The quasi-ternary CdSe-Ga₂Se₃-Bi₂Se₃ system S.M. SOSOVSKA¹, I.D. OLEKSEYUK², O.V. PARASYUK²* Received January 29, 2010; accepted June 29, 2010; available on-line November 5, 2010 Differential-thermal analysis, X-ray diffraction, and metallography were used to study the interaction between the components of the quasi-ternary $CdSe-Ga_2Se_3-Bi_2Se_3$ system. Phase diagrams of four polythermal sections, the isothermal section at 670 K, as well as a projection of the liquidus surface have been constructed. The projection of the liquidus surface consists of six fields of primary crystallization of the phases, which are separated by 12 monovariant curves and 11 invariant points. The type of mono- and invariant processes in the system has been investigated and the coordinates of the invariant points have been determined. The system is triangulated by the quasi-binary section $CdGa_2Se_4$ -Bi $_2Se_3$ into two sub-systems $CdSe-CdGa_2Se_4$ -Bi $_2Se_3$ and $CdGa_2Se_4$ -Ga $_2Se_3$ -Bi $_2Se_3$. The present results can be employed for the growth of $CdGa_2Se_4$ single crystals from non-stoichiometric melts. Thermal analysis / Chalcogenide / Phase diagram / Isothermal section / Liquidus surface ### Introduction Compounds AIIBIII2CVI with defect chalcopyrite structure (CdGa₂S₄ structure type) are promising materials for non-linear optics. For instance, nonlinear properties of HgGa₂S₄ [1,2] and Hg_{1-x}Cd_xGa₂S₄ [2] have been extensively studied during recent years. Some of their parameters, like resistance against laser radiation, exceed by far those of the chalcogenide compounds that are presently used for the parametric frequency conversion of CO₂ lasers [2]. Among the numerous representatives of this group, we focus on CdGa₂Se₄. A comprehensive review of its optical properties can be found in [3]. The ternary cadmium gallium selenide has been known for a long time [4], but its industrial application is limited due to difficulties in growing large bulk crystals. Although the CdGa₂Se₄ compound melts congruently, it undergoes a polymorphous transformation, which hinders the single crystal growth using directional crystallization of the stoichiometric solution. There were attempts to grow CdGa₂Se₄ single crystals using chemical transport reactions with iodine as a transport agent [5-9]. Furthermore, the growth of single crystals from different melts is described in several studies [10-15], since non-stoichiometric melts can offer growth temperatures lower than the polymorphous transformation temperature. In this respect, the selection of the solvent is an important issue. We have tested a series of different solvents: SnSe₂ [12], SnSe [13], Sb₂Se₃ [14], Bi₂Se₃ [15], and PbSe [16]. The corresponding binary phase diagrams exhibit a primary crystallization field of the low-temperature CdGa₂Se₄ modification. Unfortunately, the formation of undesirable solid solutions on the basis of CdGa₂Se₄ occurs in all the above systems, except Bi₂Se₃ and PbSe. Therefore, we conclude that the two latter solvents seem to be the most promising for successful crystal growth [15]. The part of the liquidus that belongs to the low-temperature CdGa₂Se₄ modification in the CdGa₂Se₄-Bi₂Se₃ system