Solid solutions with AlB₂-type structure in *R*-Ag-Al-Ge systems (*R* = Ce, Pr, Nd, Sm)

Roksolana KOZAK¹*, Yaroslav TOKAYCHUK¹, Mykola MANYAKO¹, Roman GLADYSHEVSKII¹

 ¹ Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya St. 6, 79005 Lviv, Ukraine
 * Corresponding author. E-mail: r-kozak@ukr.net

* Corresponding author. E-mail: r-kozak@ukr.net

Received November 25, 2009; accepted December 23, 2009; available on-line April 27, 2010

An investigation of the quaternary systems R-Ag-Al-Ge (R = Ce, Pr, Nd, Sm) at 873 K led to the discovery of three complete solid solutions based on ternary germanides, CeAg_{0.8}Ge_{1.2}-CeAl_{1.6-1.5}Ge_{0.4-0.5}, PrAg_{0.8}Ge_{1.2}-PrAl_{1.55-1.48}Ge_{0.45-0.52}, and NdAg_{0.7}Ge_{1.3}-NdAl_{1.63-1.50}Ge_{0.37-0.50}, and a quaternary compound, SmAg_{0.55-0.36}Al_{0.43-0.80}Ge_{1.02-0.84}, with AlB₂-type structure (Pearson symbol *hP3*, space group *P6/mmm*). The crystal structure of the solid solution in the system Pr-Ag-Al-Ge was refined for the composition PrAg_{0.38}Al_{0.80}Ge_{0.82} from X-ray powder (a = 0.43368(5), c = 0.41929(7) nm) and single-crystal (a = 0.4318(1), c = 0.4191(1) nm) diffraction data. Within the homogeneity range the contact distances between small-size atoms decrease with increasing Al and decreasing Ag and Ge content. The valence electron concentration per atom of the statistical mixture Ag+Al+Ge increases from 4.30 to 4.76 within the same range.

Rare-earth / Silver / Aluminum / Germanium / Solid solution / X-ray diffraction / Crystal structure

Introduction

The formation of ternary compounds with hexagonal AlB₂-type structure (hP3, P6/mmm) has been reported for the RAg₂-RGe₂ and RAl₂-RGe₂ cross-sections of the R-Ag-Ge and R-Al-Ge systems (where R is a light rare-earth metal) [1-7]. The compounds in the systems R-Ag-Ge, except for R = Sm, are characterized by point compositions: LaAg_{0.8}Ge_{1.2} (773 K), CeAg_{0.8}Ge_{1.2} (773 K), PrAg_{0.8}Ge_{1.2} (873 K), NdAg_{0.7}Ge_{1.3} (1073 K), EuAgGe (673 K). EuAg_{0.8}Ge_{1.2} (973 K), and GdAg_{0.6}Ge_{1.4} (873 K) [1-3]. On the contrary, the alumogermanides of La, Ce, Pr, Nd, and Eu have significant homogeneity ranges: LaAl_{1.8-1.5}Ge_{0.2-0.5} (773 K), CeAl_{1.6-1.5}Ge_{0.4-0.5} (773 K), and PrAl1.55-1.48Ge0.45-0.52 873 K), (673 NdAl_{1.63-1.50}Ge_{0.37-0.50} (1273 K), and EuAl_{1.08-1.00}Ge_{0.92-1.00} (873 K) [4-7]. The isotypic compound in the Sm-Al-Ge system has the point composition SmAl_{1.5}Ge_{0.5} (1273 K) [4]. Literature data show the existence of numerous AlB₂-type compounds in related ternary systems. For instance, in the R-{Fe,Co,Zn}-Ge systems the following compounds have been reported: $RFe_{0.67}Ge_{1.33}$ for R = La, Nd, Sm (1873 K), $RCo_{0.5}Ge_{1.5}$ for R = Ce, Pr, Nd (873 K), $R\text{Zn}_{1.5}\text{Ge}_{0.5}$ for R = La, Ce, Pr, Nd, Sm (1073 K) [1]. A modulated structure derived from the AlB_2 type was described in [8] for the quaternary compound Pr(Ni_{0.20}Al_{0.30}Ge_{0.50})_{1.8}. The existence of the complete solid solution PrAg_{0.8}Ge_{1.2}- PrAl_{1.55-1.48}Ge_{0.45-0.52} (873 K) and the quaternary compound $SmAg_{0.55-0.36}Al_{0.43-0.80}Ge_{1.02-0.84}$ (873 K) with AlB₂-type structure was briefly reported in [9-11]. The aim of the present work was in addition to look for regularities in the formation of the AlB₂-type compounds in the quaternary systems {Ce,Pr,Nd,Sm}-Ag-Al-Ge.

