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A model describing the thermodynamic properties of a superconducting phase in the presence of a pseudogap 
induced by local charge density waves is presented in the paper. Within the framework of the model 
calculations it is shown that the obtained phase diagram reproduces properly, in a qualitative way, the phase 
diagram of the superconducting state for BaPb1−xBixO3. It is further shown that the pseudogap very strongly 
reduces the value of the order parameter for the superconducting phase, whereas the value of the electron 
effective mass and the energy shift function are independent of the pseudogap. 
 
Superconductors / Thermodynamic properties 
 
I. Introduction 
 
The BaPb1−xBixO3 (BPBO) superconductor was for the 
first time synthesized by Sleight et al. in 1975 [1]. 
Due to the fact that the superconducting phase in 
BPBO is induced by electron-phonon interaction, the 
thermodynamic properties of the described compound 
were in the literature tentatively explained within the 
framework of the classical Eliashberg formalism [2-5] 
(for a discussion of the Eliashberg equations, 
originally formulated by G.M. Eliashberg [5], we refer 
to [6]). In our opinion, there are strong arguments 
against the correctness of such a procedure. First of 
all, the classical Eliashberg theory predicts a 
completely different phase diagram for the 
superconducting phase than the one observed for the 
BPBO superconductor. The phase diagram predicted 
by the Eliashberg theory and the diagram observed for 
BPBO [9,10] are presented schematically in Fig. 1. It 
is easy to spot the great qualitative differences 
between these diagrams. From the considerations 
made within the framework of the classical Eliashberg 
theory it is inferred that the superconducting phase 
exists in the whole range of the x parameter and the 
critical temperature takes the highest value for the 
half-filled electronic band. However, in the phase 
diagram for BPBO it can be clearly seen that the 
maximum value of the critical temperature is observed 
for x ≅ 0.3 (Tc max ≅ 13 K) and then the 

superconducting phase quickly disappears. Secondly, 
the classical Eliashberg theory describes a physical 
system that can exist in the metallic state or in the 
superconducting state. The phase diagram obtained for 
BPBO proves, however, that this compound can exist 
in three distinct states: metallic, superconducting and 
semiconducting [10]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 (A) Phase diagram predicted by the 
classical Eliashberg theory [9]. (B) 
Experimentally determined phase diagram for 
BPBO [10]. In both figures Tc denotes the 
critical temperature; x ~ 〈n〉 was assumed, 
where 〈n〉 is the average number of electrons at 
the node. 
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 The complicated structure of the phase diagram for 
BPBO can be understood based on the results obtained 
for pure BaBiO3 (BBO) [11-14], X-ray absorption fine 
structure (XAFS) measurements [15] and optical 
reflectivity measurements [17,19]. It has been shown 
experimentally that the BBO compound is not a good 
metal with a half-filled electronic band, but it is in the 
semiconducting state. The reason for this is directly 
connected with the existence of static charge density 
waves in BBO, which are induced by a Peierls’ 
instability [20]. The XAFS measurements have 
additionally proven that, with decreasing Bi content 
and increasing Pb content, the charge density waves 
are the subject of constant weakening, which means 
that doping by lead destroys the long-range order 
CDW in BPBO. The peak in the optical conductivity 
versus frequency, i.e. the optical energy gap, behaves 
in an analogous way. The optical gap does not vanish, 
not even at the transition from the superconducting 
state to the metallic state (x = 0.35), but is still 
observed in the metallic state (0.2 < x < 0.35), where a 
pseudogap was detected. The presented experimental 
results explicitly suggest that the pseudogap in the 
electron density of states is connected with the 
existence of local charge density waves, the remains 
of the static CDW observed in pure BBO. 
 Taking into consideration the conclusions from the 
quoted facts, it has to be stated that the properties of 
the superconducting phase in BPBO should be 
described within the framework of an essentially 
modified Eliashberg theory. An adequate model, in 
which it has been assumed that the superconducting 
state is induced by electron-phonon interaction and the 
pseudogap in the electron density of states is 
connected with the existence of local charge density 
waves, is proposed in the present paper. 
 