is not large though. However, there may exist a possibility to widen the primary crystallization region by using the more complex CdSe-Ga₂Se₃-Bi₂Se₃ system, where ternary eutectics should lower the crystallization temperature of intermediate alloys inside the system. The binary compounds CdSe, Ga_2Se_3 , and Bi_2Se_3 melt congruently at 1512 K, 1278 K [17], and 979 K [18], respectively; they possess narrow homogeneity ranges, and therefore, act as components of a quasiternary system. Cadmium selenide crystallizes in the wurtzite structure type, space group $P6_3mc$ with lattice parameters a=0.42999 and c=0.70109 nm [19]. Ga_2Se_3 crystallizes in the zinc blende structure type, space group $F\bar{4}3m$, a=0.5422 nm [20], whereas ¹ Department of Chemistry, Lutsk National Technical University, Lvivska St. 75, 43018 Lutsk, Ukraine ² Department of Inorganic and Physical Chemistry, Lesya Ukrainka Volyn National University, Voli Ave 13, 43025 Lutsk, Ukraine ^{*} Corresponding author. E-mail: oleg@univer.lutsk.ua Bi₂Se₃ exhibits a trigonal structure, space group $R\overline{3}m$, with a = 0.41404(7), c = 2.8640(6) nm [15]. The boundary systems CdSe-Ga₂Se₃, CdSe-Bi₂Se₃, and Ga₂Se₃-Bi₂Se₃ were investigated in [21-25]. There is one congruently melting compound CdGa₂Se₄ in the CdSe-Ga₂Se₃ system. According to [21], the coordinates of the two eutectic points are 39 mol.% Ga₂Se₃ / 1208 K and 64 mol.% Ga₂Se₃ / 1206 K, which are in agreement with those given in [23]. The polymorphous transformation of CdGa₂Se₄ takes place at 1090 K. The solid solubility in Ga₂Se₃ extends to 17 mol.% CdSe at 1206 K; on the CdSe side the solid solution contains 32 mol.% Ga₂Se₃ at the eutectic temperature. The solid solubility in $CdGa_2Se_4$ is ~2 mol.% and is shifted to the Ga_2Se_3 side. Monotectoid decomposition of the solid solution at 988 K is observed for alloys in the concentration range of 5-25 mol.% Ga₂Se₃. According to [22], the coordinates of the eutectic points are 45 mol.% and 55 mol.% Ga₂Se₃ for 1203 and 1213 K, respectively. The solid solubility in the system components is 13 and 25 mol.% Ga₂Se₃ [23]. The low-temperature modification of CdGa₂Se₄ crystallizes in a defect chalcopyrite structure (space group $I\overline{4}$) with unit cell parameters a = 0.57430 and c = 1.0752 nm [15]. The CdSe–Bi $_2$ Se $_3$ system was investigated in [24]. In this system, a peritectic reaction results in the formation of the CdBi $_2$ Se $_4$ compound, which is stable only in the temperature interval 877-1009 K. The coordinates of the peritectic point are 95 mol.% Bi $_2$ Se $_3$ / 1009 K. The solid solution based on CdSe contains 0.25 mol.% Bi $_2$ Se $_3$ at 723 K; when raising the temperature it extends to 1 mol.% at 1000 K. The solid solution of Bi $_2$ Se $_3$ contains up to 3 mol.% CdSe at 723 K. The Ga_2Se_3 – Bi_2Se_3 system is described in [18,25]. The system is quasi-binary and of the eutectic type. The liquidus consists of the primary crystallization fields of the Ga_2Se_3 and Bi_2Se_3 solid solutions. The coordinates of the eutectic point are 65 mol.% Bi_2Se_3 / 900 K [18] or ~61 mol.% Bi_2Se_3 / 893 K [25]. The solid solubility of the components does not exceed 5 mol.