Interaction of the components in $SrO-R_2O_3-MnO_x$ systems where *R* is a rare-earth metal of the yttrium subgroup

Oksana ZAREMBA¹*, Kateryna NAHIRNA¹, Roman GLADYSEHVSKII¹

¹ Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya St. 6, 79005 Lviv, Ukraine

* Corresponding author. Tel.: +380-32-2394506; e-mail: oksanazaremba@gmail.com

Received March 19, 2017; accepted June 27, 2017; available on-line April 1, 2018

The interaction of the components in the systems $SrO-R_2O_3$ -MnO_x, where R = rare-earth metal of the yttrium subgroup, was investigated based on the results of X-ray diffraction on polycrystalline samples synthesized by solid-state reaction in air. In the system $SrO-Tb_2O_3$ -MnO_x, for samples synthesized at 1000°C, the formation of the compound ($Sr_{1-x}Tb_x$)MnO₃ with perovskite-type structure (structure type CaTiO₃, space group *Pm-3m*, *a* = 0.3822(1) nm, R_B = 0.155 for *x* = 0.75) was established. In the system $SrO-Dy_2O_3$ -MnO_x, at the temperature of synthesis 1100°C, the existence of the following two compounds was confirmed: ($Sr_{1-x}Dy_x$)₂MnO₄ (structure type K₂NiF₄, space group *I4/mmm*, *a* = 0.3816(1), *c* = 1.2356(5) nm, R_B = 0.168 for *x* = 0.25), and ($Sr_{1-x}Dy_x$)MnO₃ (structure type CaTiO₃, space group *Pm-3m*, *a* = 0.3823(1) nm, R_B = 0.142 for *x* = 0.5). The interaction of the components in the systems $SrO-R_2O_3$ -MnO_x, where *R* = Er, Yb, or Lu, for the temperature of synthesis 1000°C, is characterized by the absence of multinary phases and the equilibria are formed between phases in the corresponding boundary systems.

Oxides / X-ray phase analysis / Phase equilibria / Crystal structure

Взаємодія компонентів у системах SrO–*R*₂O₃–MnO_x, де *R* – рідкісноземельний метал ітрієвої підгрупи

Оксана ЗАРЕМБА¹*, Катерина НАГІРНА¹, Роман ГЛАДИШЕВСЬКИЙ¹

¹ Кафедра неорганічної хімії, Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія 6, 79005 Львів, Україна

* Контактна особа. Тел.: +380-32-2394506; e-mail: oksanazaremba@gmail.com

Взаємодію компонентів у системах SrO- R_2O_3 -MnO_x, де R – рідкісноземельний метал ітрієвої підгрупи, вивчено за результатами рентгенівського фазового та структурного аналізів полікристалічних зразків, синтезованих методом твердофазної реакції на повітрі. У системі SrO-Tb₂O₃-MnO_x за температури синтезу 1000°С виявлено існування сполуки (Sr_{1-x}Tb_x)MnO₃ зі структурою типу перовскіту (структурний тип CaTiO₃, просторова група Pm-3m, a = 0,3822(1) нм, $R_B = 0,155$ для x = 0,75). У системі SrO-Dy₂O₃-MnO_x за температури синтезу 1100°С підтверджено існування двох сполук: (Sr_{1-x}Dy_x)₂MnO₄ (структурний тип K₂NiF₄, просторова група *I4/mmm*, a = 0,3816(1), c = 1,2356(5) нм, $R_B = 0,168$ для x = 0,25), та (Sr_{1-x}Dy_x)MnO₃ (структурний тип CaTiO₃, просторова група Pm-3m, a = 0,3823(1) нм, $R_B = 0,142$ для x = 0,5). Взаємодія компонентів у системах SrO- R_2O_3 -MnO_x, де R = Er, Yb або Lu, за температури синтезу 1000°С характеризується відсутністю сполук; у рівновазі є фази з відповідних обмежуючих систем.

Оксиди / Рентгенівський фазовий аналіз / Фазові рівноваги / Кристалічна структура

Вступ

Сполуки в системах $AO-R_2O_3-MnO_x$ (A лужноземельний метал, R – рідкісноземельний метал) володіють низкою цікавих електричних та магнітних властивостей і можуть бути використані, зокрема, як об'єкти для розробки матеріалів з колосальним магнетоопором для сенсорів та пристроїв пам'яті [1-4]. Багатокомпонентні сполуки утворюються у всіх системах, що містять лужноземельний метал (Са, Sr, Ba), рідкісноземельний метал (лантаноїди та У), Манган та Оксиген, за виключенням систем із Рт, Тт- та Yb-вмісних систем у випадку зі Стронцієм та Tm-, Yb-, Lu-вмісних систем у випадку з Барієм [5].

Метою нашої роботи було систематичне вивчення взаємодії компонентів у системах $SrO-R_2O_3$ -MnO_x, де R – рідкісноземельний метал ітрієвої підгрупи, для окремих з яких є відомості про утворення сполук, однак діаграм стану не побудовано.

Методика дослідження

Полікристалічні зразки виготовлено методом твердофазної реакції з відповідних кількостей дрібнодисперсних порошків SrCO₃, Y₂O₃, Tb₂O₃, Dy₂O₃, Ho₂O₃, Er₂O₃, Tm₂O₃, YbO, Lu₂O₃ ta MnO (чистотою не менше 99,5 мас.%) у дві стадії. Спочатку суміші компонентів, які перетирали в агатовій ступці впродовж 5 хв після додавання кожного наступного компонента, нагрівали в корундових тиглях при температурі 1000°С (1100°С) на повітрі впродовж 24 год з метою повного розкладу карбонату. Ступінь термолізу карбонату, який контролювали шляхом зважування шихти до та після нагрівання, становив більше 99 мас.%. Отримані суміші охолоджували до кімнатної температури, знову перетирали, пресували у таблетки та спікали при температурі 1000°С (1100°С) на повітрі впродовж Зміна забарвлення таблеток доби. після спікання в порівнянні з сумішшю вихідних речовин, а також твердість і крихкість зразків після спікання, свідчили про проходження твердофазних реакцій.

