Сравнительное тестирование цеолитных катализаторов и кислотного оксида ZrO₂–SiO₂ в крекинге вакуумного газойля

В.В. Брей¹, Э.Г. Исмаилов², Е.И. Иньшина¹, Т.М. Мамедова², С.В. Прудиус¹

¹Институт сорбции и проблем эндоэкологии НАН Украины, Украина, 03164 Киев, ул. Генерала Наумова, 13; тел.: (044) 452-01-27; ²Институт нефтехимических процессов НАН Азербайджана, Баку

Проведено сравнительное тестирование кислотного оксида ZrO_2 –SiO₂ и двух цеолитных катализаторов в крекинге вакуумного газойля при 500 °C и массовой скорости подачи сырья WHSV = 22 ч⁻¹. Показано, что на ZrO_2 –SiO₂ выход бензиновой фракции (≤ 200 °C) снижается на 20 %, а выход легкого газойля крекинга (≤ 350 °C) повышается вдвое по сравнению с этими показателями для цеолитных катализаторов.

Каталитический крекинг вакуумного газойля в потоке (FCC) относится к одному из наиболее крупнотоннажных промышленных процессов в мире как по переработке сырья, так и по потреблению катализаторов [1]. В основном применяют микросферические лантаноидсодержащие (мас. доля ~2 %) кислотные катализаторы на основе Y-фожазита. Разработка конкурентоспособных катализаторов крекинга на сегодня является весьма актуальной задачей, в частности, с учетом дефицита редкоземельных элементов. В качестве таких заменителей можно рассматривать сильнокислотные смещанные оксиды, в том числе на основе циркония и кремния [2].

Смешанный оксид ZrO_2 –SiO₂ был предложен Standard Oil как катализатор крекинга в 1944 г. [3]. Вскоре С. Thomas [4] объяснил причину появления кислотных центров в его структуре и предсказал, что максимальная концентрация В-центров может достигаться при соотношении ионов Si⁴⁺/Zr⁴⁺ = 2. Интерес к этому оксиду возобновился в последние 15 лет, когда сильнокислотный ZrO₂–SiO₂-катализатор позволил заменить жидкие кислоты в производстве политетраметиленацетата из тетрагидрофурана с добавкой ацетангидрида [5]. Предложены золь-гель-методы его синтеза, позволяющие получать мезопористые образцы с высокими удельной поверхностью, концентрацией и силой кислотных центров [6, 7].

В настоящей работе изложены результаты сравнительного тестирования смешанного оксида ZrO₂–SiO₂ и двух промышленных цеолитных катализаторов в крекинге вакуумного газойля.

Экспериментальная часть

Образцы промышленных катализаторов крекинга Омникат-210П (корпорация "Грейс/Девисон") и Цеокар-600 (ООО "Компания КАТАХИМ", Россия), а также кислотный ZrO₂–SiO₂ были протестированы в крекинге вакуумного газойля. Последний образец с мольным отношением Si/Zr = 2 получен золь-гель методом из раствора цирконийоксихлорида октагидрата, ZrOCl₂·8H₂O, и тетраэтоксисилана (T \ni OC) по методике, описанной в работе [8].

Дифрактограммы катализаторов регистрировали на приборе ДРОН-4-07 в отфильтрованном СиК α излучении в интервале углов 2 θ = 5–80°. Параметры пористой структуры рассчитывали из изотерм адсорбциидесорбции азота, измеренных с использованием анализатора "Nova 2200 е Surface Area and Pore Size Analyzer". Термограммы образцов сняты на серийном дериватографе Q-1500D фирмы МОМ (Венгрия) с компьютерной регистрацией данных в интервале 20–1000 °C.

Силу кислотных центров катализаторов в терминах функции Гаммета H_0 определяли по стандартной методике с применением 0,1%-х растворов индикаторов в циклогексане [2]. Общую концентрацию кислотных центров находили методом обратного титрования *н*-бутиламина, адсорбированного на поверхности образца из раствора циклогексана в присутствии индикатора бромтимолового синего.

