Solid solutions with $\mathbf{A l B}_{2}$-type structure in \boldsymbol{R} - Ag -Al-Ge systems ($R=\mathbf{C e}, \mathrm{Pr}, \mathrm{Nd}, \mathrm{Sm}$)

Roksolana KOZAK $^{1 *}$, Yaroslav TOKAYCHUK ${ }^{1}$, Mykola MANYAKO ${ }^{1}$, ${\text { Roman } \text { GLADYSHEVSKII }^{1} \text { h }}^{1}$
${ }^{1}$ Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya St. 6, 79005 Lviv, Ukraine
* Corresponding author. E-mail: r-kozak@ukr.net

Received November 25, 2009; accepted December 23, 2009; available on-line April 27, 2010

Abstract

An investigation of the quaternary systems R - $\mathrm{Ag}-\mathrm{Al}-\mathrm{Ge}(R=\mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd}, \mathrm{Sm})$ at 873 K led to the discovery of three complete solid solutions based on ternary germanides, $\mathbf{C e A g}_{0.8} \mathbf{G e}_{1.2} \mathbf{- C A l}_{1.6-1.5} \mathbf{G e}_{0.4-0.5}, \operatorname{PrAg}_{0.8} \mathbf{G e}_{1.2^{-}}$ $\operatorname{PrAl}_{1.55-1.48} \mathbf{G e}_{0.45-0.52}$, and $\mathrm{NdAg}_{0.7} \mathbf{G e}_{1.3}-\mathrm{NdAl}_{1.63-1.50} \mathbf{G e}_{0.37-0.50}$, and a quaternary compound, $\mathbf{S m A g} g_{0.55-0.36} \mathbf{A l}_{0.43-0.80} \mathbf{G e}_{1.02-0.84}$, with $\mathrm{AlB}_{2 \text {-type }}$ structure (Pearson symbol $h P 3$, space group $\mathbf{P 6} / \mathrm{mmm}$). The crystal structure of the solid solution in the system $\mathrm{Pr}-\mathrm{Ag}-\mathrm{Al}-\mathrm{Ge}$ was refined for the composition $\operatorname{PrAg}{ }_{0.38} \mathrm{Al}_{0.80} \mathrm{Ge}_{0.82}$ from X-ray powder $(a=0.43368(5), c=0.41929(7) \mathrm{nm})$ and single-crystal $(a=0.4318(1)$, $c=0.4191(1) \mathrm{nm})$ diffraction data. Within the homogeneity range the contact distances between small-size atoms decrease with increasing Al and decreasing Ag and Ge content. The valence electron concentration per atom of the statistical mixture $\mathrm{Ag}+\mathrm{Al}+\mathrm{Ge}$ increases from 4.30 to 4.76 within the same range.

Rare-earth / Silver / Aluminum / Germanium / Solid solution / X-ray diffraction / Crystal structure

Introduction

The formation of ternary compounds with hexagonal AlB_{2}-type structure ($\mathrm{hP3}, \mathrm{P} 6 / \mathrm{mmm}$) has been reported for the $R \mathrm{Ag}_{2}-R \mathrm{Ge}_{2}$ and $R \mathrm{Al}_{2}-R \mathrm{Ge}_{2}$ cross-sections of the $R-\mathrm{Ag}-\mathrm{Ge}$ and $R-\mathrm{Al}-\mathrm{Ge}$ systems (where R is a light rare-earth metal) [1-7]. The compounds in the systems $R-\mathrm{Ag}-\mathrm{Ge}$, except for $R=\mathrm{Sm}$, are characterized by point compositions: $\mathrm{LaAg}_{0.8} \mathrm{Ge}_{1.2}$ (773 K), $\mathrm{CeAg}_{0.8} \mathrm{Ge}_{1.2}(773 \mathrm{~K}), \operatorname{PrAg}_{0.8} \mathrm{Ge}_{1.2}(873 \mathrm{~K})$, $\mathrm{NdAg}_{0.7} \mathrm{Ge}_{1.3} \quad(1073 \mathrm{~K}), \quad$ EuAgGe (673 K), $\mathrm{EuAg}_{0.8} \mathrm{Ge}_{1.2}(973 \mathrm{~K})$, and $\mathrm{GdAg}_{0.6} \mathrm{Ge}_{1.4}(873 \mathrm{~K})[1-3]$. On the contrary, the alumogermanides of $\mathrm{La}, \mathrm{Ce}, \mathrm{Pr}$, Nd , and Eu have significant homogeneity ranges: $\mathrm{LaAl}_{1.8-1.5} \mathrm{Ge}_{0.2-0.5}(773 \mathrm{~K}), \mathrm{CeAl}_{1.6-1.5} \mathrm{Ge}_{0.4-0.5}(773 \mathrm{~K})$, $\operatorname{PrAl}_{1.55-1.48} \mathrm{Ge}_{0.45-0.52} \quad(673$ and 873 K$)$, $\mathrm{NdAl}_{1.63-1.50} \mathrm{Ge}_{0.37-0.50}(1273 \mathrm{~K})$, and $\mathrm{EuAl}_{1.08-1.00} \mathrm{Ge}_{0.92-1.00}$ (873 K) [4-7]. The isotypic compound in the $\mathrm{Sm}-\mathrm{Al}-$ Ge system has the point composition $\mathrm{SmAl}_{1.5} \mathrm{Ge}_{0.5}$ (1273 K) [4]. Literature data show the existence of numerous AlB_{2}-type compounds in related ternary systems. For instance, in the $R-\{\mathrm{Fe}, \mathrm{Co}, \mathrm{Zn}\}-\mathrm{Ge}$ systems the following compounds have been reported: $R \mathrm{Fe}_{0.67} \mathrm{Ge}_{1.33}$ for $R=\mathrm{La}, \mathrm{Nd}, \operatorname{Sm}(1873 \mathrm{~K}), R \mathrm{Co}_{0.5} \mathrm{Ge}_{1.5}$ for $R=\mathrm{Ce}, \operatorname{Pr}, \mathrm{Nd}(873 \mathrm{~K}), R \mathrm{Zn}_{1.5} \mathrm{Ge}_{0.5}$ for $R=\mathrm{La}$, $\mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd}, \mathrm{Sm}(1073 \mathrm{~K})$ [1]. A modulated structure derived from the AlB_{2} type was described in [8] for the quaternary compound $\operatorname{Pr}\left(\mathrm{Ni}_{0.20} \mathrm{Al}_{0.30} \mathrm{Ge}_{0.50}\right)_{1.8}$. The existence of the complete solid solution $\operatorname{PrAg} \mathrm{g}_{0.8} \mathrm{Ge}_{1.2}{ }^{-}$
$\operatorname{PrAl}_{1.55-1.48} \mathrm{Ge}_{0.45-0.52}(873 \mathrm{~K})$ and the quaternary compound $\mathrm{SmAg}_{0.55-0.36} \mathrm{Al}_{0.43-0.80} \mathrm{Ge}_{1.02-0.84}(873 \mathrm{~K})$ with AlB_{2}-type structure was briefly reported in [9-11]. The aim of the present work was in addition to look for regularities in the formation of the AlB_{2}-type compounds in the quaternary systems $\{\mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd}, \mathrm{Sm}\}-\mathrm{Ag}-\mathrm{Al}-\mathrm{Ge}$.

