Phase equilibria in the quasiternary system Cu₂Se–SnSe₂–Sb₂Se₃

T.A. OSTAPYUK¹*, I.M. YERMIYCHUK¹, O.F. ZMIY¹, I.D. OLEKSEYUK¹

¹ Department of General and Inorganic Chemistry, Lesya Ukrainka Volyn National University, Voli Ave 13, 43009 Lutsk, Ukraine

* Corresponding author. E-mail: taras-ostapjuk@rambler.ru

Received July 6, 2009; accepted December 23, 2009; available on-line April 27, 2010

The isothermal section at 620 K, the liquidus projection and six polythermal sections of the phase diagram of the system $Cu_2Se-SnSe_2-Sb_2Se_3$ were constructed based on X-ray diffraction, microstructure analysis and differential thermal analysis. The coordinates of the invariable points were determined. No quaternary or new ternary phases were observed in the system. The solid solutions based on the compound Cu_2SnSe_3 did not exceed 2%.

Isothermal section / Polythermal section / Selenides

Фазові рівноваги у квазіпотрійній системі Cu₂Se-SnSe₂-Sb₂Se₃

Т.А. ОСТАП'ЮК¹*, І.М. ЄРМІЙЧУК¹, О.Ф. ЗМІЙ¹, І.Д. ОЛЕКСЕЮК¹

¹ Кафедра загальної та неорганічної хімії, Волинський національний університет імені Лесі Українки, пр. Волі 13, 43009 Луцьк, Україна

* Контактна особа. E-mail: taras-ostapjuk@rambler.ru

За допомогою рентгенофазового, мікроструктурного та диференціального термічного методів аналізу побудовано ізотермічний переріз при 620 К, проекцію поверхні ліквідусу та шість політермічних перерізів системи Cu₂Se–SnSe₂–Sb₂Se₃. Встановлено координати нонваріантних точок. Тетрарних і нових тернарних фаз у системі не виявлено. Протяжність твердих розчинів на основі сполуки Cu₂SnSe₃ не перевищує 2%.

Ізотермічний переріз / Політермічний переріз / Селеніди

1. Вступ

Бінарні сполуки Cu₂Se, Sb₂Se₃ та SnSe₂ мають конгруентний характер плавлення, при температурах 1421 К [1], 863 К [2] та 948 К [3] відповідно, i можуть бути вихідними компонентами квазіпотрійної системи. Система Cu₂Se-SnSe₂ досліджувалась у роботах [4-6]. Знайдено одну сполуку Cu₂SnSe₃, що має конгруентний характер плавлення та утворюється при співвідношенні Cu₂Se і SnSe₂ 1:1. Система Cu₂Se-Sb₂Se₃ характеризується утворенням двох проміжних сполук – CuSbSe₂ з конгруентним характером плавлення при 765 К та Cu₃SbSe₃ з інконгруентним характером плавлення при 808 К [7,8]. На основі високотемпературної модифікації Cu₂Se та Sb₂Se₃ утворюються обмежені тверді розчини, які нижче температури 620 К мають незначну протяжність. Система SnSe₂–Sb₂Se₃ раніше не досліджувалась.

2. Методика експерименту

Для встановлення взаємодій між компонентами у квазіпотрійній Cu₂Se-SnSe₂-Sb₂Se₃ системі синтезовано 89 зразків. Усі зразки виготовлялися з високочистих простих речовин (Se – 99,999 мас.%; Sn – 99,999 мас.%; Cu – 99,99 мас.%; Sb – 99,99 мас.%). Синтез здійснювався прямим однотемпературним методом, кварцових v вакуумованих ампулах. Максимальна температура синтезу – 1370 К. Гомогенізуючий відпал здійснювався при 620 К впродовж 600 годин. Зразки гартувалися у воді кімнатної температури.

Усі зразки досліджувалися рентгенофазовим, диференціальним термічним і мікроструктурним методами аналізу.

Рентгенофазовий аналіз зразків проводився методом порошкової дифракції на дифрактометрі ДРОН-4-13 з використанням CuK_α випромінювання, діапазон сканування $10^{\circ} \le 2\theta \le 90^{\circ}$, крок сканування $0,05^{\circ}$, час експозиції 2 с. Фазовий аналіз проводився з використанням пакетів програм DRWin та PowderCell.