 
II. The model 
 
In the simplest case the coupling between the electron 
gas and the vibrations of the crystal lattice is described 
by the Fröhlich hamiltonian [2]: 
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where †
kσc  denotes the electron annihilation (creation) 

operator in the Bloch state with the momentum k and 

spin σ; †
qb  is the phonon annihilation (creation)  

 

operator. The function kε  defines the electronic band 

energy, µ is the chemical potential, and qω  determines 

the phonon energy with the momentum q. The matrix 
elements that describe the electron-phonon interaction 
are denoted by the symbol gk,k+q. 
 The electronic band structure is modeled by a 
threedimensional band with the nearest neighbor 
hopping integral t; kε  = −2t [cos(kx) + cos(ky) + 

cos(kz)]. In the presented model the electron density of 
states function was approximated by a constant 
density of states at the Fermi surface ρ(0). In this case 
ρ(0) = 1/(2W), where W is the half band width;  
W = 6t. In the numerical calculations we take t as an 
energy unit.  
 In order to bring out the Eliashberg equations, the 
Fröhlich hamiltonian should be rewritten with the use 

of the Nambu spinors kψ , †
kψ  [4]: 
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where τ3 is one of the four Pauli matrices: τ0-τ3. 
 The new form of the Fröhlich hamiltonian enables 
us to bring out the Dyson equation, which can be used 

to calculate the matrix self-energy )(k miω∑ : 
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In Eq. 4 )(G0k miω  is the electronic Green function 

for the gas of the non-interacting electrons: 
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The Matsubara frequencies are defined by the formula 
ωm ≡ (π/β)(2m − 1), where β is the inverted 
temperature; β ≡ (kBT)−1, kB is the Boltzmann 
constant. 
 The pseudogap in the electron density of states 
was introduced into the Eliashberg formalism by 
renormalization of the Green function )(0k miG ω  in 

the Dyson equation: 
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In Eq. 7 〉〈n  stands for the average number of 
electrons at the node; G is the maximum width  
of the pseudogap. It is easy to notice that the width of 
the pseudogap for a fixed number of electrons is 
defined by the product G 〉〈n . On the other hand,  
the depth of the pseudogap is defined by the terms 
〉〈n  and 1− 〉〈n  that appear in the numerators in  

Eq. 7. In the analyzed model, the pseudogap is deepest 
and widest for the half-filled electronic band.  
In the case of the BPBO superconductor the procedure 
of the parametric description of the pseudogap 
postulated in Eq. 7 can be motivated by the 

experimental results presented in [10], where  
it has been shown that the size of the pseudogap 
increases with increasing average number of electrons 
at the node. It is also worth noting that the  
presented model qualitatively reproduces the 
dependence of the pseudogap on the average number 
of electrons at the node that was calculated 
numerically in [22]. 
 The set of Eliashberg equations with the 
pseudogap was brought out in the usual, self-
consistent way [5-7]. The following results were 
obtained: 
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 In Eqs. 8-11 Zl ≡Z(iwl) denotes the wave function 
renormalization factor, χl ≡χ(iwl) stands for the energy 
shift function, ϕl ≡ϕ (iwl) for the order parameter 
function. Let us notice that in the Eliashberg 
formalism, the order parameter for the 
superconducting phase ∆l ≡∆(iwl) is defined by the 
ratio ϕl / Zl . The functions K± (l,m) were defined by 
the following expression: 
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The symbol α2F(Ω) in Eq. 14 denotes the Eliashberg 
function. The calculation of the Eliashberg function 
from first principles for BPBO is a very difficult task. 
For this reason the pairing kernel K(l − m) was 
simplified according to the procedure proposed by 
Kresin [23]: 
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where πβω 2/v
D

≡ , Dω  is the Debye phonon 

frequency and λ is the electron-phonon coupling 

function; ΩΩΩ≡ ∫
∞+

/Fd
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2 )(2λ α . In the numerical  