Experimental

Two three-component and 23 four-component alloys containing 33.3 at. \% rare-earth element were synthesized by arc-melting the elements ($\mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd}$, $\mathrm{Sm} \geq 99.83 \mathrm{wt} . \%, \mathrm{Al} \geq 99.985 \mathrm{wt} . \%, \mathrm{Ag}$ and $\mathrm{Ge} \geq$ $99.999 \mathrm{wt} . \%$) under argon atmosphere. The samples were annealed at 873 K in evacuated quartz ampoules for 1 month and subsequently quenched in cold water. The weight losses during the preparation of the samples were less than 1% of the total mass, which was 1 g for each alloy.

Phase analysis was carried out using X-ray powder diffraction data collected on a diffractometer DRON2.0 M ($\mathrm{Fe} K \alpha$ radiation) in the angular range $20 \leq 2 \theta \leq$ 100° with the step 0.05°. The profile and structural parameters were refined by the Rietveld method using the program DBWS-9807 [12]. X-ray single-crystal diffraction data were collected in the $\omega-2 \theta$ scan mode on a four-circle CAD-4T diffractometer (graphite
R. Kozak et al., Solid solutions with AlB_{2}-type structure in $R-\mathrm{Ag}-\mathrm{Al}-\mathrm{Ge}$ systems ...

Table 1 Phases detected in alloys of the $\mathrm{Ce}-\mathrm{Ag}-\mathrm{Al}-\mathrm{Ge}$ system at $873 \mathrm{~K}, 33.3 \mathrm{at} . \% \mathrm{Ce}$.

No.	Sample composition, at.\%	Phase	Structure type	Unit-cell parameters		
				$a, \mathrm{~nm}$	$c, \mathrm{~nm}$	$V, \mathrm{~nm}^{3}$
1		$\mathrm{CeAg}_{0.8} \mathbf{G e}_{1.2}$	AlB_{2}	0.43900(5)	0.41305(6)	0.06894(2)
1		CeAgGe	LiGaGe	0.45350(9)	0.7725(3)	0.13759(6)
2		$\mathrm{CeAg}_{0.70} \mathrm{Al}_{0.20} \mathbf{G e}_{1.10}$	AlB_{2}	0.43901(6)	$0.41407(8)$	0.06911(2)
2	$\mathrm{Ce}_{33.3} \mathrm{Ag}_{23.3} \mathrm{Al}_{6.7} \mathrm{Ge}_{36.7}$	CeAgGe	LiGaGe	0.4506(1)	0.7834(8)	0.1377(2)
3	$\mathrm{Ce}_{33.3} \mathrm{Ag}_{20.0} \mathrm{Al}_{13.3} \mathrm{Ge}_{33.4}$	$\mathrm{CeAg}_{0.60} \mathrm{Al}_{0.40} \mathbf{G e}_{1.00}$	AlB_{2}	0.43832(7)	0.41603(9)	0.06922(2)
4	$\mathrm{Ce}_{33.3} \mathrm{Ag}_{16.7} \mathrm{Al}_{20.0} \mathrm{Ge}_{30.0}$	$\mathrm{CeAg}_{0.50} \mathrm{Al}_{0.60} \mathbf{G e}_{0.90}$	AlB_{2}	0.43619(6)	0.42133(8)	0.06942(2)
5	$\mathrm{Ce}_{33.3} \mathrm{Ag}_{13.3} \mathrm{Al}_{26.7} \mathrm{Ge}_{26.7}$	$\mathrm{CeAg}_{0.40} \mathrm{Al}_{0.80} \mathbf{G e}_{0.80}$	AlB_{2}	0.43487(6)	0.42474(7)	0.06956(2)
6	$\mathrm{Ce}_{33.3} \mathrm{Ag}_{8.0} \mathrm{Al}_{36.7} \mathrm{Ge}_{22.0}$	$\mathrm{CeAg}_{0.24} \mathrm{Al}_{1.10} \mathbf{G e}_{0.66}$	AlB_{2}	0.43543(7)	0.42603(9)	0.06995(2)
7	$\mathrm{Ce}_{33.3} \mathrm{Ag}_{2.7} \mathrm{Al}_{46.7} \mathrm{Ge}_{17.3}$	$\mathrm{CeAg}_{0.08} \mathbf{A l}_{1.40} \mathbf{G e}_{0.52}$	AlB_{2}	0.43480(5)	0.42953(7)	0.07032(2)

Table 2 Phases detected in alloys of the $\mathrm{Pr}-\mathrm{Ag}-\mathrm{Al}-\mathrm{Ge}$ system at $873 \mathrm{~K}, 33.3$ at. \% Pr.

