Crystal structures of the new intermetallics $\mathrm{Ce}_{3} \mathrm{Pt}_{5} \mathrm{Al}$ and $\mathrm{Ce}_{3} \mathrm{Pt}_{5} \mathrm{Al}_{2}$

A. TURSINA ${ }^{1 *}$, H. NOËL ${ }^{2}$, E. MURASHOVA ${ }^{1}$, Y. MOROZOVA ${ }^{1}$, Y. SEROPEGIN ${ }^{1}$
${ }^{1}$ Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
${ }^{2}$ Laboratoire de Chimie du Solide et Matériaux, UMR6226 CNRS-Université de Rennes 1, Avenue du Général Leclerc, 30542 Rennes, France
* Corresponding author. Fax: +7 495 9390171; e-mail: anna-tursina@yandex.ru

Dedicated to Evgen I. Gladyshevskii (1924-2012)
Received October 30, 2013; accepted June 26, 2014; available on-line November 10, 2014

Abstract

The crystal structures of the ternary intermetallics $\mathrm{Ce}_{3} \mathrm{Pt}_{5} \mathrm{Al}$ and $\mathrm{Ce}_{3} \mathbf{P t}_{5} \mathrm{Al}_{2}$ have been determined from single crystal X -ray diffraction data. $\mathrm{Ce}_{3} \mathrm{Pt}_{5} \mathrm{Al}$ is a new representative of the $\mathrm{Ce}_{3} \mathrm{Pd}_{5} \mathrm{Si}$-type of structure: space group Imma, $a=7.3767(4) \AA, b=13.1733(8) \AA, c=7.5884(4) \AA$, Pearson symbol oI36. $\mathrm{Ce}_{3} \mathrm{Pt}_{5} \mathrm{Al}_{2}$ crystallizes in the triclinic space group $P-1$ with $a=5.689(2) \AA, b=8.432(3) \AA, c=8.7103(13) \AA, \alpha=102.31(2)^{\circ}, \beta=97.89(2)^{\circ}$, $\gamma=89.10(3)^{\circ}$ (Pearson symbol aP20) and represents a novel structure type. In both structures, the coordination polyhedra are rather irregular. The structures of $\mathrm{Ce}_{3} \mathrm{Pt}_{5} \mathrm{Al}$ and $\mathrm{Ce}_{3} \mathrm{Pt}_{5} \mathrm{Al}_{2}$ can be represented as packings of Ce-centered polyhedra.

Cerium platinum aluminide / X-ray diffraction / Crystal structure / $\mathbf{C e}_{\mathbf{3}} \mathbf{P t}_{\mathbf{5}} \mathbf{A l} / \mathbf{C e}_{\mathbf{3}} \mathbf{P t}_{\mathbf{5}} \mathbf{A l}_{\mathbf{2}}$

Introduction

A systematic investigation of alloys containing aluminum, platinum and cerium has been in progress in our laboratory for a few years. In addition to the known compounds CePtAl [1], $\mathrm{CePt}_{4} \mathrm{Al}$, and $\mathrm{CePt}_{2} \mathrm{Al}_{3}$ [2], $\mathrm{CePtAl}_{2}, \mathrm{CePtAl}_{3}$, and $\mathrm{CePt}_{3} \mathrm{Al}_{2}$ [3], five new ternaries from the Al-rich part of the phase diagram were found and structurally characterized: $\mathrm{Ce}_{0.67} \mathrm{Pt}_{2} \mathrm{Al}_{5}$ and $\mathrm{Ce}_{1.33} \mathrm{Pt}_{3} \mathrm{Al}_{8}$ with $\mathrm{Gd}_{0.67} \mathrm{Pt}_{2} \mathrm{Al}_{5}$-type and $\mathrm{Gd}_{1.33} \mathrm{Pt}_{3} \mathrm{Al}_{8}$-type structure, respectively [4], $\mathrm{CePt}_{3} \mathrm{Al}_{5}$, which belongs to the $\mathrm{YNi}_{5} \mathrm{Si}_{3}$ structure type [5] with site exchange, and $\mathrm{Ce}_{3} \mathrm{Pt}_{4} \mathrm{Al}_{6}$ [6] and $\mathrm{Ce}_{2} \mathrm{Pt}_{9} \mathrm{Al}_{16}$ [7], crystallizing with their own structure types.