Experimental

Two three-component and 23 four-component alloys containing 33.3 at.% rare-earth element were synthesized by arc-melting the elements (Ce, Pr, Nd, $Sm \ge 99.83$ wt.%, Al ≥ 99.985 wt.%, Ag and Ge ≥ 99.999 wt.%) under argon atmosphere. The samples were annealed at 873 K in evacuated quartz ampoules for 1 month and subsequently quenched in cold water. The weight losses during the preparation of the samples were less than 1 % of the total mass, which was 1 g for each alloy.

Phase analysis was carried out using X-ray powder diffraction data collected on a diffractometer DRON-2.0M (Fe Ka radiation) in the angular range $20 \le 2\theta \le$ 100° with the step 0.05°. The profile and structural parameters were refined by the Rietveld method using the program DBWS-9807 [12]. X-ray single-crystal diffraction data were collected in the ω -2 θ scan mode on a four-circle CAD-4T diffractometer (graphite R. Kozak et al., Solid solutions with AlB₂-type structure in R-Ag-Al-Ge systems ...

No	Sample composition,	Dhaca	Structure	Unit-cell parameters		
140.	at.%	Fliase	type	<i>a</i> , nm	<i>c</i> , nm	V, nm ³
1	1 $Ce_{33.3}Ag_{26.7}Ge_{40.0}$	CeAg _{0.8} Ge _{1.2}	AlB ₂	0.43900(5)	0.41305(6)	0.06894(2)
1		CeAgGe	LiGaGe	0.45350(9)	0.7725(3)	0.13759(6)
2	$Ce_{33.3}Ag_{23.3}Al_{6.7}Ge_{36.7}$	CeAg _{0.70} Al _{0.20} Ge _{1.10}	AlB ₂	0.43901(6)	0.41407(8)	0.06911(2)
2		CeAgGe	LiGaGe	0.4506(1)	0.7834(8)	0.1377(2)
3	$Ce_{33.3}Ag_{20.0}Al_{13.3}Ge_{33.4}$	CeAg _{0.60} Al _{0.40} Ge _{1.00}	AlB ₂	0.43832(7)	0.41603(9)	0.06922(2)
4	Ce _{33.3} Ag _{16.7} Al _{20.0} Ge _{30.0}	CeAg _{0.50} Al _{0.60} Ge _{0.90}	AlB ₂	0.43619(6)	0.42133(8)	0.06942(2)
5	Ce _{33.3} Ag _{13.3} Al _{26.7} Ge _{26.7}	CeAg _{0.40} Al _{0.80} Ge _{0.80}	AlB ₂	0.43487(6)	0.42474(7)	0.06956(2)
6	Ce _{33.3} Ag _{8.0} Al _{36.7} Ge _{22.0}	CeAg _{0.24} Al _{1.10} Ge _{0.66}	AlB ₂	0.43543(7)	0.42603(9)	0.06995(2)
7	Ce _{33.3} Ag _{2.7} Al _{46.7} Ge _{17.3}	CeAg _{0.08} Al _{1.40} Ge _{0.52}	AlB ₂	0.43480(5)	0.42953(7)	0.07032(2)

Table 1 Phases detected in alloys of the Ce–Ag–Al–Ge system at 873 K, 33.3 at.% Ce.

Table 2 Phases detected in alloys of the Pr-Ag-Al-Ge system at 873 K, 33.3 at.% Pr.

No	Sample composition,	Dhaso	Structure	Unit-cell parameters			
190.	at.%	rnase	type	<i>a</i> , nm	<i>c</i> , nm	V, nm ³	
1	Pr _{33.3} Ag _{23.3} Al _{6.7} Ge _{36.7}	PrAg _{0.70} Al _{0.20} Ge _{1.10}	AlB ₂	0.43722(6)	0.40981(7)	0.06785(2)	
2	$Pr_{33.3}Ag_{16.7}Al_{16.7}Ge_{33.3}$	PrAg _{0.50} Al _{0.50} Ge _{1.00}	AlB_2	0.43415(6)	0.41652(8)	0.06799(2)	
3	Pr _{33.3} Ag _{13.3} Al _{20.0} Ge _{33.4}	PrAg _{0.40} Al _{0.60} Ge _{1.00}	AlB_2	0.43215(8)	0.41858(9)	0.06769(3)	
4	$Pr_{33.3}Ag_{12.7}Al_{26.7}Ge_{27.3}$	PrAg _{0.38} Al _{0.80} Ge _{0.82}	AlB_2	0.43368(5)	0.41929(7)	0.06830(2)	
5	Pr _{33.3} Ag _{8.4} Al _{33.3} Ge _{25.0}	PrAg _{0.25} Al _{1.00} Ge _{0.75}	AlB ₂	0.43253(6)	0.42244(7)	0.06844(2)	
6	Pr _{33.3} Ag _{3.3} Al _{43.4} Ge _{20.0}	PrAg _{0.10} Al _{1.30} Ge _{0.60}	AlB ₂	0.43288(9)	0.42389(9)	0.06880(2)	