No.	Sample composition, at. \%	Phase	Structure type	Unit-cell parameters		
				$a, \mathrm{~nm}$	$c, \mathrm{~nm}$	$V, \mathrm{~nm}^{3}$
1	$\mathrm{Pr}_{33.3} \mathrm{Ag}_{23.3} \mathrm{Al}_{6.7} \mathrm{Ge}_{36.7}$	$\operatorname{PrAg}_{0.70} \mathbf{A l}_{0.20} \mathbf{G e}_{1.10}$	AlB_{2}	0.43722(6)	0.40981(7)	0.06785(2)
2	$\mathrm{Pr}_{33.3} \mathrm{Ag}_{16.7} \mathrm{Al}_{16.7} \mathrm{Ge}_{33.3}$	$\operatorname{PrAg}_{0.50} \mathbf{A l}_{0.50} \mathbf{G e}_{1.00}$	AlB_{2}	$0.43415(6)$	0.41652(8)	0.06799(2)
3	$\mathrm{Pr}_{33.3} \mathrm{Ag}_{13.3} \mathrm{Al}_{20.0} \mathrm{Ge}_{33.4}$	$\mathrm{PrAg}_{0.40} \mathbf{A l}_{0.60} \mathbf{G e}_{1.00}$	AlB_{2}	0.43215(8)	0.41858(9)	0.06769(3)
4	$\mathrm{Pr}_{33.3} \mathrm{Ag}_{12.7} \mathrm{Al}_{26.7} \mathrm{Ge}_{27.3}$	$\mathrm{PrAg}_{0.38} \mathrm{Al}_{0.80} \mathbf{G e}_{0.82}$	AlB_{2}	$0.43368(5)$	0.41929(7)	0.06830(2)
5	$\mathrm{Pr}_{33.3} \mathrm{Ag}_{8.4} \mathrm{Al}_{33.3} \mathrm{Ge}_{25.0}$	$\mathrm{PrAg}_{0.25} \mathbf{A l}_{1.00} \mathbf{G e}_{0.75}$	AlB_{2}	0.43253(6)	$0.42244(7)$	0.06844(2)
6	$\mathrm{Pr}_{33.3} \mathrm{Ag}_{3.3} \mathrm{Al}_{43.4} \mathrm{Ge}_{20.0}$	$\mathrm{PrAg}_{0.10} \mathbf{A l}_{1.30} \mathbf{G e}_{0.60}$	AlB_{2}	0.43288(9)	0.42389(9)	0.06880(2)

monochromator, Mo $K \alpha$ radiation). An analytical absorption correction was applied. A full-matrix leastsquares refinement of the structural parameters was performed on F^{2} using the program SHELXL-97 [13]. An energy-dispersive X-ray analysis was performed on a REM-106I electron scanning microscope.

Results and discussion

The phases identified in the samples synthesized at 873 K in the $R-\mathrm{Ag}-\mathrm{Al}-\mathrm{Ge}$ systems $(R=\mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd}$, Sm) and their refined unit-cell parameters as obtained from X-ray powder diffraction data are listed in Tables 1-4. The existence of the ternary compounds $\mathrm{CeAg}_{0.8} \mathrm{Ge}_{1.2}$ (structure type $\mathrm{AlB}_{2}, P 6 / \mathrm{mmm}$), CeAgGe (LiGaGe, $P 6_{3} m c$), $\mathrm{Nd}_{3} \mathrm{Ag}_{4} \mathrm{Ge}_{4}\left(\mathrm{Gd}_{3} \mathrm{Cu}_{4} \mathrm{Ge}_{4}\right.$, Immm), $\mathrm{NdAg}_{0.7} \mathrm{Ge}_{1.3} \quad\left(\mathrm{AlB}_{2}, \quad P 6 / m m m\right)$, and $\mathrm{NdAg}_{1.4} \mathrm{Ge}_{0.6}$ ($\mathrm{Fe}_{2} \mathrm{P}, P-62 m$) was confirmed based on the phase analysis of the ternary samples $\mathrm{Ce}_{33.3} \mathrm{Ag}_{26.7} \mathrm{Ge}_{40.0}$ and $\mathrm{Nd}_{33.3} \mathrm{Ag}_{23.4} \mathrm{Ge}_{43.3}$. Differently from [3], we observed the existence of the ternary compound $\mathrm{NdAg}_{0.7} \mathrm{Ge}_{1.3}$ at a lower temperature (873 K). The quaternary alloys were single-phase samples containing phases with AlB_{2}-type structure, except $\mathrm{Ce}_{33.3} \mathrm{Ag}_{23.3} \mathrm{Al}_{6.7} \mathrm{Ge}_{36.7}$ and some alloys from the $\mathrm{Sm}-\mathrm{Ag}-\mathrm{Al}-\mathrm{Ge}$ system, which contained as additional phases CeAgGe or $\mathrm{Sm}_{3} \mathrm{Ag}_{4} \mathrm{Ge}_{4}$ $\left(\mathrm{Gd}_{3} \mathrm{Cu}_{4} \mathrm{Ge}_{4}\right.$, Immm $)$ and $\mathrm{SmAg}_{1.4} \mathrm{Ge}_{0.6}\left(\mathrm{Fe}_{2} \mathrm{P}, P-62 m\right)$. Consequently, the following solid solutions with AlB_{2}-type structure were found at 33.3 at. $\% R$ and 873 K in the systems $\{\mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd}, \mathrm{Sm}\}-\mathrm{Ag}-\mathrm{Al}-\mathrm{Ge}:$ $\mathrm{CeAg}_{0.8} \mathrm{Ge}_{1.2}-\mathrm{CeAl}_{1.6-1.5} \mathrm{Ge}_{0.4-0.5}, \quad \quad \mathrm{PrAg}_{0.8} \mathrm{Ge}_{1.2}-$ $\operatorname{PrAl}_{1.55-1.48} \mathrm{Ge}_{0.45-0.52}, \quad \mathrm{NdAg}_{0.7} \mathrm{Ge}_{1.3}-\mathrm{NdAl}_{1.63-1.50} \mathrm{Ge}_{0.37-0.50}$ and $\mathrm{SmAg}_{0.55-0.36} \mathrm{Al}_{0.43-0.80} \mathrm{Ge}_{1.02-0.84}$.

The variation of the unit-cell parameters within the homogeneity ranges of the AlB_{2}-type compounds in the quaternary systems $\{\mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd}, \mathrm{Sm}\}-\mathrm{Ag}-\mathrm{Al}-\mathrm{Ge}$ is shown in Fig. 1. The a-parameter decreases with increasing Al content ($0-54.3$ at. \%) and decreasing Ag and Ge content (26.7-0 and 43.3-12.3 at.\%, respectively), whereas the c-parameter increases. In the AlB_{2}-type structure each small-size atom (in our case a statistical mixture of Ag, Al, and Ge atoms) has three "homoatomic" bonds, so that infinite graphitelike planar nets perpendicular to the 6 -fold axes are formed. The large-size atoms (rare-earth metal atoms here) are situated between the nets and form trigonal prisms. All the space in the structure is filled up by R_{6} trigonal prisms, the centers of which are occupied by atoms of the statistical mixture $M=\mathrm{Ag}+\mathrm{Al}+\mathrm{Ge}$. The replacement of Ag and Ge atoms (covalent radii $r=$ 0.134 and 0.122 nm , respectively) by Al atoms ($r=$ 0.118 nm) directly influences the a-parameter, which reflects the contact distances between small-size atoms in the structure ($\delta_{M-M}=a / \sqrt{3}$). The trigonal prisms are slightly compressed along the prism axis ($c / a<1$), however, the c / a ratio increases with increasing Al content. An important criterion for the formation of solid solutions, in addition to the atomsize factor, is the number of valence electrons. For the AlB_{2}-type phases studied here the valence electron concentration per atom of the statistical mixture $M=$ $\mathrm{Ag}+\mathrm{Al}+\mathrm{Ge}\left(\mathrm{VEC}_{\mathrm{A}}[14]\right)$ is in the range 4.30-4.76. The replacement of Ag atoms with one valence electron and Ge atoms with four valence electrons in the ratio $\mathrm{Ag}: \mathrm{Ge}=1: 1$, by Al atoms with three valence electrons leads to an increase of $\mathrm{VEC}_{\mathrm{A}}$. It should be noticed that for other extended solid solutions in the systems