In this paper we report the structures of two new compounds found in the Pt -rich part of the $\mathrm{Ce}-\mathrm{Pt}-\mathrm{Al}$ system.

Experimental

Single crystals of the new compounds were mechanically isolated from annealed samples [8]. For $\mathrm{Ce}_{3} \mathrm{Pt}_{5} \mathrm{Al}$, X-ray single crystal intensity data were collected on a Nonius Kappa CCD diffractometer (Mo $K \alpha$ radiation, φ - and ω-scan). An empirical absorption correction was applied using the program SADABS [9]. Single crystal intensity data for $\mathrm{Ce}_{3} \mathrm{Pt}_{5} \mathrm{Al}_{2}$ were collected on a CAD4 Enraf Nonius diffractometer (Mo $K \alpha$ radiation, ω-scan). An
empirical absorption correction was made on the basis of ψ-scan data [10]. Crystallographic data for $\mathrm{Ce}_{3} \mathrm{Pt}_{5} \mathrm{Al}_{2}$ and $\mathrm{Ce}_{3} \mathrm{Pt}_{5} \mathrm{Al}$ and experimental details of the structure determination and refinement are summarized in Table 1.

The structures were solved by direct methods with the SHELXS-97 program, and refined with the SHELXL-97 program [11]. The final atomic coordinates, standardized with the program STRUCTURE TIDY [12], and equivalent isotropic displacement parameters are given in Table 2. The nearest-neighbor interatomic distances are listed in Tables 3,4.

Results and discussion

Crystal structures

a) $\mathrm{Ce}_{3} \mathrm{Pt}_{5} \mathrm{Al}$

$\mathrm{Ce}_{3} \mathrm{Pt}_{5} \mathrm{Al}$ is a new representative of the $\mathrm{Ce}_{3} \mathrm{Pd}_{5} \mathrm{Si}$-type of structure [13]: space group Imma, $a=7.3767$ (4) \AA, $b=13.1733(8) \AA, c=7.5884(4) \AA$ (Pearson symbol oI36). Earlier only silicides were known to crystallize with this structure type: $\mathrm{U}_{3} \mathrm{Pt}_{5} \mathrm{Si}$ [14], $\mathrm{Ce}_{3} \mathrm{Pt}_{5} \mathrm{Si}$ [15], and $\mathrm{La}_{3} \mathrm{Pd}_{5} \mathrm{Si}$ [16].

In the structure of $\mathrm{Ce}_{3} \mathrm{Pt}_{5} \mathrm{Al}$, the two crystallographically independent cerium atoms have 11 nearest neighbors ($10 \mathrm{Pt}+\mathrm{Al}$) at distances in the range $2.9999(7)-3.241(4) \AA$ for Ce 1 and

Table 1 Crystallographic data for $\mathrm{Ce}_{3} \mathrm{Pt}_{5} \mathrm{Al}$ and $\mathrm{Ce}_{3} \mathrm{Pt}_{5} \mathrm{Al}_{2}$ and experimental details of the structure determination and refinement.

Compound	$\mathrm{Ce}_{3} \mathrm{Pt}_{5} \mathrm{Al}$	$\mathrm{Ce}_{3} \mathrm{Pt}_{5} \mathrm{Al}_{2}$
Space group	Imma	$P-1$
Lattice parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$	$a=7.3767(4), b=13.1733(8)$,	$a=5.689(2), b=8.432(3), c=8.7103(13)$
	$c=7.5884(4)$	$\alpha=102.31(2), \beta=97.89(2), \gamma=89.10(3)$
Cell volume $\left(\AA^{3}\right), Z$	$737.41(7), 4$	$404.3(2), 2$
Calculated density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	12.816	11.908
Scan range $\theta\left({ }^{\circ}\right)$	$3.85-30.00$	$2.42-30.98$
Linear absorption coefficient	$112.572 \mathrm{~mm}^{-1}$	$102.769 \mathrm{~mm}^{-1}$
Range in $h k l$	$-8 \leq h \leq 10,-18 \leq k \leq 18$,	$-8 \leq h \leq 8,-12 \leq k \leq 11$,
	$-10 \leq l \leq 10$	$0 \leq l \leq 12$
Independent reflections	597	2563
Reflections with $I>2 \sigma(I)$	562	1875
Number of refined parameters	29	92
Goodness of fit	1.127	1.049
$\mathrm{R}, \mathrm{R}_{\mathrm{w}}$	$0.0288,0.0677$	$0.0577,0.1422$