monochromator, Mo $K\alpha$ radiation). An analytical absorption correction was applied. A full-matrix least-squares refinement of the structural parameters was performed on F^2 using the program SHELXL-97 [13]. An energy-dispersive X-ray analysis was performed on a REM-106I electron scanning microscope.

Results and discussion

The phases identified in the samples synthesized at 873 K in the R-Ag-Al-Ge systems (R = Ce, Pr, Nd, Sm) and their refined unit-cell parameters as obtained from X-ray powder diffraction data are listed in Tables 1-4. The existence of the ternary compounds CeAg_{0.8}Ge_{1.2} (structure type AlB₂, *P6/mmm*), CeAgGe (LiGaGe, P6₃mc), Nd₃Ag₄Ge₄ (Gd₃Cu₄Ge₄, Immm), $NdAg_{0.7}Ge_{1.3}$ (AlB₂, P6/mmm), and $NdAg_{1.4}Ge_{0.6}$ (Fe₂P, P-62m) was confirmed based on the phase analysis of the ternary samples Ce33.3Ag26.7Ge40.0 and Nd_{33.3}Ag_{23.4}Ge_{43.3}. Differently from [3], we observed the existence of the ternary compound NdAg_{0.7}Ge_{1.3} at a lower temperature (873 K). The quaternary alloys were single-phase samples containing phases with AlB₂-type structure, except Ce_{33,3}Ag_{23,3}Al_{6,7}Ge_{36,7} and some alloys from the Sm-Ag-Al-Ge system, which contained as additional phases CeAgGe or Sm₃Ag₄Ge₄ (Gd₃Cu₄Ge₄, *Immm*) and SmAg_{1.4}Ge_{0.6} (Fe₂P, *P*-62*m*). Consequently, the following solid solutions with AlB₂-type structure were found at 33.3 at.% R and 873 K in the systems {Ce,Pr,Nd,Sm}-Ag-Al-Ge: $CeAg_{0.8}Ge_{1.2}$ - $CeAl_{1.6-1.5}Ge_{0.4-0.5}$, PrAg_{0.8}Ge_{1.2}- $PrAl_{1.55\text{-}1.48}Ge_{0.45\text{-}0.52}, \quad NdAg_{0.7}Ge_{1.3}\text{-}NdAl_{1.63\text{-}1.50}Ge_{0.37\text{-}0.50}$ and SmAg_{0.55-0.36}Al_{0.43-0.80}Ge_{1.02-0.84}.

The variation of the unit-cell parameters within the homogeneity ranges of the AlB₂-type compounds in the quaternary systems {Ce,Pr,Nd,Sm}-Ag-Al-Ge is shown in Fig. 1. The *a*-parameter decreases with increasing Al content (0-54.3 at.%) and decreasing Ag and Ge content (26.7-0 and 43.3-12.3 at.%, respectively), whereas the *c*-parameter increases. In the AlB₂-type structure each small-size atom (in our case a statistical mixture of Ag, Al, and Ge atoms) has three "homoatomic" bonds, so that infinite graphitelike planar nets perpendicular to the 6-fold axes are formed. The large-size atoms (rare-earth metal atoms here) are situated between the nets and form trigonal prisms. All the space in the structure is filled up by R_6 trigonal prisms, the centers of which are occupied by atoms of the statistical mixture M = Ag+Al+Ge. The replacement of Ag and Ge atoms (covalent radii r =0.134 and 0.122 nm, respectively) by Al atoms (r =0.118 nm) directly influences the a-parameter, which reflects the contact distances between small-size atoms in the structure ($\delta_{M-M} = a/\sqrt{3}$). The trigonal prisms are slightly compressed along the prism axis (c/a < 1), however, the c/a ratio increases with increasing Al content. An important criterion for the formation of solid solutions, in addition to the atomsize factor, is the number of valence electrons. For the AlB₂-type phases studied here the valence electron concentration per atom of the statistical mixture M =Ag+Al+Ge (VEC_A [14]) is in the range 4.30-4.76. The replacement of Ag atoms with one valence electron and Ge atoms with four valence electrons in the ratio Ag:Ge = 1:1, by Al atoms with three valence electrons leads to an increase of VEC_A . It should be noticed that for other extended solid solutions in the systems

1.02 0.99 c/a0.96 0.93 0.900.460.45 nm 0.44 a, 0.43 $0.42 \\ 0.44$ 0.43 nm 0.42 ن' 0.41 0.40 4.4 4.8 4.2 4.3 4.5 4.6 4.7 VEC

Fig. 1 Unit-cell parameters within the homogeneity ranges of the AlB_2 -type compounds in the quaternary systems {Ce,Pr,Nd,Sm}-Ag-Al-Ge as a function of the valence electron concentration VEC_A.