% [25]. The $CdGa_2Se_4$ – Bi_2Se_3 phase diagram is of the eutectic type [15]. Its liquidus consists of three fields of primary crystallization of solid solutions based on the high- and low-temperature modifications of $CdGa_2Se_4$ and Bi_2Se_3 . The eutectic point is located at ~86 mol.% Bi_2Se_3 and 929 K. A horizontal line at 1092 K corresponds to the polymorphous transformation of high-temperature $CdGa_2Se_4$ into low-temperature $CdGa_2Se_4$. Analyzing the above phase diagrams, we expect that lowering the crystallization temperature is feasible in the CdSe–Ga₂Se₃–Bi₂Se₃ quasi-ternary system because of the possible formation of ternary eutectics. This work is focused on the investigation of phase equilibria in the CdSe–Ga₂Se₃–Bi₂Se₃ system, performed in order to find concentration regions that are suitable for the growth of single crystals of the low-temperature modification of CdGa₂Se₄ using the solution-melt method. ### Experimental For the investigation of the CdSe–Ga₂Se₃–Bi₂Se₃ system, 54 alloys were prepared, the compositions of which are plotted on the concentration triangle shown in Fig. 1. Their synthesis was carried out by fusing calculated amounts of the elements (purity better than 99.99%) in evacuated quartz ampoules. The alloys were held for 3 hours at the maximum temperature, which was 1320-1170 K depending on the composition. Afterwards, the ampoules were cooled slowly (10 K/h) down to 670 K. At this temperature, the alloys were annealed for 250 hours and then rapidly quenched in cold water. The obtained alloys were investigated with differential-thermal analysis (DTA), X-ray diffraction (XRD), and metallography. DTA signals were recorded on a Paulik-Paulik-Erdey derivatograph (Pt/Pt-Rh thermocouple). XRD was performed on powders using a DRON–4-13 diffractometer (CuK_{α} -radiation), and the microstructure of polished alloys was examined on a Leica VMHT Auto microhardness tester. ## **Triangulation** The isothermal section of the CdSe–Ga $_2$ Se $_3$ –Bi $_2$ Se $_3$ system at 670 K was constructed using XRD and metallography results (Fig. 2). The CdGa $_2$ Se $_4$ compound forms a quasi-binary section with Bi $_2$ Se $_3$. The section divides the CdSe–Ga $_2$ Se $_3$ –Bi $_2$ Se $_3$ system into two sub-systems, namely Ga $_2$ Se $_3$ –Bi $_2$ Se $_3$ –CdGa $_2$ Se $_4$ and CdSe–Bi $_2$ Se $_3$ –CdGa $_2$ Se $_4$. The CdBi $_2$ Se $_4$ compound is formed by a peritectic reaction in the CdSe–Bi $_2$ Se $_3$ –CdGa $_2$ Se $_4$ sub-system. This compound is stable only in a limited high-temperature interval and does not exist at the annealing temperature 670 K. Within the range of existence of CdBi $_2$ Se $_4$, the CdSe–Bi $_2$ Se $_3$ –CdGa $_2$ Se $_4$ sub-system could be conventionally triangulated into CdGa $_2$ Se $_4$ –Bi $_2$ Se $_3$ –CdBi $_2$ Se $_4$ –CdSe sub-systems. ### **Results** The common section at 75 mol.% Bi_2Se_3 : ' $GaBi_3Se_4$ '—' $CdBi_6Se_{10}$ ' section (Fig. 3) The liquidus of the 'GaBi₃Se₄'-'CdBi₆Se₁₀' section consists of the primary crystallization fields of γ^* , δ , $^{^*}$ α , β , γ , ξ , δ' and δ are solid solution ranges of Ga_2Se_3 , CdSe, Bi_2Se_3 , $CdBi_2Se_4$, hight-temperature and low-temperature $CdGa_2Se_4$ modifications, respectively. $\textbf{Fig. 1} \ Composition \ of the \ investigated \ alloys \ of the \ CdSe-Ga_2Se_3-Bi_2Se_3 \ system.