Тестирование образцов проводили на лабораторной установке проточного типа с неподвижным слоем катализатора при 500 °С и массовой скорости подачи сырья WHSV = 22 ч^{-1} (22 г газойля на 1 г катализатора в 1 ч). Загрузка катализатора составляла 15 г, продолжительность опыта – 15 мин. До начала экспериментов реакторную систему продували азотом с расходом 50 мл/мин. В качестве сырья использовали гидроочищенный вакуумный газойль (табл. 1). По завершении эксперимента систему вновь продували азотом для полной десорбции образовавшихся продуктов, после чего проводили регенерацию катализатора при 650 °С. Регенерация образцов позволяла сохранить их стабильную активность в течение 50 ч работы.

Углеводородный состав газов крекинга, а также фракционный и углеводородный составы жидких продук-

Таблица 1	. Физико-хим	лические	характер	истики	ваку-
умного га	азойля				

Показатели	Вакуумный	
	газойль	
Плотность, кг/м ³	900,5	
Содержание		
Cepa, ppm	800	
Азот, ррт	1053	
Водород, % мас.	11,94	
Углерод, % мас.	83,67	
Кислород, % мас.	1,94	
Фракционный состав, °С		
Начало кипения	280	
10 %	348,5	
50 %	410,0	
90 %	485,5	
Конец кипения	574,8	
Кинематическая вязкость при 40 °C, мм ² /с	7,1	
Температура вспышки, °С	175	
Температура застывания, °С	10	
Средняя молекулярная масса	205	
Углеводородный состав:		
Непредельные	_	
Ароматические	36,0	
Парафины + нафтены	64,0	

тов определяли в соответствии с методиками ASTM D2887 и ASTM D3710 на хроматографе Autosystem-XL фирмы "Perkin Elmer". Температуру конца кипения бензиновой фракции принимали равной 200 °C. В хроматографическом анализе этой фракции использовали капиллярную колонку Zebron ZB-1 (активная фаза: 5 % фенил – 95 % диметилполисилоксан, 100 м × 0,32 мм × 10 мкм).

Результаты исследования и их обсуждение

В табл. 1 приведены физико-химические характеристики использованного вакуумного газойля. В составе газойля содержание парафинов и нафтенов (масс. доля 64 %) в 1,8 раза превышало долю ароматических соединений.

Цеолитные катализаторы содержали оксиды редкоземельных элементов (масс. доля 1,8–1,9 % РЗЭ₂О₃), Омникат-210П, кроме того – примесь платины (2 ppm) как промотора дожига СО в СО₂.

По полученным рентгенограммам, основу этих катализаторов составлял NaY-фожазит с добавкой каолинита в Омникате-210П и γ-Al₂O₃ – в Цеокаре-600 (рис. 1).

Синтезированный образец ZrO₂–SiO₂ по данным рентгенофазового анализа остается аморфным после прокаливания при 700 °С, что дает основание сделать заключение об относительно равномерном распределении катионов в оксидной матрице.

На рис. 2 приведены изотермы адсорбции-

Таблица 2. Текстурные и кислотные параметры изучаемых катализаторов

Образец	S,	V _p ,	R _p ,	[BH],	[BH],	H _{0 max}
	м²/г	см3/г	HM	ммоль/г	мкмоль/м ²	
Омникат- 210П	170	0,10	1,1	0,6	3,5	_
Цеокар- 600	280	0,48	3,4	1,0	3,6	-8,2
ZrO ₂ -SiO ₂	390	0,29	1,5	1,7	4,4	-13,16

десорбции азота на изучаемых катализаторах и рассчитанное из них распределение пор по радиусам. В табл. 2 суммированы текстурные и кислотные параметры катализаторов. Для Омникат-210П характерно бимодальное распределение пор по радиусам с максимумами при 1,2 и 2,7 нм, Цеокар-600 имеет наиболее крупные поры с радиусом 3,4 нм, а цирконийсиликат характеризуется преимущественно порами со средним радиусом 1,5 нм (рис. 2, табл. 2).