No	Sample composition,	Dhasa	Structure	Unit-cell parameters			
INO.	at.%	rnase	type	<i>a</i> , nm	<i>b</i> , nm	<i>c</i> , nm	V, nm ³
		Nd ₃ Ag ₄ Ge ₄	Gd ₃ Cu ₄ Ge ₄	0.4413(1)	0.7111(2)	1.4667(4)	0.4603(2)
1	Nd _{33.3} Ag _{23.4} Ge _{43.3}	NdAg _{0.7} Ge _{1.3}	AlB ₂	0.4324(1)	_	0.4094(1)	0.06627(3)
	NdAg _{1.4} Ge _{0.6}	ZrNiAl	0.7268(2)	_	0.4305(2)	0.1969(1)	
2	Nd33.3Ag20.0Al6.7Ge40.0	NdAg _{0.60} Al _{0.20} Ge _{1.20}	AlB ₂	0.43121(7)	_	0.41274(9)	0.06646(2)
3	Nd33.3Ag17.3Al13.3Ge36.0	NdAg _{0.52} Al _{0.40} Ge _{1.08}	AlB ₂	0.43379(6)	-	0.41144(8)	0.06705(2)
4	Nd33.3Ag14.0Al20.0Ge32.7	NdAg _{0.42} Al _{0.60} Ge _{0.98}	AlB ₂	0.43177(5)	_	0.41493(6)	0.06700(1)
5	Nd33.3Ag11.3Al26.7Ge28.7	NdAg _{0.34} Al _{0.80} Ge _{0.86}	AlB ₂	0.43048(5)	_	0.41811(6)	0.06710(1)
6	Nd33.3Ag6.7Al36.7Ge23.3	NdAg _{0.20} Al _{1.10} Ge _{0.70}	AlB ₂	0.43138(4)	_	0.41951(5)	0.06761(1)
7	Nd33.3Ag2.7Al46.7Ge17.3	$NdAg_{0.08}Al_{1.40}Ge_{0.52}$	AlB ₂	0.43138(5)	-	0.42100(6)	0.06785(1)

Table 3 Phases detected in alloys of the Nd–Ag–Al–Ge system at 873 K, 33.3 at.% Nd.

Table 4 Phases detected in alloys of the Sm-Ag-Al-Ge system at 873 K, 33.3 at.% Sm.

No	Sample composition,	Dhasa	Structure		Unit-cell J	parameters	
INO.	at.%	rnase	type	<i>a</i> , nm	<i>b</i> , nm	<i>c</i> , nm	V, nm ³
		SmAg _{0.55} Al _{0.43} Ge _{1.02}	AlB ₂	0.42860(6)	_	0.4090(7)	0.06507(2)
1	Sm33.3Ag20.0Al12.0Ge34.7	Sm ₃ Ag ₄ Ge ₄	Gd ₃ Cu ₄ Ge ₄	0.4427(1)	0.6978(2)	1.4572(4)	0.4501(2)
		SmAg _{1.4} Ge _{0.6}	ZrNiAl	0.7145(2)	_	0.4322(1)	0.1911(1)
		SmAg _{0.50} Al _{0.50} Ge _{1.00}	AlB ₂	0.42793(4)	_	0.40949(6)	0.06494(1)
2	Sm33.3Ag16.7Al16.7Ge33.3	Sm ₃ Ag ₄ Ge ₄	Gd ₃ Cu ₄ Ge ₄	0.4389(1)	0.7048(2)	1.4489(3)	0.4482(2)
		SmAg _{1.4} Ge _{0.6}	ZrNiAl	0.7185(1)	_	0.4274(1)	0.19111(7)
		SmAg _{0.48} Al _{0.60} Ge _{0.92}	AlB ₂	0.42812(6)	_	0.40893(9)	0.06491(2)
3	Sm33.3Ag16.0Al20.0Ge30.7	SmAg _{1.4} Ge _{0.6}	ZrNiAl	0.7161(1)	_	0.4304(1)	0.19114(6)
		Sm ₃ Ag ₄ Ge ₄	Gd ₃ Cu ₄ Ge ₄	0.4394(1)	0.7042(2)	1.4493(4)	0.4484(2)
		SmAg _{0.42} Al _{0.70} Ge _{0.88}	AlB ₂	0.42756(3)	_	0.41030(4)	0.06496(1)
4	Sm33.3Ag14.0Al23.3Ge29.4	SmAg _{1.4} Ge _{0.6}	ZrNiAl	0.71165(9)	_	0.43434(9)	0.19051(5)
		Sm ₃ Ag ₄ Ge ₄	Gd ₃ Cu ₄ Ge ₄	0.4442(1)	0.6954(2)	1.4599(6)	0.4510(3)
		SmAg _{0.36} Al _{0.80} Ge _{0.84}	AlB ₂	0.42676(5)	_	0.41233(6)	0.06503(1)
5	Sm33.3Ag12.0Al26.7Ge28.0	Sm ₃ Ag ₄ Ge ₄	Gd ₃ Cu ₄ Ge ₄	0.4447(2)	0.6949(3)	1.4629(6)	0.4521(3)
		SmAg _{1.4} Ge _{0.6}	ZrNiAl	0.7115(1)	—	0.4351(1)	0.19074(8)

