Crystal structure of the ternary compound $\mathrm{Dy}_{3} \mathbf{G a}_{2.54} \mathrm{Sn}_{2.46}$

Vitaliia FEDYNA ${ }^{1}$, Yaroslav TOKAYCHUK ${ }^{1 *}$, Roman GLADYSHEVSKII ${ }^{1}$
${ }^{1}$ Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya St. 6, 79005 Lviv, Ukraine
* Corresponding author. Tel.: +380-32-2394506; e-mail: tokaychuk@mail.lviv.ua

Received December 14, 2012; accepted December 26, 2012; available on-line July 5, 2013

Abstract

The crystal structure of the new ternary compound $\mathrm{Dy}_{3} \mathbf{G a}_{2.54(5)} \mathbf{S n}_{2.46(5)}$ belongs to the $\mathbf{P u}_{3} \mathbf{P d}_{5}$ structure type (Pearson symbol oS32, space group Cmcm, $a=9.7300(3), b=7.7081(2), c=9.7925(3) \AA$). The atoms of the p-elements are distributed over three Wyckoff positions with a tendency towards ordering: two sites for Ga and one site for Sn (ideal composition $\mathrm{Dy}_{3} \mathrm{Ga}_{3} \mathrm{Sn}_{2}$). They form isolated empty square-pyramidal clusters. The structure can also be decomposed into two kinds of layer. At $z \approx 0$ and $z \approx 1 / 2$ Dy (site Dy1) and Ga (site $M 2=0.81(3) \mathrm{Ga} 2+0.19(3) \mathrm{Sn} 2$) atoms form slightly puckered deformed NaCl -type layers. At $\mathrm{z}=1 / 4$ and $z=3 / 4 \mathrm{Dy}$ (site Dy 2), $\mathrm{Ga}(M 3=0.74(3) \mathrm{Ga} 3+0.26(3) \mathrm{Sn} 3)$ and $\mathrm{Sn}(M 1=0.09(4) \mathrm{Ga} 1+0.91(4) \mathrm{Sn} 1)$ atoms form flat deformed LiFeO_{2}-type layers (the LiFeO_{2} type is a ternary ordered derivative of the binary NaCl type). The structure type $\mathbf{P u}_{3} \mathbf{P d}_{5}$ belongs to the family of deformation variants of the structure type $\mathbf{R h}_{5} \mathbf{G e}_{3}$.

Dysprosium / Gallium / Tin / Intermetallic compound / X-ray powder diffraction / Crystal structure

Introduction

The structure type $\mathrm{Pu}_{3} \mathrm{Pd}_{5}$ (Pearson symbol oS32, space group Cmcm) [1] is adopted by binary compounds with alkaline-earth or rare-earth metals and p-elements of groups III and IV ($\mathrm{In}, \mathrm{Tl}, \mathrm{Sn}, \mathrm{Pb}$), $\mathrm{Zr}_{3} \mathrm{Rh}_{5}, \mathrm{Zr}_{3} \mathrm{Ga}_{5}, \mathrm{U}_{3} \mathrm{Ga}_{5}, \mathrm{Th}_{3} \mathrm{Tl}_{5}$, and $\mathrm{Eu}_{3} \mathrm{Ge}_{5}$ [2]. 18 ternary phases crystallizing with $\mathrm{Pu}_{3} \mathrm{Pd}_{5}$-type structures are divided into two groups: structures with statistical distribution of larger atoms (Pu sites, 5 representatives) and structures with statistical distribution of smaller atoms (Pd sites, 13 representatives). The latter compounds were found in the systems of Ba with p-elements of groups III and IV (Ga, In, Si, Ge, Sn, Pb) [3], $\mathrm{La}_{3} \mathrm{CuSn}_{4}$ [4], $\mathrm{Er}_{3} \mathrm{Ga}_{2.21} \mathrm{Ge}_{2.79}$ [5] and $\mathrm{Sm}_{3} \mathrm{Ga}_{0.80-2.48} \mathrm{Sn}_{4.20-2.52}$ [6]. For the latter compound a partially ordered distribution of Sn and Ga atoms over three crystallographic positions and an evolution of the structure as a function of the Ga content were reported. It was shown that the structure remains partially ordered within the whole homogeneity range of the compound.