Образцы Цеокар-600 и ZrO2-SiO2 в отличие от желтоватых микросфер Омникат-210П имеют белый цвет. Это позволило определить для них распределение кислотных центров по силе индикаторным методом (рис. 3). Результаты показали, что ZrO₂-SiO₂ является более кислотным оксидом, чем цеолитный катализатор. Он характеризуется также большей плотностью кислотных центров (4,4 мкмоль/м²) по сравнению с образцами цеолитной основы (табл. 2). В структуре Цеокар-600 70 % центров относятся к среднекислотным и характеризуются значениями функции Гаммета 5,6≥Н₀≥-8,2. Остальные центры – слабокислотные $(+1,5 \ge H_0 \ge -5,6)$. В ZrO₂-SiO₂ доля среднекислотных центров составляет 53 %, сильнокислых (-8,2 \ge H₀ \ge -11,35) – 47 % (рис. 3), доля наиболее сильных центров (-11,35 ≥ H₀≥ -13,16) – 12 %. Эти результаты подтвердили заключение С. Томаса [4] и правило Танабе [2] о возможности формирования сильных бренстедовских центров в смешанном ZrO2-SiO2-оксиде, когда основным компонентом является кремнезем.

Результаты по сравнительному тестированию изучаемых образцов в крекинге вакуумного газойля представлены в таблицах 3 и 4.

Цирконийсиликат уступает промышленным цеолитным катализаторам крекинга примерно на 20 % по конверсии газойля и по выходу бензина (табл. 3). Выход газов и потери в виде кокса для ZrO₂–SiO₂ находятся на уровне цеолитных катализаторов. К преимуществам цирконийсиликата следует отнести повышенный вдвое (18 %) выход легкого газойля как возможного сырья для получения дизельного топлива. Повышенный выход дизельной фракции наблюдался на цирконийсиликатном образце также при крекинге вакуумного газойля в условиях аэрозольного катализа [9]. При этом селективность по светлым нефтепродуктам, полученным на ZrO₂–SiO₂, превышала соответст-

Рис. 1. Дифрактограммы цеолитных катализаторов: Омникат-210П (*a*), Цеокар-600 (*б*): $l - \text{NaY} - \phi$ ожазит, 2 -каолинит, $3 - \gamma$ -Al₂O₃

вующие показатели для цеолитного катализатора Nexus-345р [9]. При снижении нагрузки на ZrO_2 -SiO₂-катализатор до WHSV = 1 ч⁻¹ выход бензиновой фракции возрастал до 41 % при 60 % конверсии газойля.

В бензиновой фракции, полученной на ZrO₂–SiO₂, содержится примерно вдвое меньше *н*-парафинов и нафтенов, но больше ароматических соединений (на ~10 % по сравнению с их содержанием для цеолитных образцов, табл. 4). Это повышает октановое число бензина крекинга на 3–4 пункта – до 93.

Каталитический крекинг относится к весьма изученным процессам, который описан в ряде монографий и обзоров [например, 10–12]. Принятым считается ионный механизм его протекания с последовательным образованием карбониевых и карбениевых ионов. Большинство исследователей полагают, что образование этих ионов инициируют бренстедовские кислотные центры катализатора [1, 2, 10–12]. В структуре НУ-фожазита такими центрами являются мостиковые группы ^{IV}Al–OH–Si^{IV} [1, 11], однако в лантанированном фожазите наиболее сильные В-центры образуются

Таблица 3. Результаты тестирования катализаторов (500 °C, WHSV = 22 ч⁻¹)

Продукты крекинга,	Катализатор			
масс. доля %	Омникат-	Цеокар-	ZrO ₂ -SiO ₂	
	210П	600		
Газы С<4	13,8	14,8	13,7	
Бензиновая фракция,	15 6	16.0	26.8	
конец кипения – 200 °С	45,0	40,0	20,0	
Легкий газойль	75	80	19/	
(200–350 °C)	7,5	8,0	10,4	
Тяжелый газойль	28,3	26,2	38,1	
Кокс	2,6	2,7	3,0	
Конверсия сырья, %	62,0	63,5	43,5	
Селективность	73 5	72.5	61.6	
по бензину, %	13,5	12,5	01,0	