Table 2 Atomic coordinates and equivalent isotropic displacement parameters (\AA^{2}) for the structures of $\mathrm{Ce}_{3} \mathrm{Pt}_{5} \mathrm{Al}$ and $\mathrm{Ce}_{3} \mathrm{Pt}_{5} \mathrm{Al}_{2}$.

$\mathrm{Ce}_{3} \mathrm{Pt}_{5} \mathrm{Al}$	Atom	x	y	z	$U_{\text {eq }}$
	Ce1	0	0.05036(5)	0.27709(9)	0.00556(19)
	Ce 2	0	$1 / 4$	$0.62259(14)$	0.0074(2)
	Pt1	$0.29498(5)$	0.10423(3)	0.56604(4)	0.00786(16)
	Pt2	$1 / 4$	$1 / 4$	1/4	0.0153(2)
	Al	0	$1 / 4$	0.0276(8)	0.0075(10)
$\mathrm{Ce}_{3} \mathrm{Pt}_{5} \mathrm{Al}_{2}$	Atom	x	y	z	$U_{\text {eq }}$
	Ce1	0.1459(2)	0.71380(17)	0.06628(13)	0.0065(3)
	Ce 2	0.2285(2)	0.42124(17)	0.36681(13)	0.0060(2)
	Ce 3	0.3210(2)	0.01060(17)	0.78986(13)	0.0071(3)
	Pt1	0.00269(15)	0.22589(11)	0.57760(9)	0.00550(19)
	Pt 2	0.17583(16)	0.08782(12)	0.12280 (9)	0.0085(2)
	Pt 3	0.39148(15)	0.36000(11)	0.04874(9)	0.0068(2)
	Pt4	0.52558(15)	0.21845(11)	0.57544(9)	0.0058(2)
	Pt5	$0.72846(16)$	0.33181(12)	0.31981(9)	0.0082(2)
	Al1	0.2163 (13)	0.0240(10)	0.3936(7)	0.0078(13)
	Al2	0.3093(12)	$0.4096(9)$	0.7736(7)	0.0063(13)

Table 3 Interatomic distances in the structure of $\mathrm{Ce}_{3} \mathrm{Pt}_{5} \mathrm{Al}$.

Atom	To atom	d, \AA	Atom	To atom	d, \AA
Ce 1	2 Pt 1	$2.9999(7)$	Pt 1	Al	$2.5455(17)$
	2 Pt 1	$3.0937(7)$		Pt 1	$2.8697(7)$
	2 Pt 1	$3.1696(6)$		Ce 2	$2.9337(4)$
	2 Pt 1	$3.2092(6)$		Pt 1	$2.9234(8)$
	2 Pt 2	$3.2187(6)$		Ce 1	$2.9999(7)$
	Al	$3.241(4)$		Pt 1	$3.0247(8)$
	Ce 1	$3.6339(14)$		Pt 2	$3.0902(4)$
	2 Ce 1	$3.7112(2)$		Ce 1	$3.0937(7)$
	Ce 2	$3.7135(10)$		Ce 1	$3.1696(6)$
	4 Pt 1	$2.9337(4)$		Ce 1	$3.2092(6)$
	Al	$3.073(6)$		Ce 2	$3.3996(8)$
	2 Pt 2	$3.3757(9)$	Pt 2	2 Al	$2.500(4)$
	4 Pt 1	$3.3996(8)$		4 Pt 1	$3.0902(4)$
	2 Ce 1	$3.7135(10)$		4 Ce 1	$3.2187(6)$
				Ce 2	$3.3757(9)$
			Al	2 Pt 2	$2.500(4)$
				4 Pt 1	$2.5455(17)$
				Ce 2	$3.073(6)$
				Ce 1	$3.241(4)$

2.9337(4)-3.3996(8) Å for Ce2. Ten Pt-atoms build distorted pentagonal prisms around the Ce -atoms and one Al -atom caps one of the side faces of the prisms. The next-nearest neighbors are cerium atoms with a $\mathrm{Ce}-\mathrm{Ce}$ separation of 3.6339 (14) \AA for Ce 1 and $3.7135(10) \AA$ for Ce 2 .