$ Fig. 2 Isothermal section of the CdSe–Ga₂Se₃–Bi₂Se₃ system at 670 K. and β. The secondary crystallization involves two binary eutectics ([$L \Leftrightarrow \alpha + \gamma \text{ (field 5)}, L \Leftrightarrow \delta + \gamma \text{ (6)}$] in the sub-liquidus part of the Ga_2Se_3 – $CdGa_2Se_4$ – Bi_2Se_3 subsystem (0-50 mol.% 'CdBi₆Se₁₀' in the section). The crystallization in this part of the section is completed by a eutectic reaction at 892 K (point E₁ in Fig. 7). The alloy with 50 mol.% 'CdBi₆Se₁₀' is a two-phase one (e₄, Fig. 7). For the alloys from the concentration interval ~55-62 mol.% 'CdBi₆Se₁₀', the L+ $\beta \Leftrightarrow \delta + \xi$ peritectic reaction is observed at 942 K, as well as the secondary crystallization fields, L+ δ + β (field 7) and $L+\xi+\beta$ (field 8). Since the alloys of this part of the section are located in the CdGa₂Se₄-Bi₂Se₃-CdBi₂Se₄ sub-system, the primary crystallization field of the solid solution of the ternary compound ξ (field 10) can be found in the sub-liquidus part. The lowering of the CdBi₂Se₄ decomposition temperature indicates the existence of a certain homogeneity region based on CdBi₂Se₄, and one additional invariant solid-state process $\xi \Leftrightarrow \beta + \gamma + \delta$. Crystallization of these alloys completes with the L \Leftrightarrow $\delta+\gamma+\xi$ ternary eutectic process $(922 \text{ K}, \text{E}_2).$ The common section at 50 mol.% Bi₂Se₃: 'BiGaSe₃'-CdBi₂Se₄ (Fig. 4) The 'BiGaSe₃'-CdBi₂Se₄ section contains three fields of primary crystallization: L+ α (field 2), L+ δ (3), and $L+\beta$ (4). There are 5 regions of secondary crystallization involving the liquid phase $(L+\alpha+\gamma)$ (field 5), $L+\alpha+\delta$ (6), $L+\delta+\gamma$ (7), $L+\delta+\beta$ (8), $L+\beta+\xi$ (9)) in the sub-liquidus part. The alloys located in the Ga₂Se₃-CdGa₂Se₄-Bi₂Se₃ sub-system (0-50 mol.% CdBi₂Se₄) solidify according to the ternary eutectic reaction $L \Leftrightarrow \alpha + \delta + \gamma$ at 892 K (E₁, Fig. 7). The alloy containing 50 mol.% Bi₂Se₃ contains two phases (e₄, Fig. 7). For most samples from the CdGa₂Se₄– CdBi₂Se₄-CdSe sub-system, the crystallization continues with the invariant peritectic horizontal, which belongs to the δ -U₃- ξ - β plane (942 K) and finishes with the ternary eutectic reaction $L \Leftrightarrow \delta + \gamma + \xi$ at 922 K (E₂, Fig. 7). The horizontal line at 853 K corresponds to the eutectoid decomposition of CdBi₂Se₄. The common section at 25 mol.% Bi_2Se_3 : ' $BiGa_3Se_6$ '—' $Cd_3Bi_2Se_6$ ' (Fig. 5) Although the diagram of the 'BiGa₃Se₆'-'Cd₃Bi₂Se₆' section is similar to the previous one, it has several peculiarities. One difference is that the section contains a primary crystallization field of δ' (field 3). Fields 4 correspond to the simultaneous existence of the low- and high-temperature modifications of CdGa₂Se₄. Together with the liquidus isotherms they are used to determine geometrically the position of the two ternary peritectics U_1 and U_2 (Fig. 7). Another difference is that the section crosses the CdGa₂Se₄-CdBi₂Se₄-CdSe sub-system (67-100 mol.