Рентгенівський фазовий та структурний аналізи проведено на основі масивів порошкових дифракційних даних, отриманих на дифрактометрі **ЛРОН-2.0 М** (проміння Fe Kα). Зйомка здійснювалась за схемою Брегга-Брентано, режим зйомки – 1°/хв, крок сканування – 0,05°, діапазон кутів – 20-80° 2 *θ*. Як еталони для порівняння застосовували порошкограми вихідних речовин, а також дифрактограми багатокомпонентних сполук, використовуючи відомості з баз даних Pearson's Crystal Data [5] Ta Pauling File [6]. Уточнення параметрів структури та профілю

(параметрів елементарної комірки, координат атомів, зайнятості правильних систем точок, фактора шкали, нульового значення 2 θ , параметрів профілю піків, параметра змішування функцій Лоренца та Ґауса, параметра асиметрії піків, параметра текстури) проводили методом Рітвельда за допомогою програми DBWS-9807 [7]. Для оцінки достовірності вибраної моделі використовували фактор достовірності (розбіжності) $R_{\rm B}$.

Результати та обговорення

Система SrO-Tb₂O₃-MnO_x

Вивчення взаємодії компонентів у системі SrO–Tb₂O₃–MnO_x розпочато з аналізу кристалічних структур сполук, що існують у відповідних обмежуючих системах за температури синтезу 1000° C.

Зa результатами рентгенофазового (Таблиця 1) та рентгеноструктурного аналізів полікристалічних зразків у системі SrO-Tb2O3 підтверджено існування лише однієї сполуки, SrTbO₃ (структурний тип GdFeO₃, просторова група Рпта, фактор достовірності (розбіжності) $R_{\rm B} = 0.071$), параметри елементарної комірки якої (a = 0.5950(1),b = 0,8347(1),c = 0.5873(1) HM) добре узгоджуються з літературними відомостями [5]. У зразку № 5, найбагатшому на хімічно активний оксид SrO, за результатами фазового аналізу спостерігали утворення фаз Sr(OH)₂(H₂O) та SrCO₃. Відому в літературі сполуку SrTb₂O₄ зі структурою типу CaV₂O₄ за умов дослідження закономірно не спостерігали, оскільки згідно з роботою [8] вона існує при температурі вище 2000°C.

У системі Tb₂O₃–MnO_x підтверджено існування двох сполук (див. Таблицю 1): TbMnO₃ (GdFeO₃, *Pnma*, a = 0,5826(1), b = 0,7407(1), c = 0,5297(1) нм, $R_{\rm B} = 0,060$) та TbMn₂O₅ (DyMn₂O₅, *Pbam*, a = 0,7319(1), b = 0,8506(1), c = 0,5668(1) нм, $R_{\rm B} = 0,071$). Зауважено, що вихідний оксид Tb₂O₃ в процесі синтезу окиснюється до Tb₇O₁₂, тоді як MnO – до α-Mn₃O₄. Сполуку Tb₂Mn₂O₇ зі структурою типу Ca₂Nb₂O₇ за умов дослідження не спостерігали, оскільки згідно з даними праці [9] її синтезували при високому тиску (5 ГПа) та вищій температурі (1450°C).

В Таблиці 1 представлено також результати фазового аналізу полікристалічних зразків системи SrO-MnO_x. Підтверджено існування трьох сполук: Sr₇Mn₄O₁₅ $(Cs_7Ni_4F_{15},$ $P2_{1}/c$, a = 0,6810(1),b = 0.9623(2),c = 1,0384(2) нм, $\beta = 91,83(1)^{\circ},$ $R_{\rm B} = 0,135$), SrMnO₃ (BaMnO₃, $P6_3/mmc$, a = 0,5447(1),c = 0,9072(2) нм, $R_{\rm B} = 0,145)$ та $Sr_{1,33}Mn_4O_8$ (власний тип, *Pnma*, a = 0.9142(2), b = 0.2826(1), c = 1,2097(3) нм, $R_{\rm B} = 0,248$). Остання фаза за даними роботи [10] має

Mo	Вихідний	Фазовий	Структурний	Просторова	Вміст фази,
JN⊵	склад зразка	склад зразка	ТИП	група	мас.%
1	$SrO - Tb_2O_3$	SrTbO ₃	GdFeO ₃	Pnma	53,5
1	1:2 (33:67 мол.%)	Tb_7O_{12}	Pr_7O_{12}	<i>R</i> -3	46,5
0	$SrO - Tb_2O_3$	SrTbO ₃	GdFeO ₃	Pnma	71,6
2	1:1 (50:50 мол.%)	Tb_7O_{12}	Pr_7O_{12}	<i>R</i> -3	28,4
2	$SrO - Tb_2O_3$	SrTbO ₃	GdFeO ₃	Pnma	91,1
3	3:2 (60:40 мол.%)	Tb_7O_{12}	Pr_7O_{12}	<i>R</i> -3	8,9
4	SrO – Tb ₂ O ₃ 2:1 (67:33 мол.%)	SrTbO ₃	GdFeO ₃	Pnma	100
	SrO ThO	SrTbO ₃	GdFeO ₃	Pnma	79,4
5	$510 = 10_2 0_3$	$Sr(OH)_2(H_2O)$	$Sr(OH)_2(H_2O)$	$Pmc2_1$	13,1
	4.1 (80.20 MOJI.%)	SrCO ₃	CaCO ₃	Pnma	7,5
6	$Tb_2O_3 - MnO$	Tb_7O_{12}	Pr_7O_{12}	<i>R</i> -3	52,8
0	2:1 (67:33 мол.%)	TbMnO ₃	$GdFeO_3$	Pnma	47,2
7	$Tb_2O_3 - MnO$	TbMnO ₃	GdFeO ₃	Pnma	95,7
	1:2 (33:67 мол.%)	Tb_7O_{12}	Pr_7O_{12}	<i>R</i> -3	4,3
8	$Tb_2O_3 - MnO$	TbMn ₂ O ₅	DyMn ₂ O ₅	Pbam	51,7
	1:3 (25:75 мол.%)	TbMnO ₃	GdFeO ₃	Pnma	48,3
9	$Tb_2O_3 - MnO$	TbMn ₂ O ₅	DyMn ₂ O ₅	Pbam	92,2
	1:4 (20:80 мол.%)	TbMnO ₃	GdFeO ₃	Pnma	7,8
10	$Tb_2O_3 - MnO$	TbMn ₂ O ₅	DyMn ₂ O ₅	Pbam	61,6
10	1:9 (10:90 мол.%)	Mn_3O_4	α -Mn ₃ O ₄	$I4_1/amd$	38,4
11	SrO – MnO	Mn_3O_4	α -Mn ₃ O ₄	$I4_1/amd$	55,0
11	1:7 (12,5:87,5 мол.%)	$Sr_{1.33}Mn_4O_8$	$Sr_{1,33}Mn_4O_8$	Pnma	45,0
12	SrO - MnO	SrMnO ₃	BaMnO ₃	$P6_3/mmc$	54,2
12	1:2 (33:67 мол.%)	$Sr_{1,33}Mn_4O_8$	$Sr_{1,33}Mn_4O_8$	Pnma	45,8
13	SrO - MnO	SrMnO	BaMnO	D6 /mma	100
15	1:1 (50:50 мол.%)	SIMIO ₃	DalvIIIO ₃	1 0 ₃ /mmc	100
14	SrO - MnO	$Sr_7Mn_4O_{15}$	$Cs_7Ni_4F_{15}$	$P2_{1}/c$	77,1
14	3:2 (60:40 мол.%)	SrMnO ₃	BaMnO ₃	$P6_3/mmc$	22,9
15	SrO - MnO	$Sr_7Mn_4O_{15}$	Cs ₇ Ni ₄ F ₁₅	$P2_{1}/c$	95,2
15	2:1 (67:33 мол.%)	SrO	NaCl	Fm-3m	4,8