The Pt1 atom occupies a general position $16 j$ and its coordination polyhedron with 11 apices $\left(\mathrm{Pt} 1\left[\mathrm{Ce}_{6} \mathrm{Pt}_{4} \mathrm{Al}\right]\right)$ is strongly distorted. The Pt 2 atom occupies a $4 c$ position and its polyhedron ($\mathrm{Pt} 2\left[\mathrm{Ce}_{6} \mathrm{Pt}_{4} \mathrm{Al}_{2}\right]$) can be described as a slightly distorted cuboctahedron.

The Al atom occupies the center of a fairly distorted trigonal prism formed by six platinum atoms
with three additional Ce atoms capping the side faces of the prism $\mathrm{Al}\left[\mathrm{Ce}_{3} \mathrm{Pt}_{6}\right]$.

b) $\mathbf{C e}_{3} \mathbf{P t}_{5} \mathrm{Al}_{2}$

The structure of $\mathrm{Ce}_{3} \mathrm{Pt}_{5} \mathrm{Al}_{2}$ was solved in the triclinic space group $P-1$ with $a=5.689(2) \AA, b=8.432(3) \AA$, $c=8.7103(13) \AA, \quad \alpha=102.31(2)^{\circ}, \quad \beta=97.89(2)^{\circ}$, $\gamma=89.10(3)^{\circ}$ (Pearson symbol $a P 20$) and represents a novel structure type. A space group of higher symmetry could not be evidenced using the program PLATON [17].

In the structure of $\mathrm{Ce}_{3} \mathrm{Pt}_{5} \mathrm{Al}_{2}$, all the Ce-centered polyhedra are strongly distorted with the shortest $\mathrm{Ce} 1-\mathrm{Ce} 3$ and $\mathrm{Ce} 2-\mathrm{Ce} 2$ contacts equal to $3.675(2) \AA$

Table 4 Interatomic distances in the structure of $\mathrm{Ce}_{3} \mathrm{Pt}_{5} \mathrm{Al}_{2}$.

and 3.680(3) Å, respectively. Though the values of the shortest $\mathrm{Ce}-\mathrm{Ce}$ contacts in the structures of $\mathrm{Ce}_{3} \mathrm{Pt}_{5} \mathrm{Al}$ and $\mathrm{Ce}_{3} \mathrm{Pt}_{5} \mathrm{Al}_{2}$ are comparable, in the structure of $\mathrm{Ce}_{3} \mathrm{Pt}_{5} \mathrm{Al}_{2}$, all three Ce atoms have more non-cerium neighbors (12 or 13) in their environment (see Table 3).

The five crystallographically different Pt sites have different coordination environments: $\mathrm{Pt} 1\left[\mathrm{Ce}_{5} \mathrm{Pt}_{3} \mathrm{Al}_{3}\right]$, $\mathrm{Pt} 2\left[\mathrm{Ce}_{6} \mathrm{Pt}_{2} \mathrm{Al}\right], \mathrm{Pt} 3\left[\mathrm{Ce}_{5} \mathrm{Pt}_{3} \mathrm{Al}_{2}\right]$, $\mathrm{Pt} 4\left[\mathrm{Ce}_{5} \mathrm{Pt}_{3} \mathrm{Al}_{3}\right]$, and $\operatorname{Pt5}\left[\mathrm{Ce}_{5} \mathrm{Pt}_{3} \mathrm{Al}\right]$.