 

calculations ωD = 1.5t and λ = 2t were assumed. It 
needs to be mentioned that the application of Kresin’s 
approximation causes a presentation of only 
qualitative results in the paper. 
 Taking into consideration the presence of a 
pseudogap leads to the appearance of the Fk(m) 
function in the Eliashberg equations: 
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The Fk(m) function has a complicated structure 
because it depends on the energy value, as well as on 
the Matsubara frequency. In the proposed model the 
Fk(m) function will be approximated by its value on 
the Fermi surface: 
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 Additionally, the numerical analysis of the 
Eliashberg equations can be significantly simplified 
when the sums over momenta are replaced by the 
integrals over energies. The obtained integrals should 
then be calculated analytically. The details of the 
procedure are given below: 
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The functions R1 and R2 are defined by the following expressions: 
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III. Numerical results 
 
A. Influence of the width of the pseudogap on the 
values of the ϕ, Z and χ functions 
 
A numerical analysis of the Eliashberg equations was 
conducted for four hundred Matsubara frequencies 
(M = 400); kBT = 10−3t and 〈n〉 = 0.7 was assumed.  
 The dependence of the order parameter function on 
the Matsubara frequency for the selected values of G 
is presented in Fig. 2a. It can be noticed that the order 
parameter function decreases with increasing 
maximum width of the pseudogap. This fact can be 
easily explained when remembering that the 
pseudogap always opens itself on the Fermi surface 
and the G〈n〉 product defines the width of the 
pseudogap. Thus, when the value of the G parameter 
increases, the width of the pseudogap increases as 
well and, as a consequence, the number of electrons 
that are able to form Cooper pairs near the Fermi 
surface must decrease. The presented results also 
prove that the ϕm function always reaches its 
maximum for m = 1, independently of the assumed 
value of the G parameter. 
 Figs. 2b and 2c show the dependence of the wave 
function renormalization factor and energy shift on 
successive Matsubara frequencies, G = 10−4t was 
assumed. Only one value of the G parameter was 
selected, because it has been stated that the Zm and χm 
functions do not depend on the width of the 
pseudogap. In the Eliashberg formalism, the Zm 

function describes the electron effective mass (*
em ) 

whereas the χm function renormalizes the value of the 
chemical potential. On the basis of the results 
presented in Figs. 2b and 2c it has to be concluded that 
the change of width of the pseudogap in the electron 
density of states does not have any influence on the 
electron effective mass value and does not change the 

function that renormalizes the chemical potential. It is 
also worth noticing that, like the order parameter 
function, the Zm and χm functions take their extreme 
values for m = 1. 
 
B. Dependence of the ϕ, Z, χ and µ functions on 〈n〉 
 
In the present subchapter the dependence of the 
solutions of the Eliashberg equations on the average 
number of electrons at the node is analyzed. The 
dependence is far more complicated in the 
investigated model than in the classical Eliashberg 
theory, due to the fact that both the width and depth of 
the pseudogap are parameterized by 〈n〉. 
 In Fig. 3a the dependence of the ϕm function on the 
Matsubara frequency for selected values of 〈n〉 is 
presented. Identical values for the maximum width of 
the pseudogap and temperature, G = 10−3t and  
kBT = 10−3t, were assumed. When analyzing the 
presented results it was concluded that with an 
increase of the average number of the electrons at the 
node, the ϕm function first increases (〈n〉 = 0.2 and 〈n〉 
= 0.4), and then begins to decrease (〈n〉 = 0.6 and  
〈n〉 = 0.8). It may be noticed that the behavior of the 
function ϕm is totally different from the one predicted 
by the classical Eliashberg theory (G = 0).  
The dependence of the order parameter function on 
the average number of electrons at the node within the 
framework of the classical formalism was analyzed in 
[9]. It was shown there that the values of  
the ϕm function increase with increasing values of the 
parameter 〈n〉. The unusual dependence of  
the ϕm function on 〈n〉 is connected with the fact that 
with increasing values of the 〈n〉 parameter,  
the number of electronic states near the Fermi  
surface initially increases and then begins to decrease, 
due to the increase of the width and depth of the 
pseudogap. 
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Fig. 2 (A) Dependence of the φm function on 
the Matsubara frequency for selected values of 
the G parameter. (B) Dependence of the Zm 
function and (C) χm function on the Matsubara 
frequency for G = 10−4t. 
 