% 'Cd₃Bi₂Se₆'), where the crystallization is completed by a peritectic reaction at 942 K. The thermal decomposition of CdBi₂Se₄ takes place at 853 K, however, a liquid phase is not required for the reaction. The $CdGa_2Se_4$ – $CdBi_2Se_4$ section (Fig. 6) The CdGa₂Se₄–CdBi₂Se₄ section is not quasi-binary. Its liquidus consists of primary crystallization fields of solid solutions based on high-temperature and low-temperature CdGa₂Se₄, and CdSe. The horizontal line at 1078 K corresponds to the beginning of the **Fig. 3** Phase diagram of the 'GaBi₃Se₄'– 'CdBi₆Se₁₀' section: (1) L; (2) L+γ; (3) L+δ; (4) L+β; (5) L+γ+α; (6) L+γ+δ; (7) L+δ+β; (8) L+β+ξ; (9) L+δ+ξ; (10) L+ξ; (11) L+ξ+γ; (12) ξ+γ; (13) γ+ξ+β; (14) γ+α; (15) γ+α+δ; (16) β+δ+ξ; (17) γ+δ; (18) β+δ+γ; (19) γ+β. **Fig. 4** Phase diagram of the 'BiGaSe₃'– CdBi₂Se₄ section: (1) L; (2) L+α; (3) L+δ; (4) L+β; (5) L+α+γ; (6) L+δ+α; (7) L+δ+γ; (8) L+β+δ; (9) L+β+ξ; (10) L+δ+ξ; (11) L+ξ; (12) L+γ+ξ; (13) δ+γ+ξ; (14) γ+ξ; (15) β+γ+ξ; (16) α+γ; (17) α+γ+δ; (18) γ+δ; (19) δ+γ+β; (20) β+γ. secondary crystallization of δ with ξ (field 5). The peritectic reaction L+ $\beta \Leftrightarrow \delta + \xi$ at 942 K is typical for all the alloys from the CdGa₂Se₄–CdBi₂Se₄–CdSe subsystem. In turn, the decomposition of CdBi₂Se₄ is the reason why all intermediate alloys are three-phase ones at the annealing temperature of 670 K. **Fig. 5** Phase diagram of the 'BiGa₃Se₆'-'Cd₃Bi₂Se₆'section: (1) L; (2) L+α; (3) L+δ'; (4) L+δ'+δ; (5) L+δ; (6) L+β; (7) L+α+γ; (8) L+α+δ; (9) L+δ+γ; (10) L+β+δ; (11) L+β+ξ; (12) L+δ+ξ; (13) δ+γ+ξ; (14) δ+β+ξ; (15) β+ξ; (16) γ+ξ+β; (17) α+γ; (18) α+δ+γ; (19) γ+δ; (20) δ+γ+β; (21) γ+β. **Fig. 6** Phase diagram of the CdGa₂Se₄– CdBi₂Se₄ section: (1) L; (2) L+δ'; (3) L+δ; (4) L+β; (5) L+δ+β; (6) L+β+ξ; (7) ξ; (8) ξ+β; (9) β +γ+ξ; (10) δ +ξ; (11) δ +γ+β; (12) β +γ; (13) L+ δ + δ' Projection of the $CdSe-Ga_2Se_3-Bi_2Se_3$ liquidus surface Based on the described phase diagrams of the boundary systems and four sections, a projection of the CdSe–Ga₂Se₃–Bi₂Se₃ liquidus surface on the concentration triangle has been constructed (Fig. 7). The liquidus surface is represented by six fields of primary crystallization. Three of them belong to the solid solutions based on the system components: β , α , and γ . The other three fields correspond to the primary crystallization of the ternary compounds: δ' , δ , and ξ . The fields are separated by 11 monovariant lines. There are 7 binary and 5 ternary points in the system, among them 3 ternary peritectics and 2 ternary eutectics. The type and temperature of all invariant processes are given as a scheme in Fig. 8. The coordinates of the eutectic point (Table 1) were estimated geometrically and further refined during metallographic observations of specific alloys. The ternary peritectic compositions were evaluated geometrically using the relevant phase diagrams and liquidus isotherms. The CdGa₂Se₄–Bi₂Se₃ quasi-binary section divides the system into two sub-systems, Ga₂Se₃–Bi₂Se₃–CdGa₂Se₄ and CdSe–Bi₂Se₃–CdGa₂Se₄. Three binary eutectics and one binary periectic are located on the sides of the Ga₂Se₃–Bi₂Se₃–CdGa₂Se₄ triangle; two ternary