The coordination number of the two crystallographically independent aluminum atoms in the structure of $\mathrm{Ce}_{3} \mathrm{Pt}_{5} \mathrm{Al}_{2}$ is equal to 12 . However, the All and Al 2 atoms have different neighbors. Five Pt atoms, seven Ce atoms and two aluminum atoms are the nearest neighbors of Al1. Al2 is surrounded by five Pt atoms and seven Ce atoms. As a result, the coordination polyhedron of Al2 can be described as a distorted icosahedron, whereas the coordination polyhedron of All can hardly be described in any attractive way.

The structures of $\mathrm{Ce}_{3} \mathrm{Pt}_{5} \mathrm{Al}$ and $\mathrm{Ce}_{3} \mathrm{Pt}_{5} \mathrm{Al}_{2}$ can be presented as packings of Ce -centered polyhedra (Fig. 1).

(a)

Acknowledgements

This work was supported by the RFBR projects nos. 11-03-00957a and 11-03-01191a.

References

[1] B. Xue, H. Schwer, J. Alloys Compd. 204 (1994) L25-L26.
[2] Z. Blazina, S.M. Westwood, J. Alloys Compd. 201 (1993) 151-155.
[3] C. Schank, F. Jährling, L. Luo, A. Grauel, C. Wassilew, R. Borth, G. Olesch, C.D. Bredl, C. Geibel, F. Steglich, J. Alloys Compd. 207-208 (1994) 329-332.
[4] E.V. Murashova, A.I. Tursina, N.G. Bukhan'ko, A.V. Gribanov, I.V. Chernyshev, Yu.D. Seropegin, J. Alloys Compd. 398 (2005) 100-105.
[5] A.I. Tursina, N.G. Bukhan'ko, A.V. Gribanov, V.A. Shchelkunov, Y.V. Nelyubina, Acta Crystallogr. E 61 (2005) i285-i286.

(b)

Fig. 1 Polyhedral representation of the structures of $\mathrm{Ce}_{3} \mathrm{Pt}_{5} \mathrm{Al}$ (a) and $\mathrm{Ce}_{3} \mathrm{Pt}_{5} \mathrm{Al}_{2}$ (b).
A. Tursina et al., Crystal structures of the new intermetallics $\mathrm{Ce}_{3} \mathrm{Pt}_{5} \mathrm{Al}$ and $\mathrm{Ce}_{3} \mathrm{Pt}_{5} \mathrm{Al}_{2}$
[6] A.I. Tursina, A.V. Gribanov, N.G. Bukhan'ko, P. Rogl, Y.D. Seropegin, Chem. Met. Alloys 1 (2008) 62-66.
[7] A.I. Tursina, E.V. Murashova, H. Noël, N.G. Bukhan'ko, Y.D. Seropegin, Intermetallics 17 (2009) 780-783.
[8] A.I. Tursina, E.V. Murashova, N.G. Bukhan'ko, T. Roisnel, H. Noël, Coll. Abstr. SCTE 2008, Dresden, Germany, p. 343.
[9] G.M. Sheldrick, SADABS, University of Göttingen, Germany, 1996.
[10] L.J. Farrugia, J. Appl. Crystallogr. 32 (1999) 837-838.
[11] G.M. Sheldrick, Acta Crystallogr. A 64 (2008) 112-122.
[12] L.M. Gelato, E. Parthé, J. Appl. Crystallogr. 20 (1987) 139-143.
[13] A.V. Gribanov, Yu.D. Seropegin, O.L. Kubarev, L.G. Akselrud, O.I. Bodak, J. Alloys Compd. 317-318 (2001) 324-326.
[14] J.N. Chotard, O. Tougait, H. Noël, P. Rogl, A. Zelinskiy, O.I. Bodak, J. Alloys Compd. 407 (2006) 36-43.
[15] A. Gribanov, A. Grytsiv, E. Royanian, P. Rogl, E. Bauer, G. Giester, Y. Seropegin, J. Solid State Chem. 181 (2008) 2964-2975.
[16] S.K. Malik, D.C. Kundaliya, Solid State Coттии. 127 (2003) 279-282.
[17] A.L. Spek, J. Appl. Crystallogr. 36 (2003) 7-13.

