The Cu₂Se–PbSe–As₂Se₃ system

T.A. OSTAPYUK¹*, O.F. ZMIY¹, I.A. IVASHCHENKO¹, I.D. OLEKSEYUK¹

¹ Department of Inorganic and Physical Chemistry, Lesya Ukrainka Eastern European National University, 13 Voli Ave., 43025 Lutsk, Ukraine

* Corresponding author. Tel.: + 380-95-1330105; fax: +380-332-241007; e-mail: taras-ostapjuk@rambler.ru

Dedicated to Evgen I. Gladyshevskii (1924-2012)

Received November 13, 2013; accepted June 26, 2014; available on-line November 10, 2014

Phase equilibria of the quasi-ternary system $Cu_2Se-PbSe-As_2Se_3$ were investigated by X-ray diffraction and differential thermal (DTA) analysis. The nonvariant processes in the system are located in the As_2Se_3 -rich part of the triangle (over 70 mol.% As_2Se_3) in the temperature range 607-653 K.

Phase diagram / Liquidus projection / Differential thermal analysis (DTA) / X-ray diffraction (XRD)

Introduction

No data on investigations of the quasi-ternary system $Cu_2Se-PbSe-As_2Se_3$ were found in the literature. There are conflicting reports on the quasi-binary system PbSe-As₂Se₃, concerning the formation of ternary compounds. In addition, our aim was to investigate the formation of quaternary compounds in the system $Cu_2Se-PbSe-As_2Se_3$.

The system Cu₂Se-PbSe-As₂Se₃ is bounded by three quasi-binary systems, Cu₂Se-As₂Se₃, Cu₂Se-PbSe and PbSe-As₂Se₃. The Cu₂Se-As₂Se₃ system is well-studied [1-3]; it features the formation of one ternary compound, CuAsSe₂, by a peritectic reaction, $L_{n1}+Cu_2Se\leftrightarrow CuAsSe_2$. CuAsSe_2 crystallizes in space group R3 with the lattice parameters a = 1.4025 nm, c = 0.961 nm, structure type Cu₇As₆Se₁₃ [4]. The Cu₂Se-PbSe system is of the eutectic type, with a nonvariant point having as coordinates 46 mol.% PbSe, $T_{e1} = 886$ K [5]. The PbSe–As₂Se₃ system was investigated in [1,6]. It is a eutectic system with a degenerate eutectic near As₂Se₃ and the formation of the PbAs₂Se₄ compound by the peritectic reaction L_{p2} +PbSe \leftrightarrow PbAs₂Se₄. According to [6], the compound exists in the range of 658-775 K, whereas the authors of [1] consider the compound stable at room temperature with, probably, spinel structure. For this reason our investigation started with the study of the interactions in the PbSe-As₂Se₃ system.

Experimental

A total of 55 samples were synthesized for the investigation of the phase equilibria in the quasi-

ternary system $Cu_2Se-PbSe-As_2Se_3$. They were prepared from high-purity elements (Se 99.999 wt.%, Pb 99.99 wt.%, Cu 99.99 wt.%, As 99.999 wt.%) by direct synthesis in evacuated quartz ampoules. The maximum temperature was 1370 K. For the homogenizing annealing the samples were held at 520 K for 600 h. The alloys were quenched from this temperature into cold water. All the samples were investigated by XRD and DTA.

XRD analysis as performed using a powder diffractometer DRON 4-13, Cu K_{α} radiation, in the range $10^{\circ} \le 2\theta \le 90^{\circ}$, scan step 0.05°, exposure time 2 s. The phase analysis was performed using the DRWin and Powder Cell software packages.

DTA thermograms were recorded using a Paulik-Paulik-Erdey derivatograph with a Pt/Pt-Rh thermocouple and an XY recorder. The samples were heated at a rate of 10 K/min and cooled inertially.

