The Ag₂S-Ga₂S₃-As₂S₃ system T.L. KLYMUK¹*, I.D. OLEKSEYUK¹, I.I. MAZURETS'¹ Received March 26, 2015; accepted June 24, 2015; available on-line September 1, 2015 The $Ag_2S-Ga_2S_3-As_2S_3$ system was investigated by differential thermal and X-ray diffraction. The phase diagrams of the systems $Ag_2S-As_2S_3$, $Ag_9GaS_6-Ag_3AsS_3$, $AgGaS_2-AgAsS_2$, and $AgGaS_2-Ag_3AsS_3$ were constructed, as well as the liquidus surface projection and the isothermal section at 500 K. The interaction in the $Ag_2S-As_2S_3$ system is eutectic and is described by the equations $L_{e1} \leftrightarrow Ag_2S + Ag_3AsS_3$ (e₁: 25 mol.% As_2S_3 , 720 K), $L_{e2} \leftrightarrow AgAsS_2 + Ag_3AsS_3$ (e₂: 40 mol.% As_2S_3 , 650 K), and $L_{e3} \leftrightarrow AgAsS_2 + As_2S_3$ (e₃: >99 mol.% As_2S_3 , 580 K). The eutectic point in the $AgGaS_2-AgAsS_2$ system lies at 94 mol.% $AgAsS_2$, 653 K. The coordinates of the eutectic in the $AgGaS_2-Ag_3AsS_3$ system are 92 mol.% Ag_3AsS_3 , 670 K, and in the $Ag_9GaS_6-Ag_3AsS_3$ system the eutectic lies at 90 mol.% Ag_3AsS_3 , 687 K. Phase diagram / Isothermal section / Liquidus surface projection # Introduction The binary and ternary compounds in the system $Ag_2S-Ga_2S_3-As_2S_3$ possess non-linear optical, acousto-optical, photoelectric, luminescent, and other properties. The silver thiogallate $AgGaS_2$ belongs to a class of ternary chalcogenides with the chalcopyrite structure. It exhibits high double refraction and a wide transparency region, and is therefore a promising material for quantum electronics [1]. The ternary compounds Ag_3AsS_3 and $AgAsS_2$ are used as non-linear optical materials [2,3]. As_2S_3 is a glass-forming compound, and therefore glassy materials should exist in the $Ag_2S-Ga_2S_3-As_2S_3$ system. Three compounds, AgGaS₂, Ag₉GaS₆, and $Ag_2Ga_{20}S_{31}$, form in the $Ag_2S-Ga_2S_3$ system [4-7]. $Ag_2Ga_{20}S_{31}$ forms by a peritectic reaction $L + Ga_2S_3 \leftrightarrow Ag_2Ga_{20}S_{31}$ at 1268 K, and has a polymorphous transition at 298 K. AgGaS₂ and Ag₉GaS₆ melt congruently at 1273 K and 1063 K, respectively. Ag₉GaS₆ has a polymorphous transition at 308 K. The phase diagram of the Ag₂S-As₂S₃ system has been investigated in the range 0-50 mol.% As₂S₃ [8]. Two ternary compounds, Ag₃AsS₃ and AgAsS₂, exist in the system [8-10] and melt congruently at 689 K and 753 K, respectively. According to [11], a glass-formation region was found in the range 100-10 mol.% As₂S₃ of the quasi-binary system Ag₂S-As₂S₃ under the conditions of extremely rapid quenching (cooling rate $\sim 10^6$ K/s). The phase diagram of the As_2S_3 – Ga_2S_3 system was investigated in [12]. No ternary compounds were found, and the sub-solidus region features only the crystallization of the solid solutions of LT- Ga_2S_3 and As_2S_3 . ### **Experimental** High-purity elements (silver 99.999 mass%, gallium 99.9997 mass%, sulfur 99.997 mass%) and previously synthesized As_2S_3 (arsenic 99.999 mass%) were used for the synthesis. All the samples were synthesized in evacuated quartz ampoules with the use of vibration mixing. The temperature in the furnace was raised at a rate of 20-30 K/h to 1100-1200 K. The melts were kept at the maximum temperature for 6 h. The alloys were cooled at the rate of 10-20 K/h to 500 K, and annealed for 600 h to achieve equilibrium state. After