During an investigation of the phase diagram of the ternary system $\mathrm{Dy}-\mathrm{Ga}-\mathrm{Sn}$ at $600^{\circ} \mathrm{C}$ we identified a new ternary compound of variable composition $\mathrm{Dy}_{3} \mathrm{Ga}_{3.00-2.54} \mathrm{Sn}_{2.00-2.46}$ crystallizing with a $\mathrm{Pu}_{3} \mathrm{Pd}_{5}$-type structure [7]. The present article reports its crystal structure and some crystal chemical peculiarities.

Experimental

Alloys of nominal compositions $\mathrm{Dy}_{37.5} \mathrm{Ga}_{42.5-27.5} \mathrm{Sn}_{20-35}$ were synthesized from the pure elements (99.95% Dy, 99.99 \% Ga, 99.90 \% Sn) by arc melting in a water-cooled copper hearth under Ti-gettered argon atmosphere. To achieve high homogeneity of the samples, the alloys were melted twice. The ingots were annealed at $600^{\circ} \mathrm{C}$ in quartz ampoules under vacuum for 720 h and subsequently quenched in cold water. The weight losses during the preparation of the samples were less than 0.5% of the total mass, which was 1 g for each alloy. X-ray phase analysis was carried out using X-ray powder diffraction patterns collected at room temperature on a diffractometer DRON-2.0M (Fe K α-radiation, angular range $20^{\circ} \leq 2 \theta \leq 120^{\circ}$, step 0.05°). The samples contained the new ternary phase with admixtures of the known binary compounds DyGa_{2} (structure type AlB_{2}, Pearson symbol $h P 3$, space group $P 6 / \mathrm{mmm}$) [8] and $\mathrm{DySn}_{2}\left(\mathrm{ZrSi}_{2}, o S 12, \mathrm{Cmcm}\right)$ [9]. The positions and intensities of the reflections of the new compound and the similarity of the collected X -ray powder diffraction patterns to the X-ray powder diffraction patterns of $\mathrm{Sm}_{3} \mathrm{Ga}_{0.80-2.48} \mathrm{Sn}_{4.20-2.52}$ [6] indicated possible realization of the structure type $\mathrm{Pu}_{3} \mathrm{Pd}_{5}$. The crystal structure was refined by the Rietveld method for a sample of nominal composition $\mathrm{Dy}_{37.5} \mathrm{Ga}_{32} \mathrm{Sn}_{30.5}$ using
an X-ray powder diffraction pattern collected at room temperature on a powder diffractometer Stoe Stadi P ($\mathrm{Cu} K \alpha_{1}$-radiation, angular range $10^{\circ} \leq 2 \theta \leq 110^{\circ}$, step 0.015°). Refinement of the profile and structural parameters was performed using the FullProf Suite package $\left[{ }^{10}\right]$. The atomic coordinates of $\mathrm{Sm}_{3} \mathrm{Ga}_{1.89} \mathrm{Sn}_{3.11}$ reported in [6] were used as a starting model for the new compound. The binary phases DyGa_{2} and DySn_{2} were identified as admixtures in the sample (21.9(3) and 17.1(2) wt.\%, respectively). They were modeled with individual scale factors, unit cell and preferred orientation parameters, while the profile parameters were constrained to be the same for all phases. For the main phase the following parameters were refined: scale factor, three cell parameters, six profile parameters (pseudo-Voigt profile), seven positional, three displacement and three occupational parameters. Isotropic displacement parameters for the three positions of the p-elements were refined by one parameter. In total 32 parameters were included in the final cycles of the refinement. The background was defined using the Fourier filtering technique. Experimental, calculated and difference X-ray powder diffraction patterns are presented in Fig. 1; experimental details and crystallographic data for the individual phases in the alloy $\mathrm{Dy}_{37.5} \mathrm{Ga}_{32} \mathrm{Sn}_{30.5}$ are listed in Table 1.

