.* 17(3) (1981) 421-423.
- [4] P. Houenou, R. Eholié, C. R. Seances Acad. Sci., Ser. C 16 (1976) 731-733.

- [5] N.A. Kulieva, M.B. Babanly, Zh. Neorg. Khim. 28(6) (1983) 1557-1560.
- [6] G. Eulenberger, *Acta Crystallogr. C* 42 (1986) 528-534.
- [7] G. Eulenberger, Z. Kristallogr. 145 (1977) 427-436.
- [8] K.O. Klepp, Z. Naturforsch. B 39 (1984) 705-712.
- [9] G. Akinocho, P. Houenou, S. Oyetola, R. Eholié, J.C. Jumas, J. Olivier-Fourcade, M. Maurin, J. Solid State Chem. 93 (1991) 336-340.
- [10] G.M. Sheldrick, *SHELXS, Program for the Solution of Crystal Structures*, University of Göttingen, Germany, 1997.
- [11] G.M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, University of Göttingen, Germany, 1997.
- [12] L.J. Farrugia, J. Appl. Crystallogr. 32 (1999) 837-838.