 
 

 
 

Fig. 3 (A) Dependence of the φm function, (B) 
Zm function and (C) χm function on the 
Matsubara frequency for selected values of the 
average number of electrons at the node 〈n〉. 
G = 10−3t and kBT = 10−3t were assumed. 

 
 
 The wave function renormalization factor and 
energy shift as a function of the Matsubara frequency 
for the selected values of the 〈n〉 parameter are 
presented in Figs. 3b and 3c. As before, G = 10−3t and 
kBT = 10−3t were assumed. It can be noticed that the 
values of the wave function renormalization factor and 
of the energy shift function increase with increasing 
values of the 〈n〉 parameter. The presented result 
proves that the existence of the pseudogap in the 
electron density of states does not change the 
dependence of the Zm and χm functions on 〈n〉, when 
compared to the results obtained when the analysis is 
based on the classical Eliashberg equations [9]. 

 The dependence of the order parameter, wave 
function renormalization factor, and the energy shift 
on the average number of electrons at the node can be 
fully investigated by analyzing the behavior of those 
functions for the first Matsubara frequency. 
 The most relevant result achieved in the work is 
presented in Fig. 4; it is the dependence of the ϕm=1 
function on 〈n〉 for selected values of the G parameter. 
On the basis of the presented results, it has been stated 
that, with the increase of the G parameter, the 
superconducting phase vanishes from the side of the 
high values of 〈n〉. In particular, for the case in which 
the maximum width of the pseudogap is equal to two 
and a half-fold value of the considered temperature, 
the superconducting phase appears in the range in 
which the superconducting state for BPBO is 
observed. 
 Figs. 5a and 5b show plots of Zm=1 and χm=1 versus 
〈n〉. Additionally, Fig. 5b includes an insert, in which 
the dependence of the chemical potential on the 
average number of electrons at the node is plotted (the 
way, how the potential was calculated, is precisely 
described in Appendix A). 
 It can be noticed that the wave function 
renormalization factor, the energy shift function and 
the chemical potential reach their maximum values for 
the half-filled electronic band. It needs to be 
underlined that the presented courses of the Zm=1, χm=1 
and µ functions do not differ from the courses of those 
functions for the case of G = 0 [9]. 
 
C. Temperature dependence of the order parameter 
 
The dependence of the order parameter ∆ on the 
temperature, for the case when the influence of the 
pseudogap on the superconducting state is relatively 
small (G = 10−4t, 〈n〉 = 1) and for the opposite case 
(G = 5×10−3t, 〈n〉 = 0.175), is described in this 
subchapter. 
 Figs. 6a and 6b show the order parameter as a 
function of the Matsubara frequency for selected 
values of temperature in the two cases. It is worth 
pointing out that for the small pseudogap the critical 
temperature is equal to kBTc = 117.09×10−5t, whereas 
for the large pseudogap kBTc = 1053.36×10−6t. 
 Within the framework of the Eliashberg formalism 
the strict form of the ∆(T) function is determined by 
the following equation: 

)]),((Re[)( TTT ∆=∆=∆ ω  (24) 

where the symbol Re[∆(ω)] denotes the real part of 
the order parameter function on the real axis. The 
function ∆(ω) is determined from the analytical 
development of the function ∆m [25] and can be 
described by the following formula: 
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where p∆n and q∆n are numerical coefficients; r is 
equal to 200. 
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Fig. 4 Dependence of the function φm=1 on the 
average number of electrons at the node 〈n〉 for 
selected values of the G parameter; kBT = 10−3t 
was assumed. 

 
 
 

 
 

Fig. 5 (A), (B) Dependence of the functions 
Zm=1 and χm=1 on the average number of 
electrons at the node. The insert in (B) shows 
the chemical potential as a function of 〈n〉; G = 
10−3t and kBT = 10−3t were assumed. 