Results and discussion

The atomic coordinates, site occupancies and isotropic displacement parameters for the structure of the ternary compound are listed in Table 2. The structure is partially ordered and belongs to the orthorhombic structure type $\mathrm{Pu}_{3} \mathrm{Pd}_{5}$, refined composition $\mathrm{Dy}_{3} \mathrm{Ga}_{2.54(5)} \mathrm{Sn}_{2.46(5)}$. All three positions of the p-element atoms are occupied by statistical mixtures of Ga and Sn atoms. However, the position $8 g$ is occupied mainly by Sn atoms, whereas the positions $8 f$ and $4 c$ are preferentially occupied by Ga atoms. A similar tendency for the ordering of Ga and Sn atoms was observed for the ternary compound $\mathrm{Sm}_{3} \mathrm{Ga}_{0.80-2.48} \mathrm{Sn}_{4.20-2.52}$ [6]: the 8 g position remained occupied almost exclusively by Sn atoms within the whole homogeneity range, whereas gradual replacement of Sn atoms by Ga atoms was observed in the two other positions. The homogeneity range of the ternary compound extends up to $6 \mathrm{at} . \% \mathrm{Ga} / \mathrm{Sn}$, as estimated from the X-ray phase analysis of the samples from the line $37.5 \mathrm{at} . \%$ Dy with different contents of Ga and Sn .

Interatomic distances, coordination numbers and coordination polyhedra of the atoms in the structure of $\mathrm{Dy}_{3} \mathrm{Ga}_{2.54} \mathrm{Sn}_{2.46}$ are presented in Table 3. The Dy atoms center distorted tetragonal prisms with two or

Table 1 Experimental details and crystallographic data for the individual phases in the alloy $\mathrm{Dy}_{37.5} \mathrm{Ga}_{32} \mathrm{Sn}_{30.5}$.

Compound	$\mathrm{Dy}_{3} \mathrm{Ga}_{2.54(5)} \mathrm{Sn}_{2.46(5)}$	DyGa_{2}	DySn_{2}
Abundance, \%	61.9(10)	22.0(3)	17.1(2)
Structure type	$\mathrm{Pu}_{3} \mathrm{Pd}_{5}$	AlB_{2}	ZrSi_{2}
Pearson symbol	oS32	hP3	oS12
Space group	Cmcm	P6/mmm	Cmcm
Formula units per cell Z	4	1	4
Unit-cell parameters: a, \AA	9.7300(3)	4.2092(7)	4.3915(7)
b, Å	7.7081(2)	-	16.220(3)
c, \AA	9.7925(3)	4.0698(7)	4.2962(7)
Cell volume V, \AA^{3}	734.44(4)	62.445(17)	306.02(9)
Density $D_{\mathrm{x}}, \mathrm{g} \mathrm{cm}^{-3}$	8.655	8.032	8.683
Preferred orientation parameter [direction]	-	0.9832(13)[110]	0.799 (15) [101]
Diffractometer		Stoe Stadi P	
Radiation type, wavelength λ, \AA		$\mathrm{Cu} \mathrm{K} \alpha_{1}, 1.54060$	
Scanning mode		$\theta / 2 \theta$	
Range of $20,{ }^{\circ}$		6.0-106.8	
Step size, ${ }^{\circ}$		0.015	
Profile parameters U, V, W	0.044(14), 0.032(12), 0.001(2)		
Mixing parameter	$-0.016(9),-0.004(2)$		
Asymmetry parameters			
Reliability factors: $\quad R_{\mathrm{B}}$	0.0558	0.0345	0.0586
$R_{\text {F }}$	0.0671	0.0323	0.0851
$R_{\mathrm{p}}{ }^{\text {a }}$		0.0314	
$R_{\text {wp }}{ }^{\text {a }}$		0.0406	
χ^{2}		1.21	

[^0]Table 2 Atomic coordinates, isotropic displacement and occupancy parameters for $\mathrm{Dy}_{3} \mathrm{Ga}_{2.54} \mathrm{Sn}_{2.46}$.