{Pr,Sm}-Ag-Al-Ge at 33.3 at.% *R* and 873 K, VEC_A = 3.65-4.17 (Fe₂P-type structures) and 4.77-5.00 (α -ThSi₂-type structures).

The crystal structure of the $PrAg_{0.8}Ge_{1.2}$ – $PrAl_{1.55-1.48}Ge_{0.45-0.52}$ solid solution was investigated by X-ray powder and single-crystal diffraction. The results of the structure refinement for the polycrystalline sample of composition $Pr_{33,3}Ag_{12,7}Al_{26,7}Ge_{27,3}$ are presented in Table 5. A pseudo-Voigt function with four parameters was used for the profile refinement. Atomic coordinates and isotropic displacement parameters are listed in Table 6

Phase		$PrAg_{0.38}Al_{0.80}Ge_{0.82}$
Space group		P6/mmm
Unit-cell parameters	<i>a</i> , nm	0.43368(5)
	<i>c</i> , nm	0.41929(7)
	V, nm ³	0.06830(2)
Formula units per cell Z		1
Density $D_{\rm X}$, g cm ⁻³		6.394
Texture parameter G		1.062(8) [001]
FWHM parameters U, V, W		0.23(2), 0, 0.029(4)
Mixing parameter η		0.63(4)
Asymmetry parameter $C_{\rm M}$		-0.19(4)
Number of refined parameters		11
Reliability factors $R_{\rm B}$, $R_{\rm p}$, $R_{\rm wp}$		0.0908, 0.0468, 0.0580
Goodness of fit S		0.61

Table 5 Details of the structure refinement for the polycrystalline sample $Pr_{33.3}Ag_{12.7}Al_{26.7}Ge_{27.3}$ (diffractometer DRON-2.0M, Fe *K* α radiation).

Table 6 Atomic coordinates and isotropic displacement parameters for $PrAg_{0.38}Al_{0.80}Ge_{0.82}$ (powder data, structure type AlB₂, Pearson symbol *hP*3, space group *P6/mmm*, *a* = 0.43368(5), *c* = 0.41929(7) nm).

Site	Wyckoff position	X	у	Z.	$B_{\rm iso}, \\ 10^{-2} \rm nm^2$		
Pr	1 <i>a</i>	0	0	0	0.5(2)		
M	2d	1/3	2/3	1/2	1.3(2)		

 $M = 0.19 \mathrm{Ag} + 0.40 \mathrm{Al} + 0.41 \mathrm{Ge}$

 Table 7 Interatomic distances for PrAg_{0.38}Al_{0.80}Ge_{0.82} (powder data).