Диференціальний термічний аналіз здійснювався на дериватографі Paulik-Paulik-Erdey з використанням Pt/Pt-Rh термопари та двокоординатного самописця H307/1. Швидкість нагріву зразків становила 10 К/хв; охолодження проводилося в режимі виключеної пічки.

Межі існування твердих розчинів на основі сполуки Cu₂SnSe₃ уточнювались за допомогою мікроструктурного аналізу з використанням твердоміра Leica VMHTAuto.

3. Результати експерименту та обговорення

3.1. Система SnSe₂-Sb₂Se₃

Для дослідження синтезовано 11 зразків. Встановлено, що ця система є евтектичного типу з координатами евтектичної точки 50 мол.% Sb_2Se_3 , $T_E = 773$ K (Рис. 1).

3.2. Переріз Cu₂SnSe₃ – Sb₂Se₃

Переріз досліджувався на 15 зразках, синтезованих описаним вище методом. За результатами побудовано дослідження діаграму фазових рівноваг системи Cu₂SnSe₃-Sb₂Se₃ (Рис. 2). Як видно з рисунку, вона є евтектичного типу з незначною взаємною розчинністю (не більше 2%) вихідних компонентів. Координати евтектичної точки – 72 мол.% Sb₂Se₃. Т_Е = 769 К. Для уточнення протяжності твердого розчину на основі Cu₂SnSe₃ додатково синтезовано два зразки складу 97.5 95% Зa i Cu₂SnSe₃. результатами рентгенофазового аналізу, вони виявились однофазними, однак мікроструктура цих зразків показала присутність двох фаз: Cu₂SnSe₃ i Sb₂Se₃.

3.3. Переріз Cu₂SnSe₃-CuSbSe₂

Для дослідження перерізу Cu₂SnSe₃-CuSbSe₂ синтезовано 13 зразків описаним вище методом. За результатами дослідження побудовано діаграму фазових рівноваг (Рис. 3). Як видно з рисунка, переріз є квазіподвійною системою евтектичного типу з незначною розчинністю на основі вихідних компонентів. Координати евтектичної точки – 93 мол.% CuSbSe₂, 730 K.

3.4. Переріз Cu₂SnSe₃-Cu₃SbSe₃

Переріз досліджувався на 13 зразках, синтезованих описаним вище методом. Розчинність на основі компонентів цього перерізу незначна, про що

свідчить практична відсутність зміщення піків на дифрактограмах сплавів перерізу. Рентгенофазовий аналіз вказав на відсутність інших фаз, крім вихідних компонентів. Це свідчить про те, що в підсолідусній частині діаграми переріз є квазіподвійною системою. Оскільки сполука Cu₃SbSe₃ утворюється (згідно з літературними відомостями) за перитектичною реакцією (L + Cu₂Se \leftrightarrow Cu₃SbSe₃), цей переріз не може бути рівноважною системою у надсолідусній Діаграма стану цього перерізу області. представлена на Рис. 4.

Рис. 1 Діаграма стану системи $SnSe_2$ -Sb₂Se₃. 1 – L; 2 – L + α -тв.р-н на основі SnSe₂; 3 – L + β -тв.р-н на основі Sb₂Se₃; 4 – α -тв.р-н на основі SnSe₂ + β -тв.р-н на основі Sb₂Se₃; 5 – α -тв.р-н на основі SnSe₂; 6 – β -тв.р-н на основі Sb₂Se₃.

Рис. 2 Діаграма стану системи Cu_2SnSe_3 -Sb₂Se₃. 1 – L; 2 – L + α -тв.р-н на основі Cu_2SnSe_3 ; 3 – L + β -тв.р-н на основі Sb₂Se₃; 4 – α -тв.р-н на основі $Cu_2SnSe_3 + \beta$ -тв.р-н на основі Sb₂Se₃; 5 – α -тв.р-н на основі Cu_2SnSe_3 ; 6 – β -тв.р-н на основі Sb₂Se₃.