Таблиця 1 Результати рентгенівського фазового аналізу полікристалічних зразків у системах SrO–Tb₂O₃, Tb₂O₃–MnO_x та SrO–MnO_x за температури синтезу 1000°С.

неспіввимірну модульовану структуру. Слід відмітити, що відому в літературі сполуку $Sr_4Mn_3O_{10}$ зі структурою типу $Cs_4Mg_3F_{10}$ [11,12] за умов дослідження не спостерігали.

Фазові рівноваги у системі SrO-Tb₂O₃-MnO_x, побудовані за результатами дослідження багатокомпонентних полікристалічних зразків, синтезованих за температури 1000°С (Таблиця 2), представлено на Рис. 1. У системі виявлено утворення сполуки ($Sr_{1-x}Tb_x$)MnO₃ (CaTiO₃, *Pm*-3*m*, *a* = 0,3822(1) нм, *R*_B = 0,155 для *x* = 0,75). Вона знаходиться в рівновазі з фазами SrMnO₃, Tb₇O₁₂, ТbMnO₃, TbMn₂O₅ та Sr_{1,33}Mn₄O₈. Зауважимо, що (Sr_{1-x}Tb_x)MnO₃ спостерігали у п'яти фазу трифазних зразках, в яких параметри її елементарної комірки та зайнятість положень атомів Sr та Tb дещо відрізняються, що свідчить про наявність області гомогенності, точне встановлення меж якої потребує більш ретельного дослідження.

Система SrO-Dy₂O₃-MnO_x

Характер взаємодії компонентів у системі $SrO-Dy_2O_3-MnO_x$ та відповідних обмежуючих системах встановлено за результатами рентгенівського фазового та структурного аналізів полікристалічних зразків, синтезованих за температури 1100°С.

Як видно з Таблиці 3, у системі SrO–Dy₂O₃ підтверджено утворення єдиної сполуки SrDy₂O₄ (CaV₂O₄, *Pnma*, a = 1,0093(2), b = 0,3430(1), c = 1,1947(2) нм, $R_{\rm B} = 0,127$), тоді як у системі Dy₂O₃-MnO_x – двох сполук, DyMnO₃ (GdFeO₃, *Pnma*, a = 0,5826(1), b = 0,7393(1), c = 0,5280(1) нм, $R_{\rm B} = 0,088$) та DyMn₂O₅ (власний тип, *Pbam*, a = 0,7292(2), b = 0,8500(2), c = 0,5676(2) нм, $R_{\rm B} = 0,183$). У літературі є відомості про сполуку DyMn₂O₇ [13], яку за умов дослідження не спостерігали. Взаємодія компонентів у системі SrO-MnO_x за температури 1100°C є ідентичною до описаної вище за температури 1000°C. O. Zaremba *et al.*, Interaction of the components in $SrO-R_2O_3-MnO_x$ systems where *R* is a rare-earth metal ...

Рис. 1 Схема фазових рівноваг у системі $SrO-Tb_2O_3-MnO_x$ за температури синтезу 1000°С (1 – сполука ($Sr_{1-x}Tb_x$)MnO₃).

Результати рентгенофазового аналізу полікристалічних зразків системи SrO-Dy₂O₃-MnO_x, синтезованих за температури 1100°С, представлено в Таблиці 4 та на Рис. 2. Підтверджено існування сполуки (Sr_{1-x}Dy_x)₂MnO₄ (K₂NiF₄, *I*4/*mmm*, a = 0,3816(1), c = 1,2356(5) HM, $R_{\rm B} = 0,168$ для x = 0,25) та встановлено, що вона знаходиться у рівновазі з фазами SrDy₂O₄, Dy₂O₃, SrMnO3 та Sr7Mn4O15. Також підтверджено існування сполуки (Sr_{1-x}Dy_x)MnO₃ (CaTiO₃, *Pm*-3*m*, *a* = 0,3823(1) нм, *R*_B = 0,142 для *x* = 0,5), що є в рівновазі з фазами Dy2O3, DyMnO3, DyMn2O5, Sr_{1,33}Mn₄O₈ та SrMnO₃. Уточнені координати атомів у структурі сполуки (Sr_{1-x}Dy_x)₂MnO₄ представлено в Таблиці 5, тоді як у структурі сполуки (Sr_{1-x}Dy_x)MnO₃ усі атоми знаходяться у положеннях фіксованими координатами. 3 Очевидно, що обидві сполуки ((Sr_{1-x}Dy_x)₂MnO₄ та $(Sr_{1-x}Dy_x)MnO_3)$ мають області гомогенності, однак точне встановлення їхніх меж потребує додаткового дослідження.