Results and discussion

The PbSe–As₂Se₃ system

The PbSe–As₂Se₃ system was investigated in the entire concentration range, using fourteen samples. XRD showed that only the samples of the system components PbSe and As₂Se₃ were single-phase. The diffraction patterns of the other alloys contained the reflections of both the initial phases. No indication of the presence of a third phase or of solid solubility of the components was found. We additionally annealed the alloys in the range 40-60 mol.% As₂Se₃ at 723 K, with the aim to freeze the formation of PbAs₂Se₄. But

Fig. 1 Phase diagram of the PbSe–As₂Se₃ system: 1 - L, $2 - L(L_2)+PbSe$, $3 - L(L_1)+PbSe$, $4 - L_2+L_1$, $5 - As_2Se_3+PbSe$.

the diffraction patterns of the samples quenched from this temperature only contained the reflections of PbSe and As₂Se₃ (Fig. 1). The thermograms of all of the alloys, except PbSe, showed thermal effectsthat correspond to the melting point of crystalline As₂Se₃. The monotectic process $L_2 \Leftrightarrow L_1$ +PbSe takes place at 775 K.

Vertical section CuAsSe₂-"PbAs₂Se₄"

The vertical section CuAsSe₂-"PbAs₂Se₄" was investigated on twelve samples in the entire concentration range. All the diffraction patterns, except those of the section components, contained the reflections of three phases. The diffraction pattern of CuAsSe₂ was single-phase; PbAs₂Se₄ turned out to be a two-phase alloy (PbSe+As₂Se₃). Using DTA and XRD, the vertical section CuAsSe₂-"PbAs₂Se₄" was constructed (Fig. 2). The section liquidus consists of the curves of primary crystallization of Cu₂Se (ab) and PbSe (*bc*). Field 7 contains PbSe+ L_2+L_1 , because the monotectic process $L_2 \Leftrightarrow L_1 + PbSe$ takes place in the interval of temperatures from 775 K till 620 K (Table 1). This section intersects the conode L-PbSe in the point d (a more detailed explanation follows below). Differences between L_2 and L_1 only exist in the region L_2 –K– L_1 (Fig. 3). This explains why the fields 3 and 8 (Fig. 2) are the same. The sub-liquidus part features horizontal lines at 653 and 607 K, which result from the intersection with the planes of the transition reaction U_1 and the eutectic reaction E (Fig. 3, Tables 1,2).

Vertical section CuAsSe₂-PbSe

The CuAsSe₂-PbSe section was investigated using eleven samples spanning the entire concentration range. XRD showed that only the alloys of the compounds PbSe and CuAsSe₂ were single-phase. All the other samples were two-phase. Using DTA and XRD, the polythermal section CuAsSe₂-PbSe was constructed (Fig. 4). The section liquidus consists of the lines of primary crystallization of Cu₂Se (ab) and PbSe (bc). The two fields of secondary crystallization are L+CuAsSe₂+Cu₂Se (field 4) and L+Cu₂Se+PbSe (field 5). The horizontal line at 653 K in the subliquidus part results from the intersection with the plane of the transition process $L_{U1}+Cu_2Se \leftrightarrow$ CuAsSe₂+PbSe. On this section it ends with the disappearance of the liquid and Cu₂Se crystals, so that the alloys are two-phase below 653 K. This horizontal line is the section solidus.

Fig. 3 Projection of the liquidus surface of the Cu₂Se–SnSe₂–As₂Se₃ system onto the concentration triangle.

Table 1 Nature and temperatures of the mono- and invariant processes in the quasi-ternary system $Cu_2Se-PbSe-As_2Se_3$.

Vertical section PbSe-"Cu₃AsSe₃"

Eleven samples from the entire concentration range were synthesized for the investigation of the section PbSe–"Cu₃AsSe₃". According to the XRD data, the PbSe sample was single-phase, "Cu₃AsSe₃" consisted of two phases (Cu₂Se+CuAsSe₂), and all the other alloys were three-phase.