peritectic processes occur inside the triangle. Point U₁ corresponds to the peritectic L+ δ' $\Leftrightarrow \alpha$ + δ (1089 K). The ternary eutectic reaction E₁ (892 K) takes place in the plane limited by α – γ – δ . Point U₂ in the CdGa₂Se₄-Bi₂Se₃-CdSe subsystem corresponds to the ternary peritectic process $L+\delta' \Leftrightarrow \delta+\beta$ (1088 K), which takes place within the δ -p₃-U₂- β plane. The invariant process U₃, $L+\beta \Leftrightarrow \delta+\xi$, exists because of the incongruent melting of $CdBi_2Se_4$, and is located within the ξ - U_3 - δ - β plane. The CdGa₂Se₄-Bi₂Se₃-CdSe sub-system is divided by the non-quasi-binary section CdGa₂Se₄-CdBi₂Se₄ into the CdGa₂Se₄-CdBi₂Se₄-CdSe and CdGa₂Se₄-Bi₂Se₃-CdBi₂Se₄ sub-systems. The crystallization of all alloys from the CdGa₂Se₄-CdBi₂Se₄-CdSe sub-system is completed by a ternary eutectic reaction (E₂, L \Leftrightarrow $\beta+\delta+\gamma$). In the other subsystem, the solidified alloys exhibit a mixture of the solid solutions based on CdGa₂Se₄, Bi₂Se₃, and CdSe, because the CdBi₂Se₄ compound is not stable below 853 K. The polymorphous transformation of $CdGa_2Se_4$ appears on the liquidus surface as the invariant curve $U_1p_3U_2$. Both modifications of $CdGa_2Se_4$ possess their own primary crystallization field. Comparing the investigated system with earlier studied systems [12-16], we can recognize the absence of quaternary phases and the limited solid solubility based on CdGa₂Se₄, and the presence of primary crystallization fields of both the HT- and LT-modification of the ternary phase. The section joining CdGa₂Se₄ and the third component is quasi-binary of the eutectic type in all the systems. The field of primary crystallization of the LT modification is in all cases rather large and depends on the melting point of the third component of these systems. As the solid solubility based on CdGa₂Se₄ is limited, the temperatures of the invariant processes related to **Fig. 7** Projection of the liquidus surface of the CdSe–Ga₂Se₃–Bi₂Se₃ system. $\textbf{Fig. 8} \ \text{Liquid-solid equilibria in the } \ \text{CdSe-Ga}_2\text{Se}_3\text{-Bi}_2\text{Se}_3 \ \text{quasi-ternary system}.$ $\textbf{Table 1} \ Composition \ of the \ invariant \ points \ in \ the \ quasi-ternary \ CdSe-Ga_2Se_3-Bi_2Se_3 \ system.$ | Invariant point | Composition, mol.% | | | |-----------------|--------------------|------------|----------------------------------| | | CdSe | Ga_2Se_3 | $\mathrm{Bi}_{2}\mathrm{Se}_{3}$ | | E_1 | 7 | 31 | 62 | | E_2 | 12 | 10 | 78 | | U_1 | 24 | 54 | 22 | | U_2 | 28 | 50 | 22 | | U_3 | 13 | 10 | 77 | the phase transition are very close (within 20 K). Taking into account that the solid solution ranges in the systems with GeSe₂, SnSe₂, Sb₂Se₃ extend by less than 2-3 mol.