Рис. 3 Діаграма стану системи Cu_2SnSe_3 -CuSbSe₂. 1 – L; 2 – L + α -тв.р-н на основі Cu₂SnSe₃; 3 – L + β -тв.р-н на основі CuSbSe₂; 4 – α -тв.р-н на основі Cu₂SnSe₃ + β -тв.р-н на основі CuSbSe₂; 5 – α -тв.р-н на основі Cu₂SnSe₃; 6 – L + β -тв.р-н на основі CuSbSe₂.

3.5. Переріз Cu₂SnSe₃-«SnSb₂Se₅»

Переріз досліджувався на 11 зразках, що синтезувались описаним вище методом. За результатами диференціального термічного та рентгенофазового аналізів побудовано діаграму фазових рівноваг цього перерізу (Рис. 5). Фазовий аналіз зразків дає підстави стверджувати, що однофазним є зразок, який містить 100% Cu₂SnSe₃, двофазним є зразок, що відповідає складу 100% «SnSb₂Se₅» (50% SnSe₂ + 50% Sb₂Se₃), а решта зразків містять три фази (Cu₂SnSe₃, SnSe₂, Sb₂Se₃).

3.6. Переріз CuSbSe₂–SnSe₂

Для дослідження перерізу було синтезовано 11 зразків описаним вище методом. На дифрактограмах шести зразків присутні відбиття фаз Cu₂SnSe₃, SnSe₂ і Sb₂Se₃, тоді як на трьох інших – Cu₂SnSe₃, CuSbSe₂ і Sb₂Se₃. Це вказує на відсутність рівноваги між сполуками CuSbSe₂ і SnSe₂. Ліквідус перерізу (Рис. 6) обмежує поля первинної кристалізації фаз CuSbSe₂ (крива ab), Cu₂SnSe₃ (криві br i rc) та SnSe₂ (крива cd).

Рис. 5 Політермічний переріз Cu_2SnSe_3- «SnSb₂Se₅». 1 – L; 2 – L+ Cu_2SnSe_3 ; 3 – L + SnSe₂; 4 – L+ Cu_2SnSe_3 + SnSe₂; 5 – L + SnSe₂ + Sb₂Se₃; 6 – L + Cu_2SnSe_3 + SnSe₂ + Sb₂Se₃.

Рис. 6 Політермічний переріз $CuSbSe_2$ -SnSe₂. 1 – L; 2 – L + CuSbSe₂; 3,4 – L + Cu₂SnSe₃; 5 – L + SnSe₂; 6 – L + Cu₂SnSe₃ + CuSbSe₂; 7,8 – L + Cu₂SnSe₃ + Sb₂Se₃; 9 – L + Cu₂SnSe₃ + SnSe₂; 10 – Cu₂SnSe₃ + Sb₂Se₃ + CuSbSe₂; 11 – SnSe₂ + Sb₂Se₃ + Cu₂SnSe₃; 12 – Sb₂Se₃ + Cu₂SnSe₃.

Рис. 7 Ізотермічний переріз діаграми стану системи Cu₂Se-SnSe₂-Sb₂Se₃ при 620 К.

Рис. 8 Проекція поверхні ліквідусу квазіпотрійної системи Cu₂Se–SnSe₂–Sb₂Se₃ на концентраційний трикутник.

Таблиця 1 Характер і температури перебігу моно- та нонваріантних процесів у квазіпотрійній системі Cu₂Se–SnSe₂–Sb₂Se₃.

Поля 3, 7, 8, 9 є полями вторинної (сумісної) кристалізації фаз. Горизонталь pm відповідає початку третинної кристалізації Cu_2SnSe_3 + $CuSbSe_2$ + Sb_2Se_3 , а горизонталь qg відповідає початку третинної кристалізації Sb_2Se_3 + Cu_2SnSe_3 + $SnSe_2$.