 
 
 The open form of the ∆(T) function near the 
critical temperature is shown in Figs. 7a and 7b. The 
dependence of the order parameter presented in these 
figures can be described by the simple formula: 
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where, for both cases, kBT1 = 10−3t; for Fig. 7a: 
∆(T1) = 143×10−5t and α = 1.0746; for Fig. 7b: ∆(T1) = 
756×10−6t and α = 1.0193. 

 
 

Fig. 6 Dependence of the function ∆m on the 
Matsubara frequency for selected values of 
temperature; (A) G = 10−4t and 〉〈n  = 1 were 
assumed, (B) G = 5×10−3t and 〉〈n  = 0.175 
were assumed. 

 
 
IV. Summary 
 
A model that describes the properties of a 
superconducting phase in the presence of a pseudogap 
has been proposed and carefully analyzed in the 
present paper. It is assumed that the superconducting 
state is induced by electron-phonon interaction, but 
the pseudogap is related to the presence of local 
charge density waves in the system. 
 As a result of the analysis, Eliashberg equations 
including the pseudogap have been derived and then 
solved numerically. 
 The most relevant result obtained here is directly 
connected with the determined phase diagram (see 
Fig. 4). It has been shown that the obtained diagram 
qualitatively reproduces the form of the phase diagram 
for the superconducting phase in BaPb1-xBixO3. It has 
to be pointed out that in the future, the analyzed model 
should enable a quantitative description of the 
superconducting state in BPBO. In order to achieve 
this, the exact form of the Eliashberg function for 
BPBO should be determined and the maximum width 
of the pseudogap (G) should be defined on the basis of 
the experimental results. A qualitative analysis of this 
type can be performed with the possibilities of modern 
computer equipment and has been successfully 
conducted for such compounds as Al, Pb or  
MgB2 [26]. 
 A more precise description of the obtained results 
is presented below. First of all, the pseudogap very 
strongly reduces the order parameter of the 
superconducting phase, ∆. The ∆ parameter decreases 
with increasing width and depth of the pseudogap, 
which is directly connected to the lowering of the 
number of available electronic states near the Fermi 
surface. It is worth mentioning that near an 
appropriately large G value, the superconducting  
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Fig. 7 The order parameter as a function of the 
temperature near Tc; (A) G = 10−4t and 〈n〉 = 1 
were assumed, (B) G = 5×10−3t and 〈n〉 = 0.175 
were assumed. 

 
 
phase begins to vanish from the side of the high values 
of the 〈n〉 parameter. The dependence of the order 
parameter on the temperature near the critical  

temperature, in the case of a small and a large 
pseudogap, was also analyzed in the present paper. It 
was shown that with increasing size of the pseudogap 
the analytical form of the ∆(T) function changes;  
α = 1.0746 for a small pseudogap and α = 1.0193 for 
a large one. 
 Based on the presented results it has been proven 
that the pseudogap does not have any effect on the 
values of the remaining solutions of the Eliashberg 
equations e.g. the wave function renormalization 
factor and energy shift function. 
 
 
Appendix A 
 
The chemical potential of the electron gas was 
calculated with the assumption that the electron 
effective mass is equal to the bare electron mass  
(Zm = 1), the many body effects do not renormalize the 
value of the chemical potential (χm = 0) and the 
system is in the normal state (ϕm = 0). The equation 
that describes the chemical potential can be brought 
into an algebraic form, which facilitates the numerical 
analysis significantly. Details of the procedure are 
given below: 
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The H(〈n〉 ,G, µ) function is defined by the expression: 
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The symbol Sisi denotes a finite integral that does not have a primitive function; the formula that defines the Sisi 
integral and its value is given below: 
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The limits of the integral in Eq. A6 were shifted to ±∞ 
because of the values of the considered physical 
quantities and the form of the integrated function. 
 
 
Acknowledgements 
 
The authors would like to thank Prof. K. Dziliński, 
Prof. Z. Bąk and Prof. A. Khater for creating excellent 
working conditions. 
 
