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Melnyk V.M. Full Performance Effects for Parallel TCP Sockets on a Wide-Area Network.  This work describes the 
theoretical effects of using parallel TCP flows to improve network performance for intensive applications with distributed data. 
The theory knowledge were presented for a widearea network to assess how parallel flows improve throughput, and took 
clearance in choossng the necessary number of flows to improve throughput with avoiding congestion. An empirical expression 
and the uses of parallel flows are discussed. 
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Introduction 
To improve end-to-end network performance for applications that require substantial amounts of 

network bandwidth there are considerable efforts within the Grid and high performance computing 
communities. An experience submited in [1, 2] has shown than the end-to-end structural and load 
characteristics are available for a network. One source of poor TCP throughput is rate of a packet loss. It 
can be much greater than it would be reasonably expected [3]. The packet loss is interpreted by TCP as a 
network congestion proof between a sender and receiver. However, packet loss may be such as 
intermittent hardware faults due to other factors than network congestion [4]. 

To improve end-to-end performance the current efforts take advantage of the empirically 
discovered striping data transfer mechanisms across a set of parallel TCP connections to substantially 
increase throughput. So, application developers and network engineers must have an understanding of 
how parallel TCP connections improve summative throughput as well as the effects on a network. This 
article puts several questions concerning of the parallel TCP connections use. The question number one is 
how the use of parallel TCP connections increases aggregate throughput. The second one is how to 
determine the TCP connections number needed to increase and maximize throughput while avoiding 
network congestion. And the last one, it need to understand how parallel TCP connections affect a 
network, and under what conditions they should not be used. This paper suggests some guidelines for the 
parallel sockets use to maximize end-to-end applications performance whith simultaneously minimizing 
their network effects. 

Current Work 
Applications usually use one of two approaches to improve end-to-end network throughput that 

effectively defeats the congestion avoidance behavior of TCP. The first approach utilizes UDP, which 
puts responsibility for both error recovery and congestion control completely in the application hands. 
The second approach opens network connections of parallel TCP and “stripes” the data (similar to RAID) 
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across a parallel set of sockets. The above two approaches are hostile and don’t permit the light sharing of 
the network bandwidth available to applications [5]. 

Recent works [1, 2, 6] has concidered that the parallel socket approach greatly increases the 
aggregate network throughput available to an application, but some of them report [6] that the speedup is 
not reliable. The working process may be organized to address the issues of poor network performance 
and the unpredictable end-to-end network bandwidth availability. To address unpredictability, the 
Network Weather Service project [7] is working to predict the network bandwidth available between two 
sites on the Internet based on statistical forecasting. Efforts to address poor network performance include 
Bandwidth Brokering [8], Quality of Service (QoS) Reservation [9], and network and application tuning 
pains [4, 6].  

The work devoted to the parallel TCP connections use is fundamentally experiential in nature and 
useful for an application perspective. The works [10, 11] describe about the transfer rate increase of 
medical images over the Internet. In work [12] is described done to increase the TCP throughput over 
satellite links. In [2] is developed a library (PSockets) to stripe transmissions of the data over multiple 
TCP network connections to deliver significantly increased performance on a poorly tuned host, what can 
be compared to the performance through a single TCP stream. Dimensions using the PSockets library for 
striping network I/O established that the use of 12 TCP connections increased TCP performance from 10 
Mbit/sec to about 75 Mbit/sec. In works [13] and [14] authors have both developed modifications to TCP 
that take gain of the positive effects for parallel sockets of TCP. In the work [1] author provides an 
argument that explains why network performance is improved over multiple TCP streams compared with 
a single TCP stream. In [15] has created an extensive measurement infrastructure by the Stanford Linear 
Accelerator network research group to measure the multiple TCP connections effect between input 
Internet sites for the Atlas project. 