$\operatorname{PrAg}_{0.8} \mathrm{Ge}_{1.2}-\operatorname{PrAl}_{1.55-1.48} \mathrm{Ge}_{0.45-0.52}$
$\mathrm{NdAg}_{0.7} \mathrm{Ge}_{1.3}-\mathrm{NdAl}_{1.63-1.50} \mathrm{Ge}_{0.37-0.50}$
$\oplus \mathrm{SmAg}_{0.55-0.36} \mathrm{Al}_{0.43-0.80} \mathrm{Ge}_{1.02-0.84}$

Fig. 1 Unit-cell parameters within the homogeneity ranges of the AlB_{2}-type compounds in the quaternary systems $\{\mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd}, \mathrm{Sm}\}-\mathrm{Ag}-\mathrm{Al}-\mathrm{Ge}$ as a function of the valence electron concentration $\mathrm{VEC}_{\mathrm{A}}$.

Table 3 Phases detected in alloys of the Nd-Ag-Al-Ge system at 873 K, 33.3 at. \% Nd.

No.	Sample composition, at. \%	Phase	Structure type	Unit-cell parameters			
				$a, \mathrm{~nm}$	$b, \mathrm{~nm}$	$c, \mathrm{~nm}$	$V, \mathrm{~nm}^{3}$
1	$\mathrm{Nd}_{33,3} \mathrm{Ag}_{23.4} \mathrm{Ge}_{43.3}$	$\mathrm{Nd}_{3} \mathrm{Ag}_{4} \mathrm{Ge}_{4}$	$\mathrm{Gd}_{3} \mathrm{Cu}_{4} \mathrm{Ge}_{4}$	0.4413(1)	0.7111(2)	1.4667(4)	0.4603(2)
		$\mathrm{NdAg}_{0.7} \mathrm{Ge}_{1.3}$	AlB_{2}	0.4324(1)	-	0.4094(1)	0.06627(3)
		$\mathrm{NdAg}_{1.4} \mathbf{G e}_{0.6}$	ZrNiAl	0.7268(2)	-	0.4305(2)	0.1969(1)
2	$\mathrm{Nd}_{33.3} \mathrm{Ag}_{20.0} \mathrm{Al}_{6.7} \mathrm{Fe}_{40.0}$	$\mathrm{NdAg}_{0.60} \mathrm{Al}_{0.20} \mathrm{Ge}_{1.20}$	AlB_{2}	0.43121 (7)	-	0.41274(9)	0.06646(2)
3	$\mathrm{Nd}_{33.3} \mathrm{Ag}_{17.3} \mathrm{Al}_{13.3} \mathrm{Ge}_{36.0}$	$\mathbf{N d A g}_{0.52} \mathrm{Al}_{0.40} \mathbf{G e}_{1.08}$	AlB_{2}	0.43379(6)	-	0.41144(8)	0.06705(2)
4	$\mathrm{Nd}_{33.3} \mathrm{Ag}_{14.0} \mathrm{Al}_{20.0} \mathrm{Ge}_{32.7}$	$\mathbf{N d A g}_{0.42} \mathbf{A l}_{0.60} \mathbf{G e}_{0.98}$	AlB_{2}	0.43177(5)	-	0.41493(6)	0.06700(1)
5	$\mathrm{Nd}_{33.3} \mathrm{Ag}_{11.3} \mathrm{Al}_{26.7} \mathrm{Ge}_{28.7}$	$\mathbf{N d A g} \mathbf{0 . 3 4} \mathbf{A l}_{0.80} \mathbf{G e}_{0.86}$	AlB_{2}	0.43048(5)	-	0.41811(6)	0.06710(1)
6	$\mathrm{Nd}_{33.3} \mathrm{Ag}_{6.7} \mathrm{Al}_{36.7} \mathrm{Ge}_{23.3}$	$\mathbf{N d A g}_{0.20} \mathrm{Al}_{1.10} \mathrm{Ge}_{0.70}$	AlB_{2}	0.43138(4)	-	0.41951(5)	0.06761(1)
7	$\mathrm{Nd}_{33.3} \mathrm{Ag}_{2.7} \mathrm{Al}_{46.7} \mathrm{Ge}_{17.3}$	$\mathrm{NdAg}_{0.08} \mathrm{Al}_{1.40} \mathbf{G e}_{0.52}$	AlB_{2}	0.43138(5)	-	0.42100(6)	0.06785(1)

Table 4 Phases detected in alloys of the $\mathrm{Sm}-\mathrm{Ag}-\mathrm{Al}-\mathrm{Ge}$ system at $873 \mathrm{~K}, 33.3$ at. $\% \mathrm{Sm}$.