 
References 
 
[1] A.W. Sleight, J.L. Gillson, P.E. Biertedt, Solid 

State Commun. 17 (1975) 27. 
[2] H. Fröhlich, Phys. Rev. 79 (1950) 845.  
[3] H. Fröhlich, Proc. Roy. Soc. A 223 (1954) 296. 
[4] Y. Nambu, Phys. Rev. 117 (1960) 648. 
[5] G.M. Eliashberg, Soviet. Phys. JETP 11 (1960) 

696.  
[6] P.B. Allen, B. Mitrovi´c, In: H. Ehrenreich, F. 

Seitz, D. Turnbull (Eds.), Solid State Physics: 
Advances in Research and Applications, 
Academic Press, New York, 1982, Vol. 37, p. 1.  

[7] F. Marsiglio, J.P. Carbotte, Electron-Phonon 
Superconductivity, In: K.H. Bennemann, J.B. 
Ketterson (Eds.), Handbook on 
Superconductivity: Conventional and 
Unconventional Superconductors, Springer, 
Berlin, 2003. 

[8] O. Navarro, Physica C 265 (1996) 73. 
[9] R. Szczęśniak, Acta Phys. Pol., A 103 (2006) 

179. 
[10] J.B. Boyce, F. Bridges, T. Claeson, Phys. Scr., T 

42 (1992) 71. 
[11] D.E. Cox and A.W. Sleight, Acta Crystallogr. B 

35 (1979) 1. 

[12] C. Chaillout, A. Santoro, J.P. Remeika, A.S. 
Cooper, G.P. Espinosa, N. Marezio, Solid State 
Commun. 65 (1988) 1363. 

[13] S. Pei, N.J. Zaluzec, J.D. Jorgensen, B. 
Dabrowski, D.G. Hinks, A.W. Mitchell, D.R. 
Richards, Phys. Rev. B 39 (1989) 811. 

[14] L.F. Mattheiss, D.R. Hamann, Phys. Rev. B 28 
(1983) 4227. 

[15] J.B. Boyce, F.G. Bridges, T. Claeson, T.H. 
Geballe, J.M. Remeika, Phys. Rev. B 41  
(1990) 6306. 

[16] J.B. Boyce, F.G. Bridges, T. Claeson, T.H. 
Geballe, G.G. Li, A.W. Sleight, Phys. Rev. B 44 
(1991) 6961. 

[17] S. Tajima, S. Ushida, A. Masaki, H. Takagi, K. 
Kitazawa, S. Tanaka, A. Katsui, Phys. Rev. B 32 
(1985) 6302. 

[18] S. Tajima, S. Ushida, A. Masaki, H. Takagi, K. 
Kitazawa, S. Tanaka, S. Sugai, Phys. Rev. B 35 
(1987) 696. 

[19] H. Sato, S. Tajima, H. Takagi, S. Uchida, Nature 
338 (1989) 241. 

[20] R.E. Peierls, Quantum Theory of Solids, Oxford 
University Press, Oxford, 1955.  

[21] H. Böttger, Principles of the Theory of Lattice 
Dynamics, Akademie Verlag, Berlin 1983. 

[22] R. Szczęśniak, M. Mierzejewski, J. Zieliński, 
Physica C 355 (2001) 126. 

[23] V.Z. Kresin, H. Gutfreund, W.A. Little, Solid 
State Commun. 51 (1984) 339.  

[24] V.Z. Kresin, Phys. Lett. A 122 (1987) 434. 
[25] K.S.D. Beach, R.J. Gooding, F. Marsiglio, Phys. 

Rev. B 61 (2000) 5147. 
[26] R. Szczęśniak, Phys. Status Solidi B 244  

(2007) 2538.  
[27] R. Szczęśniak, Solid State Commun. 145  

(2008) 137. 

__________________________________________________________________ 
Proceeding of the XVI International Seminar on Physics and Chemistry of Solids,  
Lviv, June 6-9, 2010. 
 