At	δ , nm		
	-12 M	0.32657(3)	
Pr	-2 Pr	0.41932(6)	
	-6 Pr	0.43367(5)	
	-3 M	0.25038(3)	
M	-6 Pr	0.32657(3)	

M = 0.19 Ag + 0.40 Al + 0.41 Ge

and selected interatomic distances are given in Table 7. In the AlB_2 -type structure the small-size atoms occupy one Wyckoff position (2d) and in the refinement the Ag:Al:Ge ratio was fixed according to the nominal composition of the alloy (PrAg_{0.38}Al_{0.80}Ge_{0.82}). An energy-dispersive X-ray analysis showed good agreement between the nominal composition of the sample and the composition of the quaternary phase $(Pr_{33(2)}Ag_{14(2)}Al_{29(4)}Ge_{24(3)})$. A backscattered electron image of the sample $Pr_{33.3}Ag_{12.7}Al_{26.7}Ge_{27.3}$ is presented in Fig. 2 and the observed, calculated and difference X-ray powder diffraction patterns of the same alloy are shown in Fig. 3. Experimental details of a structure refinement based on diffraction data collected for a single crystal extracted from the same alloy are listed in Table 8. No superstructure or satellite reflections were observed. Atomic coordinates and equivalent isotropic displacement parameters assuming an AlB₂-type structure without vacancies are presented in Table 9,

Fig. 2 Backscattered electron image of the sample $Pr_{33.3}Ag_{12.7}Al_{26.7}Ge_{27.3}$.

Space group		P6/mmm
Unit-cell parameters	<i>a</i> , nm	0.4318(1)
	<i>c</i> , nm	0.4191(1)
	V, nm ³	0.06767(3)
Formula units per cell Z		1
Density $D_{\rm X}$, g cm ⁻³		6.454
Absorption coefficient μ , mm ⁻¹		24.96
Crystal size, mm		0.08 imes 0.07 imes 0.05
Data collection method		ω -2 θ scan
Number of measured reflections		1241
Number of independent reflections		146
Number of reflections with $I > 2\sigma(I)$		141
Factor $R_{\rm int}$		0.0890
Range <i>h</i> , <i>k</i> , <i>l</i>		$-8 \le h \le 7, -2 \le k \le 8, -8 \le l \le 8$
Refinement on		F^2
Reliability factors	R (for $I > 2\sigma(I)$)	0.0346 (0.0337)
	wR	0.0641 (0.0639)
Goodness of fit S		1.176
Number of refined parameters		7
Weighting scheme		$w = 1/[(\sigma F_0)^2 + (0.0133P)^2]$
-		$(P = (F_{\rm o}^2 + 2F_{\rm c}^2)/3)$
Extinction coefficient		0.08(2)

Table 8 Details of the data collection and structure refinement for $PrAg_{0.38}Al_{0.80}Ge_{0.82}$ (single-crystal data, diffractometer CAD-4T, Mo *K* α radiation).

Fig. 3 Observed (dots), calculated (line) and difference (bottom) X-ray powder diffraction patterns for the $Pr_{33,3}Ag_{12,7}Al_{26,7}Ge_{27,3}$ sample (Fe *K* α radiation).

anisotropic displacement parameters and selected interatomic distances are listed in Tables 10 and 11, respectively. In this case the Ag:Al:Ge ratio was not fixed but the occupancy of the site was refined as a mixture between the heaviest (Ag) and the lightest (Al) elements. The refined composition 0.50(1)Ag +0.50(1)Al corresponds to an average number of electrons of 30.0(3) for the atoms in the 2*d* site (to be compared with 27 electrons used for the refinement on powder diffraction data).

As can be seen from Tables 11-15, the distances between *M* atoms correspond to the average covalent radius of the small-size atoms ($r_{av} = (xr_{Ag}+yr_{Al}+zr_{Ge})/(x+y+z)$, where x, y and z are the relative quantities of Ag, Al and Ge in the statistical mixture). These distances are similar to those in the pure metals ($\delta_{Ag-Ag} = 0.289$, $\delta_{Al-Al} = 0.286$, $\delta_{Ge-Ge} = 0.245$ nm).

Table 9 Atomic coordinates and equivalent displacement parameters for $PrAg_{0.38}Al_{0.80}Ge_{0.82}$ (single-crystal data, structure type AlB₂, Pearson symbol *hP*3, space group *P6/mmm*, *a* = 0.4318(1), *c* = 0.4191(1) nm).

Site	Wyckoff position	x	у	Z.	$U_{\rm eq}, 10^{-2} {\rm nm}^2$
Pr	1a	0	0	0	0.0072(2)
М	2d	1/3	2/3	1/2	0.0185(5)

M = 0.50(1)Ag + 0.50(1)Al used for the refinement

Table 10 Anisotropic displacement parameters (10⁻² nm²) for PrAg_{0.38}Al_{0.80}Ge_{0.82} (single-crystal data).

Site	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Pr	0.0065(2)	0.0065(2)	0.0101(3)	0.0032(1)	0	0
M	0.0091(5)	0.0091(5)	0.0374(8)	0.0045(2)	0	0

M = 0.50(1)Ag + 0.50(1)Al

Table 11 Interatomic distances for PrAg_{0.38}Al_{0.80}Ge_{0.82} (single-crystal data).