No.	Sample composition, at.\%	Phase	Structure type	Unit-cell parameters			
				$a, \mathrm{~nm}$	$b, \mathrm{~nm}$	$c, \mathrm{~nm}$	$V, \mathrm{~nm}^{3}$
1	$\mathrm{Sm}_{33.3} \mathrm{Ag}_{20.0} \mathrm{Al}_{12.0} \mathrm{Ge}_{34.7}$	$\mathbf{S m A g}_{0.55} \mathrm{Al}_{0.43} \mathbf{G e}_{1,}$	AlB_{2}	0.42860(6)	-	0.4090(7)	0.06507(2)
		$\mathrm{Sm}_{3} \mathbf{A g}_{4} \mathrm{Ge}_{4}$	$\mathrm{Gd}_{3} \mathrm{Cu}_{4} \mathrm{Ge}_{4}$	0.4427(1)	0.6978(2)	1.4572(4)	0.4501(2)
		$\mathrm{SmAg}_{1.4} \mathrm{Ge}_{0.6}$	ZrNiAl	0.7145(2)	-	0.4322(1)	0.1911(1)
2	$\mathrm{Sm}_{33.3} \mathrm{Ag}_{16.7} \mathrm{Al}_{16.7} \mathrm{Ge}_{33.3}$	$\mathbf{S m A g}_{0.50} \mathbf{A l}_{0.50} \mathbf{G e}_{1.00}$	AlB_{2}	0.42793(4)	-	0.40949(6)	0.06494(1)
		$\mathrm{Sm}_{3} \mathrm{Ag}_{4} \mathrm{Ge}_{4}$	$\mathrm{Gd}_{3} \mathrm{Cu}_{4} \mathrm{Ge}_{4}$	0.4389(1)	0.7048(2)	1.4489(3)	0.4482(2)
		$\mathrm{SmAg}_{1.4} \mathrm{Ge}_{0.6}$	ZrNiAl	0.7185(1)	-	0.4274(1)	$0.19111(7)$
3	$\mathrm{Sm}_{33.3} \mathrm{Ag}_{16.0} \mathrm{Al}_{20.0} \mathrm{Ge}_{30.7}$	$\mathrm{SmAg}_{0.48} \mathrm{Al}_{0.60} \mathrm{C}^{\text {a }}$	AlB_{2}	0.42812(6)	-	0.40893(9)	0.06491(2)
		$\mathrm{SmAg}_{1.4} \mathbf{G e}_{0.6}$	ZrNiAl	0.7161(1)	-	0.4304(1)	0.19114(6)
		$\mathrm{Sm}_{3} \mathbf{A g}_{4} \mathrm{Ge}_{4}$	$\mathrm{Gd}_{3} \mathrm{Cu}_{4} \mathrm{Ge}_{4}$	0.4394(1)	0.7042(2)	1.4493(4)	0.4484(2)
4	$\mathrm{Sm}_{33.3} \mathrm{Ag}_{14.0} \mathrm{Al}_{23.3} \mathrm{Ge}_{29.4}$	$\mathbf{S m A g}_{0.42} \mathbf{A l}_{0.70} \mathbf{G e}_{0.88}$	AlB_{2}	0.42756(3)	-	0.41030(4)	0.06496(1)
		$\mathbf{S m A g}_{1.4} \mathbf{G e}_{0.6}$	ZrNiAl	0.71165(9)	-	$0.43434(9)$	0.19051(5)
		$\mathrm{Sm}_{3} \mathbf{A g}_{4} \mathrm{Ge}_{4}$	$\mathrm{Gd}_{3} \mathrm{Cu}_{4} \mathrm{Ge}_{4}$	0.4442(1)	0.6954(2)	1.4599(6)	0.4510(3)
5	$\mathrm{Sm}_{33.3} \mathrm{Ag}_{12.0} \mathrm{Al}_{26.7} \mathrm{Ge}_{28.0}$	$\mathbf{S m A g}_{0.36} \mathbf{A l}_{0.80} \mathbf{G e}_{0.84}$	AlB_{2}	0.42676(5)	-	0.41233(6)	0.06503(1)
		$\mathrm{Sm}_{3} \mathrm{Ag}_{4} \mathrm{Ge}_{4}$	$\mathrm{Gd}_{3} \mathrm{Cu}_{4} \mathrm{Ge}_{4}$	0.4447(2)	0.6949(3)	1.4629(6)	0.4521(3)
		$\mathbf{S m A g}_{1.4} \mathbf{G e}_{0.6}$	ZrNiAl	0.7115(1)	-	0.4351(1)	$0.19074(8)$

$\{\mathrm{Pr}, \mathrm{Sm}\}-\mathrm{Ag}-\mathrm{Al}-\mathrm{Ge}$ at 33.3 at. $\% R$ and 873 K , $\mathrm{VEC}_{\mathrm{A}}=3.65-4.17$ ($\mathrm{Fe}_{2} \mathrm{P}$-type structures) and 4.775.00 ($\alpha-\mathrm{ThSi}_{2}$-type structures).

The crystal structure of the $\operatorname{PrAg}_{0.8} \mathrm{Ge}_{1.2}{ }^{-}$ $\operatorname{PrAl}_{1.55-1.48} \mathrm{Ge}_{0.45-0.52}$ solid solution was investigated by X-ray powder and single-crystal diffraction. The
results of the structure refinement for the polycrystalline sample of composition $\operatorname{Pr}_{33.3} \mathrm{Ag}_{12.7} \mathrm{Al}_{26.7} \mathrm{Ge}_{27.3}$ are presented in Table 5. A pseudo-Voigt function with four parameters was used for the profile refinement. Atomic coordinates and isotropic displacement parameters are listed in Table 6

Table 5 Details of the structure refinement for the polycrystalline sample $\operatorname{Pr}_{33.3} \mathrm{Ag}_{12.7} \mathrm{Al}_{26.7} \mathrm{Ge}_{27.3}$ (diffractometer DRON-2.0M, Fe K α radiation).

Phase	$\operatorname{PrAg}_{0.38} \mathrm{Al}_{0.80} \mathrm{Ge}_{0.82}$	
Space group	$P 6 / m m m$	
Unit-cell parameters	$c, \mathrm{~nm}$	$0.43368(5)$
	$V, \mathrm{~nm}$	$0.41929(7)$
Formula units per cell Z		$0.06830(2)$
Density $D_{\mathrm{X}}, \mathrm{g} \mathrm{cm}^{-3}$	1	
Texture parameter G		6.394
FWHM parameters U, V, W	$1.062(8)[001]$	
Mixing parameter η	$0.23(2), 0,0.029(4)$	
Asymmetry parameter C_{M}	$0.63(4)$	
Number of refined parameters	$-0.19(4)$	
Reliability factors $R_{\mathrm{B}}, R_{\mathrm{p}}, R_{\mathrm{wp}}$	11	
Goodness of fit S		$0.0908,0.0468,0.0580$

Table 6 Atomic coordinates and isotropic displacement parameters for $\operatorname{PrAg}_{0.38} \mathrm{Al}_{0.80} \mathrm{Ge}_{0.82}$ (powder data, structure type AlB_{2}, Pearson symbol $h P 3$, space group P6/mmm, $\left.a=0.43368(5), c=0.41929(7) \mathrm{nm}\right)$.