This time alot of applications are using or planning to use parallel TCP connections to increase 
aggregate TCP throughput. The ever-present example of this thing is the Netscape browser. It uses by its 
clients a determined value of four for the number of parallel TCP connections [16]. The Grid FTP project 
allows the user to select the parallel TCP connections number to use for FTP data transfer [17]. Storage 
Resource Broker (SRB) has provisions to use multiple TCP sockets to improve SRB data transfer 
throughput [18]. The Internet-2 Distributed Storage Initiative in [19] is investigating the parallel TCP 
connections use to improve the distributed data caches performance. All of this current work has 
investigated the effects of parallel TCP connections from an experiential perspective. Researchers of the 
Stanford Linear Accelerator group have found that the parallel TCP connections number ranges from 4 
(Netscape) to 12 (PSockets) to a number between 4 and 20 depending on the window size. 

On the overall, the effects of using multiple network sockets fairness and efficiency of the network 
have been raised [5, 19, 13]. The traffic shaping mechanism and limit rate [20, 21] have been proposed 
and implemented to effort to prevent aggressive users from using more than their fair share of the 
network. Despite the demonstrated effectiveness the little work has been done to develop a theoretical 
model to validate the use of these optimal values. The models would help us understand the underlying 
mechanisms that allow parallel TCP connections to deliver extremely increased performance; the effects 
of using parallel sockets on the network fairness and efficiency; and under what conditions and 
circumstances should be used parallel sockets. On the next section a theoretical model of parallel TCP 
connections will be developped. It also explain how they take advantage of systemic noncongestion 
packet loss to improve aggregate throughput. 

TCP Bandwidth Estimation Model 
Some research works have resulted theoretical expressions to calculate TCP bandwidth of the 

single stream as a function of packet loss, round track time, size of a maximum segment, along with a 
handful of other various parameters. In [22] there are performed a detailed analysis of three techniques 
and assessed their ability to precisely estimate TCP bandwidth across a wide range of packet losses. The 
most correct model is described in [23] where an approximation of the subsequent form (1) follows: 

 
It is received from the original form to match the scale of Equation (2) by adding MSS. In this equation, 
TCPBW(p) shows  bytes  transmission  per  second.  MSS  is  the  maximum  segment  size,  Wmax is the 
maximum congestion window size, RTT is the round trip time, b is the number of transmitted data 
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packets that is acknowledged by one acknowledgement from the receiver (b = 2), T0 is the timeout value 
and p is  the  packet  loss,  which  is  the  number  of  retransmitted  packets  divided  by  the  total  number  of  
transmitted packets. 

It was found that the equation in [24] is essentially as accurate for packet loss rates less than 1/100 
as equation (1), and it has a much simpler form: 

 
where p, MSS and RTT are the same variables used in (1) equation. C is a constant and BW is the number 
of bytes transmitted per second. To understand the leading mechanisms of TCP throughput, it is useful to 
consider the dynamic behavior of MSS, RTT and p and the result each has on overall TCP bandwidth., 
MSS is the most static amon these three factors. If both TCP session sides have MTU discovery enabled 
[26] within the host operating system, both sides will attempt to negotiate the largest possible maximum 
transmission  unit  (and  as  a  result  MSS)  possible  for  the  session.  The  MSS  setting  depends  on  the  
structural characteristics of the network, host adapters and operating system. Too often, the common 
maximum MTU supported by networks and network adapters is 1500 bytes. In some cases the data link 
layers of routers and switches making up the end-toend network will support larger frame sizes. If the 
TCP connection MTU can be increased from 1500 bytes to 9000 bytes, then equation (2) right hand side 
increases by a factor 6, that increasing a maximum TCP bandwidth by a factor of 6 as well. 