A	δ , nm		
	-12 M	0.32566(6)	
Pr	-2 Pr	0.4191(1)	
	-6 Pr	0.4318(1)	
М	-3 M	0.24930(7)	
IVI	-6 Pr	0.32566(6)	

M = 0.50(1)Ag + 0.50(1)Al

Table 12 Interaxial ratio c/a, valence electron concentration VEC_A, contact distances between small atoms δ_{M-M} , and sum of the average covalent radii $2r_M$ for the solid solution CeAg_{0.8}Ge_{1.2}-CeAl_{1.6-1.5}Ge_{0.4-0.5}.

Composition	c/a	VECA	δ_{M-M} , nm	$2r_M$, nm
$CeAg_{0.80}Ge_{1.20}$	0.9409	4.30	0.2535	0.2536
$CeAg_{0.70}Al_{0.20}Ge_{1.10}$	0.9432	4.35	0.2535	0.2516
$CeAg_{0.60}Al_{0.40}Ge_{1.00}$	0.9492	4.40	0.2531	0.2496
$CeAg_{0.50}Al_{0.60}Ge_{0.90}$	0.9659	4.45	0.2518	0.2476
$CeAg_{0.40}Al_{0.80}Ge_{0.80}$	0.9767	4.50	0.2511	0.2456
$CeAg_{0.24}Al_{1.10}Ge_{0.66}$	0.9784	4.59	0.2514	0.2425
$CeAg_{0.08}Al_{1.40}Ge_{0.52}$	0.9879	4.68	0.2510	0.2394
$CeAl_{1.50}Ge_{0.50}$ [5]	0.9977	4.75	0.2450	0.2380

Table 13 Interaxial ratio c/a, valence electron concentration VEC_A, contact distances between small atoms δ_{M-M} , and sum of the average covalent radii $2r_M$ for the solid solution PrAg_{0.8}Ge_{1.2}-PrAl_{1.55-1.48}Ge_{0.45-0.52}.

Composition	c/a	VECA	δ_{M-M} , nm	$2r_M$, nm
$PrAg_{0.80}Ge_{1.20}$ [2]	0.9340	4.30	0.2528	0.2536
$PrAg_{0.70}Al_{0.20}Ge_{1.10}$	0.9337	4.35	0.2524	0.2516
$PrAg_{0.50}Al_{0.50}Ge_{1.00}$	0.9593	4.50	0.2507	0.2480
$PrAg_{0.40}Al_{0.60}Ge_{1.00}$	0.9686	4.60	0.2495	0.2464
$PrAg_{0.38}Al_{0.80}Ge_{0.82}$	0.9611	4.53	0.2504	0.2454
$PrAg_{0.25}Al_{1.00}Ge_{0.75}$	0.9767	4.63	0.2497	0.2430
$PrAg_{0.10}Al_{1.30}Ge_{0.60}$	0.9792	4.70	0.2499	0.2400
$PrAl_{1.48}Ge_{0.52}$ [6]	0.9852	4.76	0.2495	0.2381

Table 14 Interaxial ratio c/a, valence electron concentration VEC_A, contact distances between small atoms δ_{M-M} , and sum of the average covalent radii $2r_M$ for the solid solution NdAg_{0.7}Ge_{1.3}-NdAl_{1.63-1.50}Ge_{0.37-0.50}.

Composition	c/a	VECA	δ_{M-M} , nm	$2r_M$, nm
$NdAg_{0.70}Ge_{1.30}$	0.9468	4.45	0.2496	0.2524
$NdAg_{0.60}Al_{0.20}Ge_{1.20}$	0.9572	4.50	0.2490	0.2504
$NdAg_{0.52}Al_{0.40}Ge_{1.08}$	0.9485	4.52	0.2504	0.2486
$NdAg_{0.42}Al_{0.60}Ge_{0.98}$	0.9610	4.57	0.2493	0.2466
$NdAg_{0.34}Al_{0.80}Ge_{0.86}$	0.9713	4.59	0.2485	0.2449
$NdAg_{0.20}Al_{1.10}Ge_{0.70}$	0.9725	4.65	0.2491	0.2420
$NdAg_{0.08}Al_{1.40}Ge_{0.52}$	0.9759	4.68	0.2491	0.2394
$NdAl_{1.50}Ge_{0.50}$ [7]	0.9795	4.75	0.2481	0.2380

Table 15 Interaxial ratio c/a, valence electron concentration VEC_A, contact distances between small atoms δ_{M-M} , and sum of the average covalent radii $2r_M$ for the compound SmAg_{0.55-0.36}Al_{0.43-0.80}Ge_{1.02-0.84}.