annealing, the ampoules were quenched to room temperature into a saturated NaCl solution. The obtained alloys were investigated by differential thermal analysis (DTA) and X-ray diffraction (XRD). DTA was performed with a set-up consisting of a Thermodent furnace, PDA-1 XY-recorder, and a thermocouple amplifier block. The temperature was controlled by a Pt/Pt-Rh thermocouple. Uniform heating of the furnace was programmed at the rate of 10 K/min, with inertial cooling. Powder diffraction patterns were recorded on ¹ Department of Inorganic and Physical Chemistry, Lesya Ukrainka Eastern European National University, Voli Ave. 13, 43025 Lutsk, Ukraine ^{*} Corresponding author. Tel.: + 380 95 5293296; e-mail: tamara-klimuk@rambler.ru a DRON 4-13 diffractometer with CuK_{α} -radiation in the 10-80° 2θ range, with 0.05° scan step and 1 s exposure at each point. Powder Cell 2.3 software was used for the X-ray phase analysis. #### Results and discussion As the $Ag_2S-As_2S_3$ phase diagram had only been investigated in the range 0-50 mol.% As_2S_3 [8], a re-investigation of the system covering the entire concentration range was performed (Fig. 1). The existence of the two ternary compounds, Ag_3AsS_3 and $AgAsS_2$, which both melt congruently, was confirmed. The interaction of the components and the ternary compounds is described by the following equations: $L_{e1} \leftrightarrow Ag_2S + Ag_3AsS_3$ ($e_1 = 25 \text{ mol.}\%$ $As_2S_3, 720 \text{ K}$), $L_{e2} \leftrightarrow AgAsS_2 + Ag_3AsS_3$ ($e_2 = 40 \text{ mol.}\%$ $As_2S_3, 650 \text{ K}$), and $L_{e3} \leftrightarrow AgAsS_2 + As_2S_3$ (580 K). The temperature of the latter process is only slightly lower than the melting point of As_2S_3 (583 K), therefore this eutectic is degenerate. The phase diagram of the $AgGaS_2$ – $AgAsS_2$ section was investigated in the entire concentration range (Fig. 2). **Fig. 1** Phase diagram of the $Ag_2S-As_2S_3$ system. Fig. 2 Phase diagram of the AgGaS2-AgAsS2 system. The results show that the system is of the eutectic type. The coordinates of the eutectic, determined by the construction of a Tamman triangle, are 94 mol.% AgAsS₂, 653 K. The solid solubility in the components is negligible. The phase diagrams of the sections $AgGaS_2-Ag_3AsS_3$ and $Ag_9GaS_6-Ag_3AsS_3$ are similar, since both of them are of the eutectic type. The eutectic coordinates are 92 mol.% Ag_3AsS_3 , 670 K for the $AgGaS_2-Ag_3AsS_3$ system, and 90 mol.% Ag_3AsS_3 , 687 K for the $Ag_9GaS_6-Ag_3AsS_3$ system. The phase diagram of the $Ag_2Ga_{20}S_{31}-As_2S_3$ system (Fig. 3) is quasi-binary in the sub-solidus region. The liquidus line consists of the three curves of primary crystallization of α -Ga $_2S_3$ (field 2), β -Ga $_2S_3$ (field 4) and As_2S_3 (field 8). The sub-liquidus part features lines that correspond to the beginning of the secondary crystallization of $L+\beta$ -Ga $_2S_3+Ag_2Ga_{20}S_{31}$ (in the peritectic reaction $L+\beta$ -Ga $_2S_3\leftrightarrow Ag_2Ga_{20}S_{31}$) and $L+\beta$ -Ga $_2S_3+As_2S_3$ (in the eutectic reaction $L\leftrightarrow \beta$ -Ga $_2S_3+As_2S_3$). The solid solubility in the components does not exceed 2 mol.