Проведено кристалічних структур аналіз перетині SrMnO₃–DyMnO₃. сполук на Вони мають однаковий стехіометричний склад (A/R)MnO₃, однак різні кристалічні 1:1:3. структури – SrMnO₃ (гексагональна сингонія, структурний тип BaMnO₃, Рис. 3(а)), $(Sr_{1-x}Dy_x)MnO_3$ (кубічна сингонія, CaTiO₃, Рис. 3(6)) та DyMnO₃ (ромбічна сингонія, GdFeO₃, Рис. 3(в)).

Кубічна структура типу СаТіО₃ належить родини перовскітів, що є складними до оксидами із загальною формулою АМХ3. В "ідеальній" (недеформованій) структурі катіони $A (A^{2+}, A^{+})$, зазвичай, більші за розміром, ніж катіони M (M^{4+} , M^{2+}), і приблизно співпадають за розмірами з аніонами X (X^{2-}, X^{-}). Структура перовскіту характеризується, так званим. фактором толерантності [14]: $\tau = (r_A + r_X)/\sqrt{2}(r_M + r_X)$, де r – іонний радіус. Для кубічного перовскіту т ~ 1 (знаходиться в діапазоні $0,88 \le \tau \le 1,11$).

Мо	Вихідний	Фазовий	Структурний	Просторова	Вміст фази,
JN⊵	склад зразка	склад зразка	ТИП	група	мас.%
1		TbSrO ₃	GdFeO ₃	Pnma	63,3
	$SIO = IO_2O_3 - MIIO$	Tb_7O_{12}	Pr_7O_{12}	<i>R</i> -3	32,2
	(40.30.10 M0J1.70)	SrMnO ₃	BaMnO ₃	P6 ₃ /mmc	4,5
		TbSrO ₃	GdFeO ₃	Pnma	64,6
2	$SrO - Tb_2O_3 - MnO$	Sr ₇ Mn ₄ O ₁₅	Cs ₇ Ni ₄ F ₁₅	$P2_{1}/c$	22,3
2	(80:10:10 мол.%)	SrO	NaCl	Fm-3m	7,7
		$Sr(OH)_2(H_2O)$	$Sr(OH)_2(H_2O)$	$Pmc2_1$	5,4
	Seo Tho Meo	SrMnO ₃	BaMnO ₃	P6 ₃ /mmc	41,4
3	$SIO = 10_2O_3 = MIIO$ (45:20:25 Not %)	TbSrO ₃	GdFeO ₃	Pnma	39,6
	(45.20.55 MOJI.70)	Tb_7O_{12}	Pr_7O_{12}	<i>R</i> -3	19,0
		TbSrO ₃	GdFeO ₃	Pnma	38,7
4	(55:9:36 мол.%)	$Sr_7Mn_4O_{15}$	Cs ₇ Ni ₄ F ₁₅	$P2_{1}/c$	37,0
		SrMnO ₃	BaMnO ₃	P6 ₃ /mmc	24,3
	SrO – Tb ₂ O ₃ – MnO (10:50:40 мол.%)	Tb_7O_{12}	Pr_7O_{12}	<i>R</i> -3	63,9
5		TbMnO ₃	$GdFeO_3$	Pnma	24,8
		$(Sr_{1-x}Tb_x)MnO_3$	CaTiO ₃	Pm-3m	11,3
	$SrO - Tb_2O_3 - MnO$	SrMnO ₃	BaMnO ₃	P6 ₃ /mmc	48,2
6	(28,6:14,3:57,1	$(Sr_{1-x}Tb_x)MnO_3$	CaTiO ₃	Pm-3m	45,1
	мол.%)	Tb_7O_{12}	Pr_7O_{12}	<i>R</i> -3	6,7
	Sro Tho Mro	SrMnO ₃	BaMnO ₃	P6 ₃ /mmc	62,1
7	$SIO - I D_2 O_3 - MIIO$	$Sr_{1,33}Mn_4O_8$	$Sr_{1,33}Mn_4O_8$	Pnma	19,3
	(52:5:05 MOJI.%)	$(\mathrm{Sr}_{1-x}\mathrm{Tb}_x)\mathrm{MnO}_3$	CaTiO ₃	Pm-3m	18,6
	SrO Tho MrO	TbMnO ₃	GdFeO ₃	Pnma	59,5
8	$510 = 10_20_3 = MIIO$	TbMn ₂ O ₅	$DyMn_2O_5$	Pbam	34,6
	(5:25:70 MOJI.%)	$(Sr_{1-x}Tb_x)MnO_3$	CaTiO ₃	Pm-3m	5,9
		$(Sr_{1-x}Tb_x)MnO_3$	CaTiO ₃	Pm-3m	46,6
9	$SIO = I U_2 U_3 = MINU$	TbMn ₂ O ₅	$DyMn_2O_5$	Pbam	28,3
-	(20:10:70 мол.%)	$Sr_{1,33}Mn_4O_8$	$Sr_{1,33}Mn_4O_8$	Pnma	25,1

Таблиця 2 Результати рентгенівського фазового аналізу полікристалічних зразків у системі SrO–Tb₂O₃–MnO_x за температури синтезу 1000°С.

Таблиця 3 Результати рентгенівського фазового аналізу полікристалічних зразків у системах SrO–Dy₂O₃ та Dy₂O₃–MnO_x за температури синтезу 1100°С.