The RTT value is more dynamic during a session than MSS, but less dynamic than p. The lower 
bound on the RTT value is the signal transmission speed from host to host across the network, which is 
essentially limited by the light speed. As the end-to-end network path length increases, the introduction of 
routers and framing protocols on the physical links between the two hosts adds latency to the RTT factor, 
and other factors involved with queuing and, as well, congestion can increase RTT. From an end host 
perspective, however, to substantially improve RTT there is little that can be done. The final factor p 
(packet loss rate) is the most dynamic parameter in conditions to MSS, RTT and p. The avoidance 
algorithm of the TCP congestion in [27] interprets packet loss as an indication of the network congestion 
and the sender should decrease its transmission rate. The packet loss rate p spans many orders of 
magnitude and represents a significant contribution to variability in end-to-end TCP performance in the 
operational Internet. It’s important to note that the packet loss rate has been observed to fall into two 
regimes: packet loss due to network congestion and traffic insensitive packet loss.  

On the next we will present the expression derivation for aggregate TCP bandwidth, describe some 
of the packet loss characteristics on the Internet and explain how these characteristics affects the single 
and multi stream TCP sessions performance.  

If an application uses n-multiple TCP streams between two hosts, the aggregate bandwidth of all n 
TCP connections can be derived from equation (2), where MSSi, RTTi and pi represent the related 
parameters for each TCP connection i: 

 
As MSS is determined on a system wide level by a network architecture and MTU discovery 
combination, it is reasonable to assume that each MSSi value is identical and constant across all 
betweenhosts simultaneous TCP connections. 

It can be assumed that RTT is equivalent across all TCP connections, since every packet for each of 
them will likely take the same converge to equilibrium and network path. Note that since the TCP 
congestion avoidance algorithm is an equilibrium process that seeks to balance all TCP streams to fairly 
share network bottleneck bandwidth [28]. Each stream must either respond to changes in the packet loss 
rate,  RTT,  or  a  combination  of  both  of  them to  converge  to  equilibrium.  Since  all  streams  on  a  set  of  
parallel TCP connections are between two hosts, all the streams should converge to equivalent RTT 
values, as long as the network between the hosts remains uncongested. For purposes of this discussion, C 
can be set aside. So, equation (3) can be modified to: 

 
On equation (4) examination some parallel TCP connections features become apparent. An application 
opening n multiple TCP connections is essencialy creating a large virtual MSS on the aggregate 
connection that is n times the MSS of a single connection. Factoring MSS out of equation (4) produces: 
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It becomes apparent that given the relatively static nature of the MSS and RTT values compared with the 
dynamic nature of p. The packet loss rate p is a primary factor in determining aggregate TCP throughput 
for session of a parallel TCP connection. 

From equation (4) it also is apparent that the increased virtual MSS of parallel TCP connections is 
directly affected by the packet loss rate p and RTT of each connection. RTT has hard lower bounds. They 
are structural and difficult to address. On the other hand packet loss p is  the  parameter  that  is  most  
sensitive to network load. It can be affected by several factors. 

It is observed that packet loss falls down into two characteristic cases: random losses which do not 
due to congestion and congestion related losses. In [25] is found that packet losses tend to occur at 
random intervals in multiple packets bursts, rather than single packet drops, and In [29] is found bursty 
packet loss behavior as well. Additionally, the event of the chance of a packet loss increases when packets 
are in intermediate hops queue and the network becomes loaded. In [3] is found that packet loss 
demonstrates random characteristics when the stream uses a fraction of the bandwidth of available 
network. 

As there is increase of the multiple TCP connections number, the behavior of each packet loss 
factor p is unaffected as long as few packets are queued in routers or switches at each hop in the path of 
the network. In the lack of congestion, it is appropriate to assume that the packet loss proportion will be 
fairly distributed across all connections. So, when the aggregate packet stream begins to create the 
congestion, any router or switch may begin to drop packets. The packet loss which is attributable to each 
TCP stream will be depended of the queuing discipline, and of any phase effects caused by TCP senders 
sharing a network like bottleneck [30]. 