путем гидратации катионов редкоземельных элементов по схеме [1]: $Ln^{3+} + H_2O \rightarrow Ln(OH)^{2+} + H^+$. Возникающий протон, как и гидратированный катион, компенсируют отрицательный заряд цеолитной матрицы. Добавка лантантаноидов также препятствует выходу ионов ^{IV}Al³⁺ из цеолитной решетки при термопаровой регенерации катализатора [11]. В смешанном ZrO₂– SiO₂-оксиде В-центрами являются мостиковые группы ^{VIII}ZrO(H)Si^{IV}.

Для протонирования молекул алканов в обычных условиях требуются сверхкислоты типа HF-SbF₅ с $H_0 \ge -20,3$ [2]. Очевидно, что В-центры изучаемых катализаторов неспособны протонировать алканы при обычных температурах. Однако с повышением температуры способность твердых кислот к протонированию реагирующих соединений значительно увеличивается, что было показано методами электронной спектроскопии диффузного рассеяния и ИК-спектроскопии на примерах протонирования молекул стандартных индикаторов НУ-фожазитом [13] и ZrO₂–SiO₂ [8]. Так, НУ способен протонировать 1,3,5-трихлорбензол (рК_{вн}⁺=-16,14) при 200 °C, а ZrO₂–SiO₂ – 1-фтор-2,4-

Таблица 4. Состав бензиновых фракций, полученных на изучаемых катализаторах (500 °C, WHSV = 22 ч⁻¹)

Массовая доля	Катализатор					
компонента, %	Омникат-	Цеокар-	ZrO ₂ -SiO ₂			
	210П	600				
<i>н</i> -Парафины	22,60	20,6	12,2			
Изопарафины	23,80	24,4	27,7			
Олефины	16,60	17,8	18,4			
Нафтены	10,40	8,8	4,8			
Ароматические, включая бензол	26,60	28,4	36,9			
Бензол	1,45	1,56	1,05			
Октановое число (и.м.)	89,0	89,5	93,0			

Рис. 2. Изотермы адсорбции-десорбции азота и распределения пор по радиусам для Омникат-210П (*a*), Цеокар-600 (*б*) и ZrO₂–SiO₂ (*в*)

динитробензол (р K_{BH}^+ = -14,52) при 85 °C. Таким образом, различная сила кислотных центров катализаторов может нивелироваться при достаточно высоких (450– 520 °C) температурах крекинга.

Известно, что именно микропористая структура це-

Рис. 3. Распределение кислотных центров по силе в терминах функции кислотности Гаммета для Цеокар-600 (*a*) и ZrO_2 -SiO₂ (*b*)

олитных катализаторов крекинга обеспечивает ряд их преимуществ по сравнению с аморфными алюмосиликатами [1, 10, 12]. В частности, это может быть связано со способностью микропор стабилизировать промежуточные карбениевые ионы, повышая тем самым эффективность крекинга [11]. Так, квантово-химическое моделирование крекинга 1-гексена на H-ZSM5 показало, что в микропорах этого пентасила возможно образование относительно стабильных карбениевых ионов, β-расщепление которых протекает более легко, чем на индивидуальном B-центре [14].

Выводы

Сравнительным тестированием двух цеолитных катализаторов крекинга и смешанного ZrO_2 -SiO₂-оксида подтверждено, что более кислотный цирконийсиликат уступает по активности промышленным катализаторам в крекинге вакуумного газойля (500 °C, WHSV = = 22 ч⁻¹). На ZrO_2 -SiO₂ конверсия газойля снижается на 20 %, но при этом вдвое повышается выход легкого газойля крекинга. Бензиновая фракция, полученная на ZrO_2 -SiO₂, содержала больше ароматических соединений по сравнению с продуктами, образующимися на цеолитных катализаторах. 1. Крылов О.В., *Гетерогенный катализ*, Москва, ИКЦ "Академкнига", 2004.