Site	Wyckoff position	x	y	z	$B_{\text {iso }}, \AA^{2}$
Dy1	$8 e$	$0.1968(5)$	0	0	$0.52(16)$
Dy2	$4 c$	0	$0.6404(10)$	$1 / 4$	$0.7(2)$
$M 1$	$8 g$	$0.2067(6)$	$0.2934(7)$	$1 / 4$	$1.0(2)$
$M 2$	$8 f$	0	$0.3198(14)$	$0.0488(7)$	$1.0(2)$
$M 3$	$4 c$	0	$0.0258(18)$	$1 / 4$	$1.0(2)$

$M 1=0.09(4) \mathrm{Ga} 1+0.91(4) \mathrm{Sn} 1 ; M 2=0.81(3) \mathrm{Ga} 2+0.19(3) \mathrm{Sn} 2 ; M 3=0.74(3) \mathrm{Ga} 3+0.26(3) \mathrm{Sn} 3$.

Table 3 Interatomic distances (δ), coordination numbers (CN) and coordination polyhedra of the atoms in the structure of $\mathrm{Dy}_{3} \mathrm{Ga}_{2.54} \mathrm{Sn}_{2.46}$.

one additional atoms: Dy $M 1_{4} M 2_{4} M 3_{2}$ and Dy $2 M 1{ }_{4} M 2{ }_{4} M 3$. The coordination polyhedra around the Ga and Sn atoms can be described as tetragonal prisms with two additional atoms, $\underline{M 1 D y 1}{ }_{4} \mathrm{Dy}_{2} \mathrm{M2}_{2} \mathrm{M} 3_{2}$, and tetragonal antiprisms with two or three additional atoms: $M 1 \mathrm{Dy} 1_{4} \mathrm{Dy} 2_{2} M 1_{2} M 2 \mathrm{M} 3$ and $\mathrm{M} 1 \mathrm{Dy} 1_{4} \mathrm{Dy} 2 \mathrm{M} 1_{4} M 2_{2}$. The Ga and Sn atoms form square pyramids of
composition $M 1_{2} M 2_{2} M 3$ (Fig. 2), which can be interpreted as arachno-clusters of the Wade type [11]. Complete ordering of Ga and Sn atoms would result in clusters of composition $\mathrm{Sn}_{2} \mathrm{Ga}_{3}$ and absence of contact distances between Sn atoms. The interatomic distances in the basal planes of the pyramids $\left(\delta_{M 1-M 2}=2.823(7) \AA\right.$) are the shortest distances in the structure.

Fig. 1 Experimental (points), calculated (continuous line) and difference (continuous line at the bottom of the picture) diffractogram of the sample of composition $\mathrm{Dy}_{37.5} \mathrm{Ga}_{32} \mathrm{Sn}_{30.5}$ ($\mathrm{Cu} \mathrm{Ka}_{1}$-radiation). Vertical lines show the positions of the reflections of the ternary compound $\mathrm{Dy}_{3} \mathrm{Ga}_{2.54} \mathrm{Sn}_{2.46}, \mathrm{DyGa}_{2}$, and DySn_{2}.

Fig. 2 Content of the unit cell and square pyramidal arachno-type clusters in the structure of $\mathrm{Dy}_{3} \mathrm{Ga}_{2.54} \mathrm{Sn}_{2.46}$.