So, when congestion occurs there are four exceptions to the assumption that packet loss is fairly 
distributed. It was been empirically determined in works [31] that three the pathological conditions are 
availeble. One state, lockout, occurs when in a router one stream dominates the queue. The second state, 
usualy drop-tailed queues are arising when queuing algorithms unfairly aim a number of flows through 
the queue with rates of excessive packet loss for newly arriving packets. The third state produces 
transmission time distributions of the heavy-tailed data due to the rates of the congestion and high packet 
loss [32]. Finally, in work [30] in found that the convergence of multiple TCP streams at a congested 
blockage can create phase effects in which one stream unfairly dominates the queue and therefore the 
outbound link. 

The unfair packet loss distribution is an undesirable condition in congested routers [21]. To fairly 
distribute packet loss with providing mechanisms in routers there were designed and deployed new 
queuing schemes, such as Random Early Detection (RED) [21]. For this analysis it is assumed that packet 
loss impacts equally parallel TCP streams. The next example illustrates the multiple TCP streams impact 
in an uncongested network: if it is assumed that MSS = 4418 bytes, RTT = 70ms, and pi=1/10000 for all 
connections, and it is used 

 
 

the upper bound on aggregate TCP bandwidth may be calculated by using (5) equation. Table 1 showes 
the calculation results for a following sockets number. 

Connections 
 

Max. Aggrigate 
Bundwith 

1 
2 
3 
4 
5 

100 
100+100 
100+100+100 
4(100) 
5(100) 

50 Mb/sec 
100 Mb/sec 
150 Mb/sec 
200 Mb/sec 
250 Mb/sec 



 " : , , " 
, 2014.  16-17 

 

© . 

36 

Table 1 – Packet Loss on Aggregate TCP Bandwidth 

At present, as the aggregate network 
utilization increases to the point where queues and 
buffers  in  switches  and  routers  begin  to  be  
overflowed and packets are dropped, then the 
network becomes congested. If the packet loss is 
fairly shared over all of the connections through a 
switch or router due to congestion, the negative 
packet loss effects on the aggregate TCP bandwidth 
for a set of n simultaneous connections is overstated 
by n factor.  So,  if  the  packet  loss  rate  from  the  
previous example doubly increases, the 

multiplicative packet loss rate factor in Table 1 is reducing from 100 to 70.7. For five concurrent streams, 
this reduces aggregate bandwidth from 250 to 176.8 Mb/sec. That counts a reduction of 30%. Even with 
this reduction, however, the aggregate bandwidth of 176.8 Mb/sec using five parallel TCP connections is 
still considerably better than the throughput with only one connection at the rate of the desirable packet 
loss. 

It is some difficult to predict at what point the packet loss will become congestion dependent as the 
number  of  parallel  TCP connections  increase.  There  is,  however,  a  definite  bend  in  the  graph  curve  of  
packet loss what suggest that adding additional network sockets beyond a certain entrance will not get 
better aggregate TCP performance. An examination of Figs 1, 2 and 3 indicates that for a MTU of 1500 
bytes, 10 sockets is the effective maximum number of sockets; for a MTU of 3000 bytes, 5 sockets is the 
effective maximum; and for a MTU of 4418 bytes, 3 or 4 sockets is the effective maximum. The effective 
maximum presented in Figure 3 (MTU 1500) roughly corresponds to the results of Sivakumar [2], who 
found that the point of maximum throughput was 16 sockets or less. Sivakumar did not mention the MTU 
used in [2], but if the default system settings or MTU discovery were used on the system, the MTU used 
was probably less than or equal to 1500 bytes. 

Why Parallel Sockets Work 
Using of parallel TCP sockets would improve aggregate throughput, since one would expect that a 

network would make a best effort for maximization throughput through a single stream. There are sources 
of traffic insensitive packet loss that are not due to congestion. In this random packet loss regime, the 
parallel TCP connection use allows an application to ease the 
negative effects of the packet loss misinterpretation by the 
control algorithm of the TCP congestion. It need to give an 
explanation of why using parallel TCP connections increases 
aggregate throughput. 