Site	Wyckoff position	x	y	z	$B_{\text {iso }}$,
	$1 a$	0	0	0	$10^{-2} \mathrm{~nm}^{2}$
Pr	$2 d$	$1 / 3$	$2 / 3$	$0.5(2)$	
M		$1 / 2$	$1.3(2)$		

$M=0.19 \mathrm{Ag}+0.40 \mathrm{Al}+0.41 \mathrm{Ge}$

Table 7 Interatomic distances for $\operatorname{PrAg}_{0.38} \mathrm{Al}_{0.80} \mathrm{Ge}_{0.82}$ (powder data).

Atoms		δ, nm
Pr	$-12 M$	$0.32657(3)$
	-2 Pr	$0.41932(6)$
	-6 Pr	$0.43367(5)$
M	$-3 M$	$0.25038(3)$
	-6 Pr	$0.32657(3)$

$M=0.19 \mathrm{Ag}+0.40 \mathrm{Al}+0.41 \mathrm{Ge}$
and selected interatomic distances are given in Table 7. In the AlB_{2}-type structure the small-size atoms occupy one Wyckoff position (2d) and in the refinement the $\mathrm{Ag}: \mathrm{Al}: \mathrm{Ge}$ ratio was fixed according to the nominal composition of the alloy $\left(\operatorname{PrAg}_{0.38} \mathrm{Al}_{0.80} \mathrm{Ge}_{0.82}\right)$. An energy-dispersive X -ray analysis showed good agreement between the nominal composition of the sample and the composition of the quaternary phase $\left(\mathrm{Pr}_{33(2)} \mathrm{Ag}_{14(2)} \mathrm{Al}_{29(4)} \mathrm{Ge}_{24(3)}\right)$. A backscattered electron image of the sample $\mathrm{Pr}_{33.3} \mathrm{Ag}_{12.7} \mathrm{Al}_{26.7} \mathrm{Ge}_{27.3}$ is presented in Fig. 2 and the observed, calculated and difference X-ray powder diffraction patterns of the same alloy are shown in Fig. 3. Experimental details of a structure refinement based on diffraction data collected for a single crystal extracted from the same alloy are listed in Table 8. No superstructure or satellite reflections were observed. Atomic coordinates and equivalent isotropic displacement parameters assuming an AlB_{2}-type structure without vacancies are presented in Table 9,

Fig. 2 Backscattered electron image of the sample $\mathrm{Pr}_{33.3} \mathrm{Ag}_{12.7} \mathrm{Al}_{26.7} \mathrm{Ge}_{27.3}$.

Table 8 Details of the data collection and structure refinement for $\operatorname{PrAg}_{0.38} \mathrm{Al}_{0.80} \mathrm{Ge}_{0.82}$ (single-crystal data, diffractometer CAD-4T, Mo $K \alpha$ radiation).

Space group	$P 6 / \mathrm{mmm}$	
Unit-cell parameters	$a, \mathrm{~nm}$	$0.4318(1)$
	$c, \mathrm{~nm}$	
	$V, \mathrm{~nm}^{3}$	$0.4191(1)$
Formula units per cell Z		$0.06767(3)$
Density $D_{\mathrm{X}}, \mathrm{g} \mathrm{cm}$		
Absorption coefficient μ, mm^{-1}		1
Crystal size, mm	6.454	
Data collection method	24.96	
Number of measured reflections		$0.08 \times 0.07 \times 0.05$
Number of independent reflections		$\omega-2 \theta$ scan
Number of reflections with $I>2 \sigma(I)$	1241	
Factor $R_{\text {int }}$		146
Range h, k, l	141	
Refinement on	0.0890	
Reliability factors	\quad	$-8 \leq h \leq 7,-2 \leq k \leq 8,-8 \leq l \leq 8$
Goodness of fit S		F^{2}
Number of refined parameters $I>2 \sigma(I))$	$0.0346(0.0337)$	
Weighting scheme		$0.0641(0.0639)$
	1.176	
Extinction coefficient		$w=1 /\left[\left(\sigma F_{\mathrm{o}}\right)^{2}+(0.0133 P)^{2}\right]$

Fig. 3 Observed (dots), calculated (line) and difference (bottom) X-ray powder diffraction patterns for the $\mathrm{Pr}_{33.3} \mathrm{Ag}_{12.7} \mathrm{Al}_{26.7} \mathrm{Ge}_{27.3}$ sample (Fe $K \alpha$ radiation).
anisotropic displacement parameters and selected interatomic distances are listed in Tables 10 and 11, respectively. In this case the $\mathrm{Ag}: \mathrm{Al}: \mathrm{Ge}$ ratio was not fixed but the occupancy of the site was refined as a mixture between the heaviest (Ag) and the lightest (Al) elements. The refined composition $0.50(1) \mathrm{Ag}+$ $0.50(1) \mathrm{Al}$ corresponds to an average number of electrons of $30.0(3)$ for the atoms in the $2 d$ site (to be compared with 27 electrons used for the refinement on
powder diffraction data).
As can be seen from Tables 11-15, the distances between M atoms correspond to the average covalent radius of the small-size atoms $\left(r_{\text {av }}=\right.$ $\left(\mathrm{x} r_{\mathrm{Ag}}+\mathrm{y} r_{\mathrm{Al}}+\mathrm{zr} r_{\mathrm{Ge}}\right) /(\mathrm{x}+\mathrm{y}+\mathrm{z})$, where x, y and z are the relative quantities of Ag, Al and Ge in the statistical mixture). These distances are similar to those in the pure metals $\left(\delta_{\mathrm{Ag}-\mathrm{Ag}}=0.289, \delta_{\mathrm{Al}-\mathrm{Al}}=0.286, \delta_{\mathrm{Ge}-\mathrm{Ge}}=\right.$ 0.245 nm).

Table 9 Atomic coordinates and equivalent displacement parameters for $\operatorname{PrAg}_{0.38} \mathrm{Al}_{0.80} \mathrm{Ge}_{0.82}$ (single-crystal data, structure type AlB_{2}, Pearson symbol $h P 3$, space group $\left.P 6 / m m m, a=0.4318(1), c=0.4191(1) \mathrm{nm}\right)$.

Site	Wyckoff position	x	y	z	U_{eq}, 10^{2}
Pr	$1 a$	0	0	0	$0.0072(2)$
M	$2 d$	$1 / 3$	$2 / 3$	$1 / 2$	$0.0185(5)$

$M=0.50(1) \mathrm{Ag}+0.50(1) \mathrm{Al}$ used for the refinement

Table 10 Anisotropic displacement parameters $\left(10^{-2} \mathrm{~nm}^{2}\right)$ for $\operatorname{PrAg}_{0.38} \mathrm{Al}_{0.80} \mathrm{Ge}_{0.82}$ (single-crystal data).