Мо	Вихідний	Фазовий	Структурний	Просторова	Вміст фази,
JN≌	склад зразка	склад зразка	ТИП	група	мас.%
1	$SrO - Dy_2O_3$	$SrDy_2O_4$	CaV_2O_4	Pnma	89,3
1	2:1 (67:33 мол.%)	$Sr(OH)_2(H_2O)$	$Sr(OH)_2(H_2O)$	$Pmc2_1$	10,7
r	$SrO - Dy_2O_3$	$SrDy_2O_4$	CaV_2O_4	Pnma	98,0
2	1:1 (50:50 мол.%)	Dy_2O_3	Mn_2O_3	Ia-3	2,0
3	$SrO - Dy_2O_3$	$SrDy_2O_4$	CaV_2O_4	Pnma	63,6
3	1:2 (33:67 мол.%)	Dy_2O_3	Mn_2O_3	Ia-3	36,4
4	$Dy_2O_3 - MnO$	Dy_2O_3	Mn_2O_3	Ia-3	54,7
	2:1 (67:33 мол.%)	DyMnO ₃	GdFeO ₃	Pnma	45,3
5	$Dy_2O_3 - MnO$	DyMnO ₃	GdFeO ₃	Pnma	62,8
	1:1 (50:50 мол.%)	Dy_2O_3	Mn_2O_3	Ia-3	37,2
6	$Dy_2O_3 - MnO$	DyMnO	GdEaO	Duma	100
0	1:2 (33:67 мол.%)	DyMIIO ₃	OureO ₃	1 пти	100
7	$Dy_2O_3 - MnO$	DyMnO ₃	GdFeO ₃	Pnma	52,7
/	1:3 (25:75 мол.%)	$DyMn_2O_5$	DyMn ₂ O ₅	Pbam	47,3
8	$Dy_2O_3 - MnO$	DyMn ₂ O ₅	DyMn ₂ O ₅	Pbam	66,3
	1:7 (12,5:87,5 мол.%)	Mn_3O_4	α -Mn ₃ O ₄	$I4_1/amd$	33,7

Ma	Вихідний	Фазовий	Структурний	Просторова	Вміст фази,
JNO	склад зразка	склад зразка	ТИП	група	мас.%
		Dy ₂ O ₃	Mn_2O_3	Ia-3	67,8
1	$SIO - Dy_2O_3 - MIIO$	$SrDy_2O_4$	CaV_2O_4	Pnma	24,1
	(20:70:10 MOJI.%)	$(Sr_{1-x}Dy_x)_2MnO_4$	K ₂ NiF ₄	I4/mmm	8,1
		SrDy ₂ O ₄	CaV_2O_4	Pnma	60,1
2	$SIO - Dy_2O_3 - MIIO$	Dy_2O_3	Mn_2O_3	Ia-3	32,0
	(40.30.10 MOJI.%)	$(\mathrm{Sr}_{1-x}\mathrm{Dy}_x)_2\mathrm{MnO}_4$	K ₂ NiF ₄	I4/mmm	7,9
		SrDy ₂ O ₄	CaV_2O_4	Pnma	65,6
3	$SrO - Dy_2O_3 - MnO$	$(Sr_{1-x}Dy_x)_2MnO_4$	K ₂ NiF ₄	I4/mmm	19,8
	(30:30:20 MOJI.%)	Dy_2O_3	Mn_2O_3	Ia-3	14,6
		$(Sr_{1-x}Dy_x)_2MnO_4$	K ₂ NiF ₄	I4/mmm	49,3
4	$SrO - Dy_2O_3 - MnO$	$SrDy_2O_4$	CaV_2O_4	Pnma	37,1
	(57:15:28 MOJI.%)	Dy_2O_3	Mn_2O_3	Ia-3	13,6
		SrDy ₂ O ₄	CaV_2O_4	Pnma	57,9
-	$SrO - Dy_2O_3 - MnO$	$Sr(OH)_2(H_2O)$	$Sr(OH)_2(H_2O)$	$Pmc2_1$	22,7
Э	(70:20:10 мол.%)	$Sr_7Mn_4O_{15}$	$Cs_7Ni_4F_{15}$	$P2_{1}/c$	16,3
		SrCO ₃	CaCO ₃	Pnma	3,1
	SrO – Dy ₂ O ₃ – MnO (10:10:80 мол.%)	DyMn ₂ O ₅	DyMn ₂ O ₅	Pbam	74,1
6		$Sr_{1,33}Mn_4O_8$	$Sr_{1,33}Mn_4O_8$	Pnma	17,5
		Mn ₃ O ₄	α -Mn ₃ O ₄	I4 ₁ /amd	8,4
7*	SrO – Dy ₂ O ₃ – MnO (20:20:60 мол.%)	$(\mathbf{S}_{n}, \mathbf{D}_{n})\mathbf{M}_{n}\mathbf{O}$	CoTiO	D 2	100.0
14		$(Sr_{1-x}Dy_x)WIIO_3$	Carlo ₃	Pm-5m	100,0
Q	$SrO - Dy_2O_3 - MnO$	$(\mathrm{Sr}_{1-x}\mathrm{Dy}_x)\mathrm{MnO}_3$	CaTiO ₃	Pm-3m	59,0
0	(30:10:60 мол.%)	SrMnO ₃	BaMnO ₃	$P6_3/mmc$	41,0
	$SrO - Dy_2O_3 - MnO$	SrMnO ₃	BaMnO ₃	$P6_3/mmc$	52,9
9*	(28,6:14,3:57,1 мол.	(Sr Dy)MnO	CaTiO	Dun 311	47.1
	%)	$(SI_{1-x}Dy_x)WIIO_3$	CarlO ₃	1 m-5m	47,1
	SrO DvO MrO	SrMnO ₃	BaMnO ₃	$P6_3/mmc$	46,2
10*	(30.20.50 Mom %)	Dy_2O_3	Mn_2O_3	Ia-3	27,1
	(JU.20.JU MOJI.%)	$(\mathrm{Sr}_{1-x}\mathrm{Dy}_x)\mathrm{MnO}_3$	CaTiO ₃	Pm-3m	26,7
	SrO DvO MrO	DyMnO ₃	GdFeO ₃	Pnma	50,3
11	$510 - Dy_2O_3 - Willo(5.25.70 MOT %)$	$DyMn_2O_5$	DyMn ₂ O ₅	Pbam	43,7
	(J.2J.70 MOJI.70)	$(Sr_{1-x}Dy_x)MnO_3$	CaTiO ₃	Pm-3m	6,0
	SrO DvO MrO	Dy ₂ O ₃	Mn_2O_3	Ia-3	69,6
12	(10.50.40 Mom %)	DyMnO ₃	GdFeO ₃	Pnma	22,8
	(10:50:40 мол.%)	$(Sr_{1-x}Dy_x)MnO_3$	CaTiO ₃	Pm-3m	7,6
13	$SrO - Dy_2O_3 - MnO$	$(Sr_{1-x}Dy_x)MnO_3$	CaTiO ₃	Pm-3m	72,9
13	(20:10:70 мол.%)	$Sr_{1,22}Mn_4O_{8}$	$Sr_{1,22}Mn_4O_8$	Pnma	27.1

Таблиця 4 Результати рентгенівського фазового аналізу полікристалічних зразків у системі SrO–Dy₂O₃–MnO_x за температури синтезу 1100°C.