The structure of the ternary compound $\mathrm{Dy}_{3} \mathrm{Ga}_{2.54} \mathrm{Sn}_{2.46}$ can be decomposed into two kinds of slab stacked along the crystallographic direction [001] (Fig. 3a). Slab \boldsymbol{A} (at $\mathrm{z} \approx 0$ and $\mathrm{z} \approx 1 / 2$, related through the mirror plane) is a puckered layer of atoms from sites Dy1 and M2, arranged as in the structure type NaCl [12] (Fig. 3b). The flat layer \boldsymbol{B} (at $\mathrm{z}=1 / 4$ and $3 / 4$, mapped by a 2_{1} screw axis), formed by atoms of sites Dy2, M1 and M3, can be described as an ordered substitutional derivative of the layer \boldsymbol{A} and corresponds to a distorted layer of the tetragonal structure type LiFeO_{2} [13] (Fig. 3c), which is an ordered derivative of the cubic structure type NaCl . Layer \boldsymbol{B} can also be described as an infinite net of p element atoms forming empty triangles and hexagons filled by Dy atoms (Fig. 3d). Such a description relates the structure of the ternary compound $\mathrm{Dy}_{3} \mathrm{Ga}_{2.54} \mathrm{Sn}_{2.46}$ to the family of deformation variants
of the structure type $\mathrm{Rh}_{5} \mathrm{Ge}_{3}$ [14]. The main feature of the structures of $\mathrm{Rh}_{5} \mathrm{Ge}_{3}, \mathrm{Yb}_{5} \mathrm{Sb}_{3}$ [15], $\mathrm{U}_{3} \mathrm{~S}_{5}$ [16], $\mathrm{Yb}_{5} \mathrm{Bi}_{3}$ [17], $\mathrm{Tm}_{3} \mathrm{Ga}_{5}$ [18] and $\mathrm{Pu}_{3} \mathrm{Pd}_{5}$ [1] is a framework of interconnected infinite columns of filled trigonal prisms (Fig. 4) [19]. The prisms share triangular faces and edges with neighboring prisms, forming a three-dimensional network with large deformed hexagonal channels. These channels can be considered as columns of face-sharing hexagonal

Fig. 3 Projection of the structure of $\mathrm{Dy}_{3} \mathrm{Ga}_{2.54} \mathrm{Sn}_{2.46}$ along [001] and stacking of two kinds of slab, \boldsymbol{A} and $\boldsymbol{B}(\mathrm{a})$; the puckered $\operatorname{slab} \boldsymbol{A}$, a distorted NaCl -type layer (b); the flat layer \boldsymbol{B}, a distorted LiFeO_{2}-type layer (c); layer \boldsymbol{B} seen as an infinite net of empty triangles and Dy-filled hexagons (d).

Fig. 4 Projections of the structures of $\mathrm{Rh}_{3} \mathrm{Ge}_{5}$ and $\mathrm{Dy}_{3} \mathrm{Ga}_{2.54} \mathrm{Sn}_{2.46}$ along [001], and of $\mathrm{Yb}_{5} \mathrm{Sb}_{3}, \mathrm{U}_{3} \mathrm{~S}_{5}, \mathrm{Y}_{5} \mathrm{Bi}_{3}$, and $\mathrm{Tm}_{3} \mathrm{Ga}_{5}$ along [100].
prisms. Inside each hexagonal prism there are two atoms in the central plane and one atom at the center of each hexagonal base plane of the prisms. In the structure of $\mathrm{Rh}_{3} \mathrm{Ge}_{5}$ the elongated hexagons form a parquet-like patchwork, which can also be found in all of the derivative structures. $\mathrm{Yb}_{5} \mathrm{Sb}_{3}$ and $\mathrm{Y}_{5} \mathrm{Bi}_{3}$ are distorted variants of the $\mathrm{Rh}_{3} \mathrm{Ge}_{5}$ type, $\mathrm{U}_{3} \mathrm{~S}_{5}$ represents an antitype to the $\mathrm{Yb}_{5} \mathrm{Sb}_{3}$ type; the closely related structure types $\mathrm{Tm}_{3} \mathrm{Ga}_{5}$ and $\mathrm{Pu}_{3} \mathrm{Pd}_{5}$ are distorted variants of $\mathrm{Yb}_{5} \mathrm{Sb}_{3}$. It should be noted that in the system Dy-Ga-Sn the latter two structure types coexist at $600^{\circ} \mathrm{C}$, represented by the binary gallide $\mathrm{Dy}_{3} \mathrm{Ga}_{5}$ (structure type $\mathrm{Tm}_{3} \mathrm{Ga}_{5}$) and the ternary phase $\mathrm{Dy}_{3} \mathrm{Ga}_{3.00-2.54} \mathrm{Sn}_{2.00-2.46}$ (partially ordered $\mathrm{Pu}_{3} \mathrm{Pd}_{5}$-type structure).