Site	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Pr	$0.0065(2)$	$0.0065(2)$	$0.0101(3)$	$0.0032(1)$	0	0
M	$0.0091(5)$	$0.0091(5)$	$0.0374(8)$	$0.0045(2)$	0	0

$M=0.50(1) \mathrm{Ag}+0.50(1) \mathrm{Al}$

Table 11 Interatomic distances for $\operatorname{PrAg}_{0.38} \mathrm{Al}_{0.80} \mathrm{Ge}_{0.82}$ (single-crystal data).

Atoms		δ, nm
Pr	$-12 M$	$0.32566(6)$
	-2 Pr	$0.4191(1)$
	-6 Pr	$0.4318(1)$
M	$-3 M$	$0.24930(7)$
	-6 Pr	$0.32566(6)$

$M=0.50(1) \mathrm{Ag}+0.50(1) \mathrm{Al}$

Table 12 Interaxial ratio c / a, valence electron concentration $\mathrm{VEC}_{\mathrm{A}}$, contact distances between small atoms δ_{M-M}, and sum of the average covalent radii $2 r_{M}$ for the solid solution $\mathrm{CeAg}_{0.8} \mathrm{Ge}_{1.2}-\mathrm{CeAl}_{1.6-1.5} \mathrm{Ge}_{0.4-0.5}$.

Composition $^{c / a}$	$\mathrm{VEC}_{\mathrm{A}}$	$\delta_{M-M}, \mathrm{~nm}$	$2 r_{M}, \mathrm{~nm}$	
$\mathrm{CeAg}_{0.80} \mathrm{Ge}_{1.20}$	0.9409	4.30	0.2535	0.2536
$\mathrm{CeAg}_{0.70} \mathrm{Al}_{0.20} \mathrm{Ge}_{1.10}$	0.9432	4.35	0.2535	0.2516
$\mathrm{CeAg}_{0.60} \mathrm{Al}_{0.40} \mathrm{Ge}_{1.00}$	0.9492	4.40	0.2531	0.2496
$\mathrm{CeAg}_{0.50} \mathrm{Al}_{0.60} \mathrm{Ge}_{0.90}$	0.9659	4.45	0.2518	0.2476
$\mathrm{CeAg}_{0.40} \mathrm{Al}_{0.80} \mathrm{Ge}_{0.80}$	0.9767	4.50	0.2511	0.2456
$\mathrm{CeAg}_{0.24} \mathrm{Al}_{1.10} \mathrm{Ge}_{0.66}$	0.9784	4.59	0.2514	0.2425
$\mathrm{CeAg}_{0.08} \mathrm{Al}_{1.40} \mathrm{Ge}_{0.52}$	0.9879	4.68	0.2510	0.2394
$\mathrm{CeAl}_{1.50} \mathrm{Ge}_{0.50}[5]$	0.9977	4.75	0.2450	0.2380

Table 13 Interaxial ratio c / a, valence electron concentration $\mathrm{VEC}_{\mathrm{A}}$, contact distances between small atoms δ_{M-M}, and sum of the average covalent radii $2 r_{M}$ for the solid solution $\operatorname{PrAg}_{0.8} \mathrm{Ge}_{1.2}-\operatorname{PrAl}_{1.55-1.48} \mathrm{Ge}_{0.45-0.52}$.

Composition	c / a	VEC $_{\mathrm{A}}$	$\delta_{M-M}, \mathrm{~nm}$	$2 r_{M}, \mathrm{~nm}$
$\operatorname{PrAg}_{0.80} \mathrm{Ge}_{1.20}[2]$	0.9340	4.30	0.2528	0.2536
$\operatorname{PrAg}_{0.70} \mathrm{Al}_{0.20} \mathrm{Ge}_{1.10}$	0.9337	4.35	0.2524	0.2516
$\operatorname{PrAg}_{0.50} \mathrm{Al}_{0.50} \mathrm{Ge}_{1.00}$	0.9593	4.50	0.2507	0.2480
$\operatorname{PrAg}_{0.40} \mathrm{Al}_{0.60} \mathrm{Ge}_{1.00}$	0.9686	4.60	0.2495	0.2464
$\operatorname{PrAg}_{0.3} \mathrm{Al}_{0.80} \mathrm{Ge}_{0.82}$	0.9611	4.53	0.2504	0.2454
$\operatorname{PrAg}_{0.25} \mathrm{Al}_{1.00} \mathrm{Ge}_{0.75}$	0.9767	4.63	0.2497	0.2430
$\operatorname{PrAg}_{0.10} \mathrm{Al}_{1.30} \mathrm{Ge}_{0.60}$	0.9792	4.70	0.2499	0.2400
$\operatorname{PrAl}_{1.48} \mathrm{Ge}_{0.52}[6]$	0.9852	4.76	0.2495	0.2381

$$
\text { R. Kozak et al., Solid solutions with } \mathrm{AlB}_{2} \text {-type structure in } R \text { - } \mathrm{Ag}-\mathrm{Al}-\mathrm{Ge} \text { systems ... }
$$

Table 14 Interaxial ratio c / a, valence electron concentration $\mathrm{VEC}_{\mathrm{A}}$, contact distances between small atoms δ_{M-M}, and sum of the average covalent radii $2 r_{M}$ for the solid solution $\mathrm{NdAg}_{0.7} \mathrm{Ge}_{1.3} \mathrm{NdAl}_{1.63-1.50} \mathrm{Ge}_{0.37-0.50}$.