The derivation of equation 2 in work [24] uses a 
geometric argument with constant probability packet loss rate 
1/p=(W/2)2+1/2(W/2)2, where W is the congestion window 
size in packets. When a loss event appears every 1/p packets, 
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the slow-start algorithm will decrease the congestion 
window by half. This leads to the «saw tooth» pattern 
shown in fig. 4. 

If the assumption that p is a constant probability is 
modified by the assumption that, for an individual TCP 
stream, it is independent of the loss rate of other TCP 
streams from the same sender on an uncongested 
network, and that for each stream i, pi is  from  a  
distribution identical to the other distributions for loss 
rate, the situation described in fig. 4 can be used to 
describe the effects of parallel TCP connections as 
shown in fig. 5. 

Given that the packet loss rates of parallel TCP connections are not all sensitive to traffic, and that 
packet  losses  occur  in  each  channel  at  the  same  rate  (as  long  as  packet  losses  are  not  due  to  network  
congestion), an interesting effect occurs. If the three streams in Figure 5 are combined into the aggregate 
representation shown in Figure 6, it is clear that using multiple network sockets is in essence equivalent to 
increasing the recovery rate from a loss event from one MSS per successful transmission to three times 
MSS. Note that this increased recovery rate is theoretical and functionally equivalent to using a larger 
MSS on a single channel with the same packet loss rate. 

As the number of simultaneous TCP connections increases, the overall rate of recovery increases 
until the network begins to congest. At this point, the loss rate of the packet becomes dependent on the 
number of sockets and the amount of congestion in the network. The packet loss rate change indicates 
that the network is congested, and that the TCP sender should reduce its congestion window. As the 
number of parallel TCP connections increases, and the higher packet loss rates decrease the impact of 
multiple sockets, the aggregate TCP bandwidth will stop increasing, or begin to decrease.  

Given that the aggregate rate of congestion recovery across the parallel TCP streams is functionally 
equivalent to an increased recovery rate, there is an interesting observation that can be made. TCP 
connections over wide area networks suffer from the disadvantage of long round trip times relative to 
other  TCP connections.  This  disadvantage allows TCP senders  with small  RTTs to recover  faster  from 
congestion and packet loss events than TCP sessions with longer RTTs. Since the use of parallel TCP 
sockets provides a higher recovery rate, hosts with longer RTTs are able to compete on a fairer basis with 
small RTT TCP connections for bandwidth in a bottleneck. 

Selecting the Number of Sockets 
When the packet loss rate p transitions from the random loss to the congestion loss regime, the 

benefits from using additional sockets is offset by the additional aggregate packet loss rate. From the 
previous section, it is apparent that the knee that is present in the TCP bandwidth curve directly 
corresponds to the knee in the packet loss curve. The challenge in selecting an appropriate number of 
sockets to maximize throughput is thus the problem of moving up to, but not beyond, the knee in the 
packet loss curve.  

Any application using parallel TCP connections must select the appropriate number of sockets that 
will maximize throughput while avoiding the creation of congestion. The applications avoid congesting a 
network to prevent congestion collapse of the bottleneck link. In aggreement with the data, adding 
additional TCP connections beyond the knee in the packet loss curve has no additional benefit, and may 
some decrease aggregate performance. 

Determining the point of congestion in the end-to-end 
network a priority is difficult, if not impossible, given the 
inherent dynamic nature of a network. However, it may be 
possible to gather relevant parameters using Web100 from 
actual data transfers, which then can be used in combination 
with prediction methods of statistical time-series to attempt the 
predict of the end-to-end packet loss rate p, RTT and MSS, and 
thus the limit on TCP bandwidth. In addition to use statistical 
predictions to forecast the value of p, it may also be possible to 
use the same techniques to collect and store information on the 
number of parallel TCP connections necessary to maximize 
aggregate performance and avoid congestion. To maximize 
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throughput, the predicted values of p and the effective number of parallel TCP connections can then be 
used  as  a  starting  point  for  a  simple  greedy  search  algorithm  that  adjusts  the  number  of  parallel  TCP  
connections. 