3.7. Ізотермічний переріз системи Cu₂Se–SnSe₂– Sb₂Se₃ при 620 К

Результати дослідження 89 зразків методом рентгенофазового аналізу при 620 К дають можливість побудувати ізотермічний переріз діаграми фазових рівноваг системи Cu₂Se-SnSe₂-Sb₂Se₃ при цій температурі. Попередній аналіз термограм зразків показав, що при 620 К всі зразки перебувають у твердому стані. Тому саме ця температура була вибрана для гомогенізуючого відпалу. В системі не встановлено існування тетрарних фаз, а протяжність твердих розчинів на бінарних і тернарних сполук при основі температурі дослідження є мінімальною. Як видно з Рис. 7, при 620 К існують три подвійні рівноваги, які розділяють систему на 4 поля трифазних SnSe₂–Sb₂Se₃–Cu₂SnSe₃, рівноваг: Cu₂SnSe₃-Cu₂SnSe₃-CuSbSe₂-Cu₃SbSe₃, Sb₂Se₃-CuSbSe₂, Cu₂SnSe₃-Cu₃SbSe₃-Cu₂Se.

3.8. Проекція поверхні ліквідусу квазіпотрійної системи Cu₂Se-SnSe₂-Sb₂Se₃

На основі дослідження шести перерізів і літературних відомостей про взаємодію y квазіподвійних системах Cu₂Se-SnSe₂ та Cu₂Se-Sb₂Se₃ нами побудовано проекцію поверхні ліквідусу квазіпотрійної системи Cu₂Se-SnSe₂-Sb₂Se₃ на концентраційний трикутник (Рис. 8). Як видно з рисунка, поверхня ліквідусу складається з шести полів первинної кристалізації фаз Cu₂Se, Cu₂SnSe₃, SnSe₂, Sb₂Se₃, CuSbSe₂, Cu₃SbSe₃. Найбільшу площу займає поле первинної кристалізації тернарної сполуки Cu₂SnSe₃, яка є чотириелектронною, алмазоподібною [9] i, очевидно, найбільш термодинамічно стійкою. Поля первинної кристалізації розділені моноваріантними лініями, що перетинаються в нонваріантних точках. В Таблиці 1 наведені

моноваріантні процеси (лініями та стрілками) і нонваріантні процеси (рівняння реакцій), що відбуваються у квазіпотрійній системі Cu₂Se–SnSe₂–Sb₂Se₃.

Квазіподвійні перерізи $Cu_2SnSe_3-Sb_2Se_3$ та $Cu_2SnSe_3-CuSbSe_2$ (зображені суцільними лініями) триангулюють досліджувану систему на три підсистеми: $Cu_2SnSe_3-Sb_2Se_3-SnSe_2$, $Cu_2SnSe_3-Sb_2Se_3-CuSbSe_2$, $Cu_2SnSe_3-CuSbSe_2$, $Cu_2SnSe_3-CuSbSe_2$.

Тонкими кривими показані ізотерми кристалізації. Прямі суцільні та пунктирні лінії – політермічні перерізи, які досліджувалися у цій системі.

Література

- [1] В.М. Глазов, А.С. Пашинкин, В.А. Федоров, *Неорг. матер.* 35(7) (2000) 775-787.
- [2] Н.Х. Абрикосов, В.Ф. Банкина, Л.В. Порецкая, Е.В. Скуднова, С.Н. Чижевская, Полупроводниковые халькогениды и сплавы на их основе, М., Наука, 1975, 220 с.
- [3] А.А. Бабицына, Т.А. Емильянова, М.А. Черницына, *Ж. неорг. хим.* 20(11) (1975) 3093-3096.
- [4] Л.И. Бергер, Е.Г. Котина, *Изв. АН СССР. Неорг. матер.* 9(3) (1973) 368-370.
- [5] Т.В. Зотова, Ю.А. Карагодин, Сборник Научных Работ по Проблемам Микроелектроники, М., МИЕТ, 1975, с. 59-61.
- [6] І. Олексеюк, О. Парасюк, Л. Піскач, Г. Горгут, О. Змій, О. Криховець, Л. Сиса, Е. Кадикало, О. Строк, О. Марчук, В. Галка, *Квазіпотрійні халькогенідні системи, Т. 1*, Луцьк, Вежа, 1999, 168 с.
- [7] М.И. Головей, В.И. Ткаченко, М.Ю. Риган, И.П. Стасюк, *Heope. матер.* 26(5) (1990) 933-934.
- [8] Н.Б. Бабанлы, Автореф. дисс. ... канд. хим. наук, Баку, 1991, 23 с.
- [9] Н.А. Горюнова, *Сложные алмазоподобные полупроводники*, М., Советское радио, 1968, 268 с.