2. Танабе К., Катализаторы и каталитические процессы, Москва, Мир, 1993.

3. Connolly G.C. et al., *Pat.* 2364949 USA, Publ. 12.12.1944.

4. Thomas C.L., Ind. Eng. Chem., 1949, **41**, 2564–2573.

5. Setoyama T., Kobayashi M., Kabata Y., et al., *Catal. Today*, 2002, **73**, 29–37.

6. Брей В.В., Мележик О.В., Прудиус С.В., Бодюл Н.С., *Пат.* Украина на корисну модель № 37173 від 25.11.2008.

7. Прудиус С.В., *Катализ и нефтехимия*, 2010, **18**, 1–5.

8. Inshina E.I., Shistka D.V., Telbiz G.M., Brei V.V., *Chem. Phys. Technol. Surface*, 2012, **3** (4), 395–400.

9. Гликин М.А., Гликина И.М., Мамедов Б.Б. и др., *Хим. пром-сть Украины*, 2012, **1**, 16–22.

10. Войцеховский Б.В., Корма А., Каталитический крекинг. Катализаторы, химия, кинетика, Москва, Химия, 1990.

11. Cheng W.-C., Habib E.T., Rajagopalan K. et al., "Fluid catalytic cracking" in Handbook of Heterogeneous Catalysis, 2-nd ed.; Eds. G. Ertl, H. Knözinger, F. Schüth, J. Weitkamp, Weinheim, Wiley-VCH, 2008, 6, 2741–2778.

12. Патриляк Л.К., *Катализ и нефтехимия*, 2001, **9– 10**, 14–25.

13. Brei V.V., Shistka D.V., Telbiz G. M., *Polish J. Chem.*, 2008, **82** (1–2), 179–182.

14. Guo Y.-H., Pu M.,. Chen B.-H, Cao F., *Appl. Catal. A*, 2013, **455**, 65–70.

Поступила в редакцию 21.10.2013 г.

Порівняльне тестування цеолітних каталізаторів і кислотного оксиду ZrO₂–SiO₂ у крекінзі вакуумного газойлю

В.В. Брей¹, Е.Г. Ісмаїлов², О.І. Іньшина¹, Т.М. Мамедова², С.В. Прудіус¹

Інститут сорбції та проблем ендоекології НАН України, Україна, 03164 Київ, вул. Генерала Наумова, 13; тел.: (044) 452-01-27; ²Інститут нафтохімічних процесів НАН Азербайджану, Баку

Проведено порівняльне тестування кислотного оксиду ZrO_2 –SiO₂ і двох цеолітних каталізаторів у крекінзі вакуумного газойлю при 500 °C і масовій швидкості подачі сировини WHSV = 22 год⁻¹. Показано, що на ZrO_2 –SiO₂ вихід бензинової фракції (≤ 200 °C) знижується на 20 %, а вихід легкого газойлю крекінгу (≤ 350 °C) – удвічі підвищується порівняно з цими показниками для цеолітних каталізаторів.

Comparative testing of zeolite catalyst and acidic oxide ZrO₂–SiO₂ in cracking of vacuum gas oil

V.V. Brey¹, E.G. Ismailov², E.I. Inshina¹, T.M. Mamedova², S.V. Prudius¹

 ¹Institute of Sorption and Problems of Endoecology, NAS of Ukraine, 13, General Naumov Str., 03164 Kyiv, Ukraine; Tel.: (044) 452-01-27
²Institute of Petrochemical Processes, NAS of Azerbaijan, Baku

The comparative testing of acidic oxide ZrO_2 -SiO₂ and two zeolite catalysts for cracking vacuum gas oil was carried out at 500 °C and WHSV = 22 h⁻¹. It was shown that on ZrO_2 -SiO₂ the yield of gasoline fraction (≤ 200 °C) decreases on 20 %, and the yield of light cracking gas oil increases twice in comparison with these indices for zeolite catalysts.