The section liquidus, shown in Fig. 5, consists of the curves of primary crystallization of PbSe (ab) and Cu_2Se (cb). Point b is the intersection of the monovariant curve of the joint crystallization of PbSe and Cu₂Se. Two fields of secondary crystallization are featured in the sub-liquidus part: field dbpq corresponds to the joint crystallization of PbSe and Cu₂Se (L+PbSe+Cu₂Se); field *fpn* corresponds to the joint crystallization of Cu₂Se and CuAsSe₂ $(L+CuAsSe_2+Cu_2Se)$. The horizontal line *qpn* (653 K) results from the intersection with the plane of the transition reaction $L_{U1}+Cu_2Se\leftrightarrow CuAsSe_2+PbSe$. As the section crosses the plane of the invariant transition reaction in the region with excess of the solid phase Cu₂Se, three phases, PbSe, Cu₂Se and CuAsSe₂, will be in equilibrium in the solid state after the completion of the process.

Liquidus surface projection of the quasi-ternary system Cu₂Se–PbSe–As₂Se₃

Based on the investigated polythermal sections and literature data on the interactions in the quasi-binary systems $Cu_2Se-PbSe$ and $Cu_2Se-As_2Se_3$, the liquidus surface projection of the quasi-ternary system $Cu_2Se-PbSe-As_2Se_3$ onto the concentration triangle was constructed (Fig. 3). The coordinates of the invariant points are listed in Table 2.

The liquidus surface consists of the five fields of primary crystallization of the phases Cu₂Se, PbSe, As₂Se₃, and CuAsSe₂ (two of them belong to PbSe). A region of aliquation exists between the curves L_2 -K- L_1 . The critical point K, where the difference between the liquids L_1 and L_2 disappears, is located on the monovariant curve of the eutectic process $L_{U1-E} \Leftrightarrow$ CuAsSe₂+PbSe. There the conode triangle L_1 - L_2 -PbSe at 620 K transforms into the conode the conode triangle of the eutectic process $L_{U1-E} \Leftrightarrow$ CuAsSe₂+PbSe (Fig. 3). The major part of the triangle is occupied by the fields of primary crystallization of PbSe and Cu₂Se, which have the highest melting points. The fields of primary crystallization

Fig. 4 Polythermal section $CuAsSe_2$ -PbSe: 1 – L, 2 – L+PbSe, 3 – L+Cu₂Se, 4 – L+Cu₂Se+CuAsSe₂, 5 – L+Cu₂Se+PbSe, 6 – CuAsSe₂+PbSe.

Fig. 5 Polythermal section PbSe–"Cu₃AsSe₃": 1 - L, 2 - L + PbSe, $3 - L + Cu_2Se$, $4 - L + Cu_2Se + CuAsSe_2$, $5 - L + PbSe + Cu_2Se$, $6 - PbSe + Cu_2Se + CuAsSe_2$.

Invariant point	Composition, mol.%		
	Cu ₂ Se	PbSe	As_2Se_3
U ₁	15	20	65
Ε	7	5	88

Table 2 Compositional coordinates of invariant points in the quasi-ternary system Cu₂Se–PbSe–As₂Se₃.

are separated by monovariant lines that cross in the invariant points U_1 and E. The crystallization isotherms are shown with thin lines; dotted lines represent the polythermal sections that were investigated in this paper.

The nature and temperatures of the monovariant and invariant processes in the quasi-ternary system $Cu_2Se-PbSe-As_2Se_3$ are summarized in Table 1.

References

 S.A. Dembovsky, V.V. Kirilenko, A.S. Khvorostenko, *Inorg. Mater.* 7 (1971) 1659-1661.

- [2] K. Cohen, J. Rivet, J. Dugué, J. Alloys Compd. 224 (1995) 316-329.
- [3] A.S. Khvorostenko, V.V. Kirilenko, V.I. Popov, S.A. Dembovskii, V.K. Nikitina, N.P. Luzhnaya, *Inorg. Mater.* 8 (1972) 60-65.
- [4] Y. Takéuchi, H. Horiuchi, Z. Kristallogr. 135 (1972) 93-119.
- [5] V.Y. Shemet, *Ph.D. Thesis*, Ivan Franko State University of Lviv, Lviv, 1996.
- [6] I.O. Nasibov, T.I. Sultanov, V.K. Valiev, S.M. Alidzhanova, *Inorg. Mater.* 23 (1987) 457-458.