Conclusion  
This work puts the question of how parallel TCP connections can improve aggregate TCP 

bandwidth. It also addresses the question of how to choose the maximum number of sockets necessary to 
maximize TCP throughput while imultaneously and avoid congestion. A theoretical model was developed 
to analyze the questions. The findings indicate that in the absence of congestion, the use of parallel TCP 
connections is equivalent to using maybe a large MSS on a single connection, with the added benefit of 
reducing the negative effects of random packet loss. It is imperative that application developers do not 
arbitrarily select a value for the parallel TCP connection number. If the selected value is too large, the 
aggregate flow may cause network congestion as well and throughput will not be maximized.  

 
References 

1. Lee,  J.,  Gunter,  D.,  Tierney,  B.,  Allock,  W.,  Bester,  J.,  Bresnahan,  J.  and  Tecke,  S.  Applied  Techniques  for  High  
Bandwidth Data Transfers across Wide Area Networks Dec 2000, LBNL-46269. 

2. Sivakumar,  H.,  Bailey,  S.,  Grossman,  R.  L.,  PSockets:  The  Case  for  Application  level  Network  Striping  for  Data  
Intensive Applications using High Speed Wide Area Networks, SC2000: High-Performance Network and Computing 
Conference, Dallas, TX, 11/00. 

3. Bolot. J-C., «Characterizing End-to-End packet delay and loss in the Internet», Journal of High Speed Networks, 2(3), 
1993, – pp 305 – 323. 

4. Pittsburgh Supercomputer Center Networking Group. «Enabling High Performance Data Transfers on Hosts», 
http://www.psc.edu/networking/perf_tune.html. 

5. Floyd, S., and Fall, K., Promoting the Use of End-to-End Congestion Control in the Internet, IEEE/ACM Transactions 
on Networking, August 1999. 

6. Lee,  J.  Gunter,  D.,  Tierney,  B.,  Allock,  W.,  Bester,  J.  Bresnahan,  J.,  and  Tecke,  S.,  Applied  Techniques  for  High  
Bandwidth Data Transfers across Wide Area Networks. Sept. 2001, LBNL-46269, CHEP 01 Beijing China. 

7. Wolski, R., «Dynamically Forecasting Network Performance to Support Dynamic Scheduling Using the Network 
Weather Service.» In 6th High-Performance Distributed Computing, Aug. 1997. 

8. Sander, V. Adamson, W., Foster, I., Alain, R. End-to-End Provision of Policy Information for Network QoS. In 10th 
High-Performance Distributed Computing, August 2001. 

9. Georgiadis L., Guerin R., Peris, V., Sivarajan K. Efficient network QoS provisioning based on per node traffic shaping. 
IEEE ACM Trans. on Networking, Aug., 1996. 

10. Long, R., L. E. Berman, L. Neve, G. Roy, and G. R. Thoma, "An application-level technique for faster transmission of 
large images on the Internet", Proceedings of the SPIE: Multimedia Computing and Networking 1995 Vol. 2417 
February 6-8, 1995, San Jose, CA. 

11. Long L. R., Berman L E., Thoma GR. "Client/Server Design for Fast Retrieval of Large Images on the Internet. 
Proceedings of the 8-th IEEE Symposium of Computer-Based Medical Systems (CBMS ’95), Lubbock TX, June 9 – 
10, 1995, pp. 284 – 291. 

12. Allman, M. Ostermann, S. and Kruse, H. Data Transfer Efficiency Over Satellite Circuits Using a Multi-Socket 
Extension to the File Transfer Protocol (FTP). In Proceedings of the Acts Results Conference. NASA Lewis Research 
Center, September, 1995. 