Composition	c/a	VECA	δ_{M-M} , nm	$2r_M$, nm
$SmAg_{0.55}Al_{0.43}Ge_{1.02}$	0.9543	4.46	0.2475	0.2489
$SmAg_{0.50}Al_{0.50}Ge_{1.00}$	0.9569	4.50	0.2471	0.2480
$SmAg_{0.48}Al_{0.60}Ge_{0.92}$	0.9552	4.48	0.2472	0.2474
$SmAg_{0.42}Al_{0.70}Ge_{0.88}$	0.9596	4.52	0.2468	0.2462
$SmAg_{0.36}Al_{0.80}Ge_{0.84}$	0.9662	4.56	0.2464	0.2451

Conclusions

AlB₂-type phases were observed in the systems {Ce,Pr,Nd,Sm}-Ag-Al-Ge at 873 K. In the systems with Ce, Pr, and Nd they form complete solid solutions between ternary compounds CeAg_{0.8}Ge_{1.2}- $CeAl_{1.6\text{-}1.5}Ge_{0.4\text{-}0.5}, \quad PrAg_{0.8}Ge_{1.2}\text{-}PrAl_{1.55\text{-}1.48}Ge_{0.45\text{-}0.52},$ and NdAg_{0.7}Ge_{1.3}-NdAl_{1.63-1.50}Ge_{0.37-0.50}, whereas in the system with Sm a quaternary compound with а significant homogeneity range, $SmAg_{0.55-0.36}Al_{0.43-0.80}Ge_{1.02-0.84}$, is formed. The valence electron concentration per atom of the statistical mixture Ag+Al+Ge (VEC_A) is in the range 4.30-4.76. Increase of the Al and decrease of the Ag and Ge contents lead to shortening of the contact distances between small-size atoms in the infinite graphite-like planar nets perpendicular to the 6-fold axes.

Acknowledgements

This work was supported by the Ministry of Ukraine for Education and Science under the grants No. 0109U002070.

References

- P.S. Salamakha, O.L. Sologub, O.I. Bodak, In: K.A. Gschneidner, Jr., L. Eyring (Eds.), *Handbook on the Physics and Chemistry of the Rare Earth*, Vol. 27, Elsevier, Amsterdam, 1999, pp. 1-224.
- [2] I.A. Savysyuk, E.I. Gladyshevskii, R.E. Gladyshevskii, J. Alloys Compd. 314 (2001) 167-169.

- [3] O.V. Zaplatynsky, P.S. Salamakha, O.L. Sologub, O.S. Procyk, O.I. Bodak, *Pol. J. Chem.* 70 (1996) 267-269.
- [4] I. Melnyk, S. Pikus, V. Kuprysyuk, N. Semuso, R. Gladyshevskii, Arch. Mater. Sci. 26(4) (2005) 279-301.
- [5] A.A. Muraveva, O.S. Zarechnyuk, *Izv. Akad. Nauk* SSSR. Neorg. Mater. (6) (1970) 1066-1068.
- [6] E.I. Gladyshevskii, N.Z. Nakonechna, K. Cenzual, R.E. Gladyshevskii, J.-L. Jorda, J. Alloys Compd. 296 (2000) 265-271.
- [7] A. Raman, H. Steinfink, *Inorg. Chem.* 6 (1967) 1789-1791.
- [8] N. Muts, S. Pukas, O. Shcherban, L. Akselrud, R. Gladyshevskii, Coll. Abstr. 15th Int. Conf. Solid Compd. Trans. Elements, Kraków, 2006, p. 38.
- [9] R.S. Kozak, V.M. Davydov, R.E. Gladyshevskii, Coll. Abstr. 17th Ukr. Conf. Inorg. Chem., Lviv, 2008, p. 138.
- [10] R.S. Kozak, R.E. Gladyshevskii, Ukr. Khim. Zh. 76(3) (2010) 3-9.
- [11] R. Kozak, I. Labinska, R. Gladyshevskii, Visn. Lviv. Univ., Ser. Khim. (in press).
- [12] R.A. Young, A.C. Larson, C.O. Paiva-Santos, *Rietveld analysis of X-ray and neutron powder diffraction patterns*, School of Physics, Georgia Institute of Technology, Atlanta, 1998.
- [13] G.M. Sheldrick, SHELX-97 WinGX Version, Release 97-2, University of Göttingen, Germany, 1997.
- [14] E. Parthé, *Elements of Inorganic Structural Chemistry*, K. Sutter Parthé Publisher, Petit-Lancy, 1996, 170 p.