%. The solidus is a horizontal line at 579 K, which belongs to the plane of the non-variant peritectic process $L+\beta$ -Ga $_2S_3\leftrightarrow As_2S_3+Ag_2Ga_{20}S_{31}$. The isothermal section of the Ag₂S-Ga₂S₃-As₂S₃ system at 500 K is presented in Fig. 4. All the phases existing at this temperature are in the solid state. No quaternary compounds were found in the system. There are six three-phase fields, separated by five two-phase equilibria. The liquidus surface projection of the $Ag_2S-Ga_2S_3-As_2S_3$ system is shown in Fig. 5. The system consists of five sub-systems: $Ag_2S-Ag_9GaS_6-Ag_3AsS_3$, $Ag_9GaS_6-AgGaS_2-Ag_3AsS_3$, $AgGaS_2-Ag_3AsS_3$, $AgGaS_2-Ag_3AsS_3$, and $AgGaS_2-Ga_2S_3-As_2S_3$, which may be viewed as independent. The liquidus of the four sub-systems (except AgGaS₂-Ga₂S₃-As₂S₃) consists of the three curves of primary crystallization of the components that form the sub-system. The liquidus of the AgGaS₂–Ga₂S₃– As₂S₃ system consists of the five fields of primary crystallization of $AgGaS_2$, α -Ga₂S₃, β -Ga₂S₃, $Ag_2Ga_{20}S_{31}$, and As_2S_3 . The temperature of the ternary eutectic E₅ in the AgGaS₂-AgAsS₂-As₂S₃ sub-system is 577 K, which differs only insignificantly from the eutectics in the systems AgAsS₂-As₂S₃ (580 K), AgGaS₂-As₂S₃ (582 K), and slightly more from that of the system AgGaS₂-AgAsS₂ (653 K). Analogous situations are observed for the non-variant points E₄ and P_2 . The As_2S_3 content of the non-variant points E_4 , E₅, P₂ is 98 mol.% As₂S₃, which complicates the preparation of crystalline samples of this composition and hence the investigation of the phase diagram in this part of the system (see enlargement in Fig. 5). **Fig. 3** Phase diagram of the Ag₂Ga₂₀S₃₁–As₂S₃ system. Fig. 4 Isothermal section of the Ag_2S – Ga_2S_3 – As_2S_3 system at 500 K. Fig. 5 Liquidus surface projection of the Ag_2S – Ga_2S_3 – As_2S_3 system. #### **Conclusions** Based on the results of X-ray diffraction and differential thermal analysis, we investigated the phase diagrams of the systems $Ag_2S-As_2S_3, Ag_9GaS_6-Ag_3AsS_3, AgAsS_2-AgGaS_2, and <math display="inline">AgGaS_2-Ag_3AsS_3,$ as well as the liquidus surface projection and the isothermal section at 500 K of the $Ag_2S-Ga_2S_3-As_2S_3$ system. The nature and temperature of the non-variant and monovariant processes were determined. ## References - [1] V.V. Badykov, O.V. Skrenbeva, *Kuban State Univ. Bull.* (1982) 124-161. - [2] S.R. Sashital, A.L. Gentile, *J. Cryst. Growth* 69 (1984) 379-387. - [3] I.D. Olekseyuk, *Binary and Ternary Semiconductor Phases in the Systems* $Me-B^V-C^{VI}(D^{VII})$, Vezha, Lutsk, 1995. (In Ukrainian) - [4] G. Brandt, V. Krämer, *Mater. Res. Bull.* 11(11) (1976) 1381-1388. - [5] H. Hahn, G. Frank, W. Klingler, A.D. Meyer,G. Störger, Z. Anorg. Allg. Chem. 271(3-4) (1953) 153-170. - [6] S.C. Abrahams, J.L. Bernstein, J. Chem. Phys. 59(4) (1973) 1625-1629. - [7] M. Guittard, C. Carcaly, T. Kabré, P.H. Fourcroy, J. Flahaut, Ann. Chim. (Paris) 8(3) (1983) 215-225. - [8] F.H. Wehmeier, R.A. Laudise, J.W. Shiever, *Mater. Res. Bull.* 3 (1968) 767-778. - [9] E. Hellner, H. Burzlaff, *Naturwissenschaften* 51 (1964) 35-36. - [10] D. Harker, J. Chem. Phys. 4 (1936) 381-390. - [11] Jun Liu, J.J. Videau, B. Tanguy, J. Portier, J.M. Reau, P. Hagenmuller, *Mater. Res. Bull.* 23 (1988) 1315-1320. - [12] T.L. Klymuk, I.I. Mazurets', Coll. Abstr. VI All-Ukraine Conf. Young Researchers and Students on Modern Challenges in Chemistry, June 3-6, 2008, Kharkiv, p. 151.