* Зразок містить додатковий пік невеликої інтенсивності при 2*θ*≈ 32,8°.

У випадку сполуки (Sr_{1-x}Dy_x)MnO₃ положення атомів Са зайняте статистичною сумішшю великих за розміром атомів (Sr та Dy), тоді положення атомів Ti зайняте як меншими за розмірами атомами (Mn). Координаційний многогранник для атомів статистичної суміші – кубооктаедр (12-вершинник з атомів О), а для атомів Мп – октаедр (б-вершинник з атомів О). Отож, структуру цієї сполуки можна уявити як каркас із октаедрів, з'єднаних між собою вершинами, в пустотах якого знаходяться атоми великого розміру (див. Рис. 3(б)).

Структура типу перовскіту має багато похідних, що утворюються В результаті деформації "ідеальної" кубічної структури і характеризуються нижчою симетрією. Однією із найпоширеніших є ромбічна деформація, яка виникає за рахунок невідповідності розмірів катіона А розмірам кубооктаедричної порожнини (т < 0,88, розмір іона в положенні А є надто малим). Як наслідок, відбувається пониження симетрії від кубічної (просторова група Рт-3т) до ромбічної (Рпта), а координаційне число атомів великого розміру зменшується від 12 (кубооктоедр) до 8 (тетрагональна антипризма).

Деформація структури відбувається через обертання (коливання) октаедрів MX_6 відносно один одного, хоча самі октаедри, зазвичай, залишаються недеформованими. Сполука DyMnO₃ має кристалічну структуру, так званого, "ромбічного перовскіту" GdFeO₃ (див. Рис. 3(в)).

Якщо $\tau > 1,11$ (розмір іона в положенні $A \in$ надто великим), то виникає гексагональна деформація. Координаційними многогранниками

атомів $A \in кубооктаедр та антикубооктаедр, тоді як$ для атомів <math>M, як і в двох описаних вище структурах, – октаедр. Октаедри з'єднуються як за рахунок спільних вершин, так і за рахунок окремих спільних граней і формують ланцюги вздовж кристалографічного напрямку [001] (див. Рис. 3(а)). Сполука SrMnO₃ має кристалічну структуру типу BaMnO₃, який ще називають "гексагональним перовскітом".

Рис. 2 Схема фазових рівноваг у системі SrO–Dy₂O₃–MnO_x за температури синтезу 1100°С $(1 - \text{сполука} (\text{Sr}_{1-x}\text{Dy}_x)\text{MnO}_3, 2 - \text{сполука} (\text{Sr}_{1-x}\text{Dy}_x)_2\text{MnO}_4).$

Таблиця 5 Координати атомів у структурі сполуки $(Sr_{1-x}Dy_x)_2MnO_4$ (структурний тип K₂NiF₄, просторова група *I*4/*mmm*, *a* = 0,3816(1), *c* = 1,2356(5) нм, *B*_{3ar.} = 0,7 10⁻² нм² для *x* = 0,25).

ATOM	Правильна	Координати атомів				
AIUM	система точок	x	у	Z		
01	4 <i>e</i>	0	0	0,1592		
Sr _{0,75} Dy _{0,25}	4e	0	0	0,355(2)		
O2	4c	0	1/2	0		
Mn	2a	0	0	0		

Рис. 3 Кристалічні структури сполук SrMnO₃ (гексагональна сингонія, структурний тип BaMnO₃) (a), (Sr_{1-x}Dy_x)MnO₃ (кубічна сингонія, структурний тип CaTiO₃) (б) та DyMnO₃ (ромбічна сингонія, структурний тип GdFeO₃) (в).

Отож, на перетині SrMnO₃-DyMnO₃ потрійної $SrO-Dy_2O_3-MnO_x$ системи для сполук відбувається закономірний AMX_3 перехід перовскітної структури гексагональна-кубічнаромбічна при заміщенні більших за розміром атомів Sr меншими за розміром атомами Dy. Аналогічна картина характерна i лпя перетину SrMnO₃-TbMnO₃ потрійної системи SrO-Tb₂O₃-MnO_x.

Ми також дослідили <u>№</u> 4 зразок $(SrO - Dy_2O_3)$ MnO (57:15:28 мол.%)), _ 1000°C. синтезований температури за Він є трифазним та містить у рівновазі фази Sr₇Mn₄O₁₅, SrDy₂O₄ та Dy₂O₃ у співвідношенні 48,3, 40,4 та 11,3 мас.%. Слід зауважити, що на відміну від зразка ідентичного складу. синтезованого за температури 1100°С, сполука $(Sr_{1-x}Dy_x)_2MnO_4$ зі структурою типу K_2NiF_4 при 1000°С відсутня. Отож, можна припустити, що вона утворюється в діапазоні температур 1000-1100°C.

Відому в літературі сполуку $SrDyMn_2O_{5,5}$ зі структурою типу Ba_2CaWO_6 при умовах дослідження закономірно не спостерігали, оскільки згідно з роботою [15] вона існує при температурі вище 1500°C.

Системи SrO-Er₂O₃-MnO_x, SrO-YbO-MnO_x ma SrO-Lu₂O₃-MnO_x

Фазові рівноваги у системах $SrO-Er_2O_3-MnO_x$, SrO-YbO-MnO_x та $SrO-Lu_2O_3-MnO_x$ побудовано за результатами дослідження полікристалічних зразків, синтезованих за температури 1000°С (Рис. 4). Результати фазового аналізу досліджених зразків представлено в Таблиці 6. Зауважено, що вихідний оксид YbO в процесі синтезу окиснюється до Yb₂O₃. Показано, що за умов дослідження сполуки у згаданих вище системах не існують. Усі досліджені зразки виявилися багатофазними і містять в рівновазі фази з відповідних обмежуючих систем. Моделі для уточнення зразків з Er, Yb та Lu взято з бази даних [5].