%, but are practically absent in the systems with PbSe and Bi₂Se₃, the latter two are of the most interest as solvents for the solution-melt technique. However, the use of PbSe for crystal growth requires special equipment due to high viscosity of the melts (indicated by the possibility of glass-formation of certain alloys of this system). Thus the use of Bi₂Se₃ as the solvent is expected to produce the best crystals among all the investigated systems. ### Conclusion The constructed phase diagram of the CdSe– Ga_2Se_3 – Bi_2Se_3 system exhibits a considerably large region of primary crystallization of the low-temperature Cd Ga_2Se_4 modification, and therefore, can be used when selecting the initial composition of the melt for the growth of single crystals of the low-temperature Cd Ga_2Se_4 by the solution-melt method. #### References - [1] V.V. Badikov, A.K. Don, K.V. Mitin, A.V. Seryogin, V.V. Sinaiskii, N.I. Shchebetova, *Kvantovaya Elektron.* 33 (2003) 831. - [2] Yu.M. Andreev, V.V. Badikov, V.G. Voevodin, L.G. Geiko, P.P. Geiko, M.V. Ivashchenko, A.I. Karapuzikov, I.V. Serstov, *Kvantovaya Elektron*. 31 (2001) 1075. - [3] L.M. Suslikov, V.Yu. Slivka, M.P. Lisitsa, *Solid-State Optical Filters on Gyropropic Crystals*, Interpress LTD, Kiev, 1998 (in Russian). - [4] H. Hahn, G. Frank, W. Klinger, A. Stoerger, J. Stoerger, Z. Anorg. Allg. Chem. 279 (1955) 241. - [5] Y.O. Derid, S.I. Radautsan, I.M. Tiginyanu, *Multicomponent chalcogenides* $A^{II}B^{III}_{2}C^{VI}_{4}$, Shtiintsa, Kishinev, 1998 (in Russian). - [6] C.-D. Kim, H.-M. Jeong, H.-G. Kim, W.-T. Kim, J. Korean Phys. Soc. 27 (1994) 440. - [7] J.A. Beun, R. Nitsche, M. Lichtensteiger, *Physica*, 27 (1961) 448. - [8] T.G. Kerimova, Sh.S. Mamedov, E.Y. Salaev, *Solid State Commun.* 48 (1983) 597. - [9] V. Tezlevan, I. Mushkutariu, S. Radantsan, V. Tsurkan, Proc. First Int. Conf. "Material Science of Chalcogenide and Diamond-Structure Semiconductors", Chernivtsi, 1994, Vol. 1, p. 28. - [10] H. Horinaka, A. Uemura, N. Yamamoto, J. Cryst. Growth 99 (1990) 785. - [11] A.A. Vaipolin, Y.A. Nikolaev, I.K. Polushina, V.Y. Rud', Y.V. Rud', E.I. Terykov, N. Fernelius, *Fiz. Tekh. Poluprovodn.* 37 (2003) 572. - [12] I.D. Olekseyuk, O.V. Parasyuk, Proc. First Int. Conf. "Material Science of Chalcogenide and Diamond-Structure Semiconductors", Chernivtsi, 1994, Vol. 1, p. 111. - [13] I.D. Olekseyuk, O.V. Parasyuk, O.M. Yurchenko, L.V. Piskach, V.Z. Pankevych, *Abstr. 14th Int. Conf. Crystal Growth, Grenoble, France*, 2004, p. 283. - [14] S.M. Sosovska, O.M. Yurchenko, Y.E. Romanyuk, I.D. Olekseyuk, O.V. Parasyuk, *Chem. Met. Alloys* 2 (2009) 55-58. - [15] S.M. Sosovska, O.M. Yurchenko, Y.E. Romanyuk, I.D. Olekseyuk, O.V. Parasyuk, J. Alloys Compd. 417 (2005) 127-130. - [16] S.M Sosovska, I.D. Olekseyuk, O.V. Parasyuk, VII Vseukr. Konf. Stud. Aspir., 2006, p. 67. - [17] T.B. Massalski (Ed.), Binary Alloy Phase Diagrams, Vol. 1-3, ASM, Ohio, 1985, P. 3589. - [18] R. Eholie, J. Flahaut, *Bull. Soc. Chim. Fr.* 4 (1972) 1250-1254. - [19] R.R. Reeber, J. Mater. Sci. 11 (1976) 590-591. - [20] P.H. Hamilton, *Semicond. Prod. Solid State Technolog.* 7(6) (1964) 15-20. - [21] S.M. Sosovska, I.D. Olekseyuk, O.V. Parasyuk, J. Alloys Compd. 453 (2008) 115–120. - [22] A.M. Loireau-Lozac'h, M. Guittard, J. Flahaut, *Mater. Res. Bull.* 20 (1985) 443-451. - [23] M.P. Tyrziu, S.I. Radautsan, M.M. Markus, S.M. Kolosenko, *Phys. Status Solidi A* 3 (1970) 293-296. - [24] A.A. Sher, I.N. Odin, A.V. Novoselova, *Zh. Neorg. Khim.* 24 (1979) 2509-2515. - [25] S.M. Sosovska, O.V. Gurska, L.V. Piskach, O.V. Parasyuk, *Nauk. Visn. Volyn. Nats. Univ.* 4 (2006) 66-70.