Composition	cla	$\mathrm{VEC}_{\mathrm{A}}$	$\delta_{M-M}, \mathrm{~nm}$	$2 r_{M}, \mathrm{~nm}$
$\mathrm{NdAg}_{0.70} \mathrm{Ge}_{1.30}$	0.9468	4.45	0.2496	0.2524
$\mathrm{NdAg} \mathrm{o}_{0.60} \mathrm{Al}_{0.20} \mathrm{Ge}_{1.20}$	0.9572	4.50	0.2490	0.2504
$\mathrm{NdAg}_{0.52} \mathrm{Al}_{0.40} \mathrm{Ge}_{1.08}$	0.9485	4.52	0.2504	0.2486
$\mathrm{NdAg} 0_{0.42} \mathrm{Al}_{0.60} \mathrm{Ge}_{0.98}$	0.9610	4.57	0.2493	0.2466
$\mathrm{NdAg}_{0.34} \mathrm{Al}_{0.80} \mathrm{Ge}_{0.86}$	0.9713	4.59	0.2485	0.2449
$\mathrm{NdAg} \mathrm{o}_{0.20} \mathrm{Al}_{1.10} \mathrm{Ge}_{0.70}$	0.9725	4.65	0.2491	0.2420
$\mathrm{NdAg}_{0.08} \mathrm{Al}_{1.40} \mathrm{Ge}_{0.52}$	0.9759	4.68	0.2491	0.2394
$\mathrm{NdAl}_{1.50} \mathrm{Ge}_{0.50}$ [7]	0.9795	4.75	0.2481	0.2380

Table 15 Interaxial ratio c / a, valence electron concentration $\mathrm{VEC}_{\mathrm{A}}$, contact distances between small atoms δ_{M-M}, and sum of the average covalent radii $2 r_{M}$ for the compound $\operatorname{SmAg} g_{0.55-0.36} \mathrm{Al}_{0.43-0.80} \mathrm{Ge}_{1.02-0.84}$.

Composition	c / a	$V E C_{A}$	$\delta_{M-M}, \mathrm{~nm}$	$2 r_{M}, \mathrm{~nm}$
$\mathrm{SmAg}_{0.55} \mathrm{Al}_{0.43} \mathrm{Ge}_{1.02}$	0.9543	4.46	0.2475	0.2489
$\mathrm{SmAg}_{0.50} \mathrm{Al}_{0.50} \mathrm{Ge}_{1.00}$	0.9569	4.50	0.2471	0.2480
$\mathrm{SmAg}_{0.48} \mathrm{Al}_{0.60} \mathrm{Ge}_{0.92}$	0.9552	4.48	0.2472	0.2474
$\mathrm{SmAg}_{0.42} \mathrm{Al}_{0.70} \mathrm{Ge}_{0.88}$	0.9596	4.52	0.2468	0.2462
$\mathrm{SmAg}_{0.36} \mathrm{Al}_{0.80} \mathrm{Ge}_{0.84}$	0.9662	4.56	0.2464	0.2451

Conclusions

AlB_{2}-type phases were observed in the systems \{Ce, $\mathrm{Pr}, \mathrm{Nd}, \mathrm{Sm}\}-\mathrm{Ag}-\mathrm{Al}-\mathrm{Ge}$ at 873 K . In the systems with Ce, Pr, and Nd they form complete solid solutions between ternary compounds $\mathrm{CeAg}_{0.8} \mathrm{Ge}_{1.2-}$ $\mathrm{CeAl}_{1.6-1.5} \mathrm{Ge}_{0.4-0.5}, \quad \operatorname{PrAg} g_{0.8} \mathrm{Ge}_{1.2}-\operatorname{PrAl}_{1.55-1.48} \mathrm{Ge}_{0.45-0.52}$, and $\quad \mathrm{NdAg}_{0.7} \mathrm{Ge}_{1.3}-\mathrm{NdAl}_{1.63-1.50} \mathrm{Ge}_{0.37-0.50}$, whereas in the system with Sm a quaternary compound with a significant homogeneity range, $\mathrm{SmAg}_{0.55-0.36} \mathrm{Al}_{0.43-0.80} \mathrm{Ge}_{1.02-0.84}$, is formed. The valence electron concentration per atom of the statistical mixture $\mathrm{Ag}+\mathrm{Al}+\mathrm{Ge}\left(\mathrm{VEC}_{\mathrm{A}}\right)$ is in the range 4.30-4.76. Increase of the Al and decrease of the Ag and Ge contents lead to shortening of the contact distances between small-size atoms in the infinite graphite-like planar nets perpendicular to the 6 -fold axes.

Acknowledgements

This work was supported by the Ministry of Ukraine for Education and Science under the grants No. 0109U002070.

References

[1] P.S. Salamakha, O.L. Sologub, O.I. Bodak, In: K.A. Gschneidner, Jr., L. Eyring (Eds.), Handbook on the Physics and Chemistry of the Rare Earth, Vol. 27, Elsevier, Amsterdam, 1999, pp. 1-224.
[2] I.A. Savysyuk, E.I. Gladyshevskii, R.E. Gladyshevskii, J. Alloys Compd. 314 (2001) 167-169.
[3] O.V. Zaplatynsky, P.S. Salamakha, O.L. Sologub, O.S. Procyk, O.I. Bodak, Pol. J. Chem. 70 (1996) 267-269.
[4] I. Melnyk, S. Pikus, V. Kuprysyuk, N. Semuso, R. Gladyshevskii, Arch. Mater. Sci. 26(4) (2005) 279-301.
[5] A.A. Muraveva, O.S. Zarechnyuk, Izv. Akad. Nauk SSSR. Neorg. Mater. (6) (1970) 1066-1068.
[6] E.I. Gladyshevskii, N.Z. Nakonechna, K. Cenzual, R.E. Gladyshevskii, J.-L. Jorda, J. Alloys Compd. 296 (2000) 265-271.
[7] A. Raman, H. Steinfink, Inorg. Chem. 6 (1967) 1789-1791.
[8] N. Muts, S. Pukas, O. Shcherban, L. Akselrud, R. Gladyshevskii, Coll. Abstr. 15th Int. Conf. Solid Compd. Trans. Elements, Kraków, 2006, p. 38.
[9] R.S. Kozak, V.M. Davydov, R.E. Gladyshevskii, Coll. Abstr. 17th Ukr. Conf. Inorg. Chem., Lviv, 2008, p. 138.
[10] R.S. Kozak, R.E. Gladyshevskii, Ukr. Khim. Zh. 76(3) (2010) 3-9.
[11] R. Kozak, I. Labinska, R. Gladyshevskii, Visn. Lviv. Univ., Ser. Khim. (in press).
[12] R.A. Young, A.C. Larson, C.O. Paiva-Santos, Rietveld analysis of X-ray and neutron powder diffraction patterns, School of Physics, Georgia Institute of Technology, Atlanta, 1998.
[13] G.M. Sheldrick, SHELX-97 - WinGX Version, Release 97-2, University of Göttingen, Germany, 1997.
[14] E. Parthé, Elements of Inorganic Structural Chemistry, K. Sutter Parthé Publisher, PetitLancy, 1996, 170 p.