Зразки вихідних складів $(Sr_{1-x}R_x)_2MnO_4$ та $(Sr_{1-x}R_x)MnO_3$ з Но та Tm виявилися нерівноважними та містили більше трьох фаз.

Сполуки RMnO₃, де R – рідкісноземельний метал ітрієвої підгрупи

Цікавим виявилося порівняння кристалічних структур сполук *R*MnO₃, де *R* – рідкісноземельний метал ітрієвої підгрупи. Як видно з Таблиці 7,

для сполук з Tb та Dy за умов дослідження стабільними є низькотемпературні модифікації зі структурою типу GdFeO₃. Для Тb це єдина відома модифікація, тоді як для Dy в літературі повідомляється про існування також високотемпературної модифікації зі структурою типу LuMnO₃ (гексагональна сингонія, просторова група Р63ст). У випадку Но спостерігали одночасно дві поліморфні модифікації, що свідчить про те, що температура фазового переходу від ромбічної до гексагональної фази є 1000°C. Для важчих близькою до рідкісноземельних металів стабільними є модифікації зі структурою типу LuMnO₃, хоча згідно з літературними відомостями за інших умов для них є можливим утворення фаз із структурою типу GdFeO₃ [5]. Параметри елементарних комірок закономірно сполук зменшуються зі зменшенням атомного радіуса рідкісноземельного елемента.

Висновки

Порівняння взаємодії компонентів системах SrO- R_2O_3 -MnO_x, де R = Tb, Dy, Er, Yb та Lu, синтезованих методом твердофазної реакції за температури 1000°С, вказує на те, у випадку рідкісноземельних металів, шо які є на початку ітрієвої підгрупи (Тb та Dy), утворюються сполуки зі структурою типу CaTiO₃, рідкісноземельних тоді як для металів, які завершують ітрієву підгрупу (Ег, Yb та Lu). сполуки за даної температури не утворюються. Імовірно, причиною цього є розмірний фактор.

За результатами фазового аналізу зразків системи SrO–Dy₂O₃–MnO_x зауважено, що сполуку $(Sr_{1-x}Dy_x)_2MnO_4$ зі структурою типу K₂NiF₄ спостерігали лише у зразках, синтезованих за температури 1100°С, тоді як за 1000°С ця фаза була відсутньою. Таким чином приходимо до висновку, що вона утворюється в діапазоні температури 1000-1100°С. Також є очевидно, що температури утворення сполук зі структурою типу CaTiO₃ у досліджених системах є нижчими, ніж сполук зі структурою типу K₂NiF₄, і зростають при збільшенні порядкового номера рідкісноземельного елемента.

Подяка

Робота виконана в рамках грантів Міністерства освіти і науки України № 0116U008069 та № 0117U001234.

Таблиця б	Результати	рентгенівського	фазового	аналізу	полікристалічних	зразків	у	системах
SrO-Er ₂ O ₃ -I	MnO_x , $SrO-Y$	′bO-MnO _x та SrO-	$-Lu_2O_3-Mn$	O_x за тем	ператури синтезу 1	000°C.		

Ma	Вихідний	Фазовий	Структурний	Просторова	Вміст фази,
JNO	склад зразка	склад зразка	ТИП	група	мас.%
	$SrO - Er_2O_3 - MnO$	SrMnO ₃	BaMnO ₃	P6 ₃ /mmc	55,2
1	(28,6:14,3:57,1	ErMnO ₃	LuMnO ₃	$P6_3cm$	35,7
	мол.%)	Er_2O_3	$(Mn_{0,5}Fe_{0,5})O_3$	Ia-3	9,1
		Er_2O_3	$(Mn_{0,5}Fe_{0,5})O_3$	Ia-3	46,5
2	$SIO - EI_2O_3 - WIIO$	$SrEr_2O_4$	CaV_2O_4	Pnma	40,8
	(40.40.20 MOJI.%)	SrMnO ₃	BaMnO ₃	P6 ₃ /mmc	12,7
	Sro Er O Mro	SrEr ₂ O ₄	CaV ₂ O ₄	Pnma	45,0
3*	$SrO - Er_2O_3 - MinO$ (55:15:20 NOT %)	$Sr_7Mn_4O_{15}$	Cs ₇ Ni ₄ F ₁₅	$P2_{1}/c$	31,9
	(33.13.30 MOJI.%)	SrMnO ₃	BaMnO ₃	P6 ₃ /mmc	16,9
		SrEr ₂ O ₄	CaV_2O_4	Pnma	62,4
4	$SrO - Er_2O_3 - MinO$	$Sr_7Mn_4O_{15}$	Cs ₇ Ni ₄ F ₁₅	$P2_{1}/c$	28,2
	(03.20.13 MOJI.%)	$Sr(OH)_2(H_2O)$	$Sr(OH)_2(H_2O)$	$Pmc2_1$	9,4
		Er_2O_3	$(Mn_{0,5}Fe_{0,5})O_3$	Ia-3	55,2
5	$SrO - Er_2O_3 - MnO$	SrMnO ₃	BaMnO ₃	P6 ₃ /mmc	37,1
	(30.30.40 M0JI.%)	ErMnO ₃	LuMnO ₃	$P6_3cm$	7,7
6	SrO – Er ₂ O ₃ – MnO (10:40:50 мол.%)	ErMnO ₃	LuMnO ₃	P6 ₃ cm	48,8
		Er_2O_3	$(Mn_{0,5}Fe_{0,5})O_3$	Ia-3	36,1
		SrMnO ₃	BaMnO ₃	P6 ₃ /mmc	15,1
	$\operatorname{SrO} - \operatorname{Er}_2 O_3 - \operatorname{MnO}_{(10:5:85 \text{ MOT } 0')}$	Mn_3O_4	Mn ₃ O ₄	$I4_1/amd$	43,6
7		ErMn ₂ O ₅	DyMn ₂ O ₅	Pbam	34,0
	(10.3.85 MOJI.%)	$Sr_{1,33}Mn_4O_8$	$Sr_{1,33}Mn_4O_8$	Pnma	22,4
	SrO – YbO – MnO (50:16.7:33.3 мол.%)	Sr ₇ Mn ₄ O ₁₅	Cs ₇ Ni ₄ F ₁₅	$P2_{1}/c$	37,2
8**		SrYb ₂ O ₄	CaV_2O_4	Pnma	35,6
		SrMnO ₃	BaMnO ₃	P6 ₃ /mmc	24,0
	SrO VbO MrO	SrMnO ₃	BaMnO ₃	P6 ₃ /mmc	44,9
9	(25.25.50 MOT %)	YbMnO ₃	LuMnO ₃	$P6_3cm$	38,8
	(25.25.50 MOJI. /0)	Yb_2O_3	$(Mn_{0,5}Fe_{0,5})O_3$	Ia-3	16,3
	$SrO - Lu_2O_3 - MnO$	$SrLu_2O_4$	CaV_2O_4	Pnma	44,0
10	(55:9:36 мол.%)	$Sr_7Mn_4O_{15}$	$Cs_7Ni_4F_{15}$	$P2_{1}/c$	42,3
		SrMnO ₃	BaMnO ₃	P6 ₃ /mmc	13,7
	SrO Lu O MnO	LuMnO ₃	LuMnO ₃	$P6_3cm$	48,7
11	(28.6.14.3.57.1 MOT %)	SrMnO ₃	BaMnO ₃	P6 ₃ /mmc	42,5
	(20,0.14,5:57,1 MOJI.%)	Lu_2O_3	$(Mn_{0,5}Fe_{0,5})O_3$	Ia-3	8,8
	SrO Lu.O Mao	LuMnO ₃	LuMnO ₃	$P6_3cm$	75,0
12	(10.15.75 MOT %)	$\mathrm{Sr}_{1,33}\mathrm{Mn}_4\mathrm{O}_8$	$Sr_{1,33}Mn_4O_8$	Pnma	20,9
	(10:15:75 MOJI.%)	$LuMn_2O_5$	DyMn ₂ O ₅	Pbam	4,1