13. Eggert, L., Heidemann, J. and Touch, J. Effects of Ensemble-TCP. ACM Computer Communication Review, 30 (1), 
January, 2000, – pp. 15 – 29. 

14. Balakrishnan, H., Rahul, H. and Seshan, S., "An Integrated Congestion Management Architecture for Internet Hosts", 
Proc. ACM SIGCOMM, September 1999. 

15. Internet End-to-End Performance Monitoring. http://www-iepm.slac.stanford.edu/. 
16. Cohen,  E.,  Kaplan,  H.  and  Oldham,  J.,  "Managing  TCP  Connections  under  Persistent  HTTP",  Proceedings  of  the  

Eighth International World Wide Web Conference, Toronto, Canada, May 1999. 
17. Grid Forum GridFTP Introduction: http://www.sdsc.edu/GridForum/RemoteData/Papers/gridftp_intro _gf5.pdf.  
18. Baru,  C.,  Moore,  R.,  Rajasekar,  A. and Wan, M.,  “The SDSC Storage Resource Broker.” In Procs.  of CASCON’98, 

Toronto, Canada, 1998 
19. Floyd, S., “Congestion Control Principles”, RFC 2914. 
20. Semeria, C. «Internet Processor II ASIC: Rate-limiting and Traffic-policing Features.» Juniper Networks White Paper. 

http://www.juniper.net/techcenter/techpapers/200005.html. 
21. Floyd, S. and Jacobson, V. Random early detection gateways for congestion avoidance. IEEE/ACM Transactions on 

Networking, 1(4), August 1993, – 397 – 413.  
22. http://citeseer.nj.nec.com/floyd93random.html. 
23. Bolliger, J., Gross, T. and Hengartner, U., Bandwidth modeling for network-aware applications. In INFOCOM’99, 

March 1999. 
24. Padhye,  J.,  Firoiu,  V.,  Towsley,  D.  and  Kurose,  J.,  Modeling  TCP  throughput:  a  simple  model  and  its  empirical  

validation. ACMSIGCOMM, September 1998. 
25. Mathis, M., Semke, J., Mahdavi, J. and Ott, T., «The Macroscopic Behavior of the TCP Congestion Avoidance 

Algorithm». Computer Communication Review, July 1997, vol. 27, No 3. 
26. Paxson, V., «End-to-end Internet packet dynamics.» in Proc. ACM SIGCOMM, September 1997. – pp. 139 – 152. 



 " : , , " 
, 2014.  16-17 

 

© . 

39 

27. Mogul, J. and Deering, S., "Path MTU Discovery," Network Information Center RFC 1191. – Apr. 1990, pp. 1 – 19. 
28. Jacobson, V., Congestion Avoidance and Control. In Proceedings of the ACM SIGCOMM’88 Conference. – 1988. – 

pp. 314 – 329. 
29. Chiu,  D-M.,  Jain,  R.,  "Analysis  of  the  Increase  and  Decrease  Algorithms  for  Congestion  Avoidance  in  Computer  

Networks," Computer Networks and ISDN Systems, – 1989, vol. 17. – pp. 1 – 14. 
30. Borella, M. S., Swider, D., Uludag, S. and Brewster, G., "Internet Packet Loss: Measurement and Implications for End-

to-End QoS Proceedings. International Conference on Parallel Processing, Aug. 1998. 
31. Floyd, S. and V. Jacobson. 1992. On traffic phase effects in packet-switched gateways. Internetworking: Research and 

Experience 3. – pp. 115 – 156.  
32. Feng, W. and Tinnakornsrisuphap, P., “The Failure of TCP in High-Performance Computational Grids”, SC2000: 

High-Performance Network and Computing Conference, Dallas, TX, 11/00. 
33. Guo, L., Crovella, M. and Matta, I., “TCP congestion control and heavy tails," Tech. Rep. BUCSTR – 2000-017, 

Computer Science Dept – Boston University, 2000. 