Acknowledgements

This work was supported by the Ministry of Education and Science of Ukraine under the grant No. 0112U001280.

References

[1] D.T. Cromer, Acta Crystallogr. B 32 (1976) 1930-1932.
[2] P. Villars, K. Cenzual (Eds.), Pearson's Crystal Data. Crystal Structure Database for Inorganic Compounds, Release 2012/13, ASM International, Materials Park (OH).
[3] I. Dürr, M. Schwarz, M. Wendorff, C. Röhr, J. Alloys Compd. 494 (2010) 62-71.
[4] Y. Zhan, H. Xie, J. Jiang, Y. Xu, Y. Wang, Y. Zhuang, J. Alloys Compd. 461 (2008) 570-573.
[5] R. Welter, G. Venturini, Acta Crystallogr. C 55 (1999) 1969-1970.
[6] Ya.O. Tokaychuk, Ya.O. Filinchuk, A.O. Fedorchuk, O.I. Bodak, Acta Crystallogr. C 59 (2003) i125-i127.
[7] V.M. Fedyna, Ya.O. Tokaychuk, R.E. Gladyshevskii, Coll. Abstr. XI Int. Conf. Cryst. Chem. Intermet. Compd., Lviv, 2010, p. 96.
[8] S.E. Haszko, Trans. Metall. Soc. AIME 221 (1961) 201-204.
[9] A. Iandelli, A. Palenzona, G.B. Bonino, Atti Accad. Naz. Lincei (Cl. Sci. Fis.) Mat. Nat., Rend. 40 (1966) 623-628.
[10] J. Rodriguez-Carvajal, Commission on Powder Diffraction (IUCr), Newsletter 26 (2001) 12-19.
[11] F. Zürcher, R. Nesper, S. Hoffmann, T.F. Fässler, Z. Anorg. Allg. Chem. 627 (2001) 2211-2219.
[12] W.L. Bragg, Proc. R. Soc. London (Ser. A) 89 (1914) 468.
[13] D.E. Cox, W.J. Takei, G. Shirane, Am. Crystallogr. Assoc. (Summer Meet.) (1962) 59.
[14] S. Geller, Acta Crystallogr. 8 (1955) 15-21.
[15] G.D. Brunton, H. Steinfink, Inorg. Chem. 10 (1971) 2301-2303.
[16] M. Potel, R. Brochu, J. Padiou, D. Grandjean, Mater. Res. Bull. 10 (1975) 205-208.
[17] Y. Wang, E.J. Gabe, L.D. Calvert, J.B. Taylor, Acta Crystallogr. B 32 (1976) 1440-1445.
[18] S.P. Yatsenko, E.I. Gladyshevskii, K.A. Tschuntonow, Ya.P. Yarmolyuk, Y.N. Grin, J. Less-Common Met. 91 (1983) 21-32.
[19] R.E. Gladyshevskii, K. Cenzual, J.T. Zhao, E. Parthé, Acta Crystallogr. C 48 (1992) 221-225.

[^0]: ${ }^{a}$ Not corrected for background.