* Зразок додатково містить 6,2 мас.% Ег₂О₃. ** Зразок додатково містить 3,2 мас.% Уb₂O₃.

Таблиця 7 Кристалічна структура сполук *R*MnO₃, де *R* – рідкісноземельний метал ітрієвої підгрупи.

R	Структурний	Просторова	Параметри елементарної комірки, нм				
	тип	група	а	b	С		
Tb	GdFeO ₃	Pnma	0,5826(1)	0,7407(1)	0,5297(1)		
Dy	GdFeO ₃	Pnma	0,5826(1)	0,7393(1)	0,5280(1)		
Ho	GdFeO ₃	Pnma	0,5810(2)	0,7372(2)	0,5254(1)		
Ho	LuMnO ₃	$P6_3cm$	0,6153(1)	-	1,1345(2)		
Er	LuMnO ₃	$P6_3cm$	0,6121(1)	-	1,1338(2)		
Tm	LuMnO ₃	$P6_3cm$	0,6088(1)	-	1,1337(3)		
Yb	LuMnO ₃	$P6_3cm$	0,6070(1)	-	1,1338(2)		
Lu	LuMnO ₃	$P6_3cm$	0,6042(1)	-	1,1332(1)		

O. Zaremba *et al.*, Interaction of the components in $SrO-R_2O_3-MnO_x$ systems where *R* is a rare-earth metal ...

Рис. 4 Схеми фазових рівноваг у системах $SrO-Er_2O_3-MnO_x$ (а), $SrO-YbO-MnO_x$ (б) та $SrO-Lu_2O_3-MnO_x$ (в) за температури синтезу 1000°С.

Літературні посилання

- L. Rodriguez-Martinez, J.P. Attfield, *Phys. Rev.* B. 54(22) (1996) R15622- R15626.
- [2] A.P. Ramirez, J. Phys.: Condens. Matter 9 (1997) 8171-8199.
- [3] P. Granger, V. Parvulescu, S. Kaliaguine, W. Prellier, *Perovskites and related mixed oxides: concepts and applications*, World Scientfic Publishing Co., Singapore, 1998, 356 p.
- [4] C.N.R. Rao, B. Raveau, Colossal magnetoresistance, charge ordering and related properties of manganese oxides, Wiley-VCH Verlag GmbH & Co., Weinheim, 2016, 1056 p.
- [5] P. Villars, K. Cenzual (Eds.), Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds, Release 2014/15, ASM International, Materials Park, OH, 2014.
- [6] P. Villars, K. Cenzual, J.L.C. Daams, F. Hulliger, T.B. Massalski, H. Okamoto, K. Osaki, A. Prince (Eds.) *Pauling File Binaries Edition*, ASM International, Materials Park, OH, 2002.

- [7] D.B. Wiles, A. Sakthivel, R.A. Young, Program DBWS3.2 for Rietveld Analysis of X-Ray and Neutron Powder Diffraction Patterns, School of Physics, Georgia Institute of Technology, Atlanta, 1998.
- [8] E. Paletta, H.K. Müller Buschbaum, J. Inorg. Nucl. Chem. 30 (1968) 1425-1432.
- [9] I.O. Troyanchuk, *Inorg. Mater.* 26 (1990) 376-377.
- [10] L.J. Gillie, J. Hadermann, O. Pérez, C. Martin, M. Hervieu, E. Suard, J. Solid State Chem. 177 (2004) 3383-3391.
- [11] N. Floros, M. Hervieu, G. Van Tendeloo, C. Michel, A. Maignan, B. Raveau, *Solid State Sci.* 2 (2000) 1-9.
- [12] A.N. Grundy, B. Hallstedt, L.J. Gauckler, J. Phase Equilib. Diffus. 25 (2004) 311-319.
- [13] I.O. Troyanchuk, Izv. Akad. Nauk SSSR, Neorg. Mater. 26 (1990) 444-445.
- [14] R. Sondena, S. Stolen, P. Ravindran, T. Grande, N.L. Allan, *Phys. Rev. B*. 75 (2007) 184105-10.
- [15] E.S. Mustafin, A.T. Oralova, B.K. Kasenov, *Inorg. Mater.* 31 (1995) 914-915.