Hayxosuil srcypruan "Komi roTepHo-iHTErpoBaHi TEXHOJIOTIi: 0CBiTa, HAyKa, BUPOOHULITBO" 79
Jlyywvk, 2015. Bunyck Ne 19

VJIK 004.415.2 (045)
Cunoposa H.M.
HanjionansHwuii aBianiiHui yHIBEpCUTET

PROGRAMMING STYLES TAXONOMY

Cupnopoa H.M. TakxcoHomiss cTHIiB mporpaMyBaHHs. Y CTaTTi HaBEIEHO pe3yAbTAaTH IOCITIKCHHS JIOMEHA
CTHICTHKU TIPOTPAaMyBaHHS, fKi IPECTaBICHO TAKCOHOMIEIO IIOHATH, IO Oyae BHKOPHCTAHO [UIS TOOYZOBM OHTOJNOTII
3aCTOCYBaHHS CTHJIIB IporpaMyBaHHsS. OHTOJNOTIS € CKJIAQAOBOIO 3aco0y, SIKMil OyIyeThCs 3TiJHO 3alpOIIOHOBAHOTO METOMY
3aCTOCYBaHHS CTHIIIB IIPOTPaMyBaHHS 1 CIIPSIMOBAHMUIT HAa JOMIOMOTY IIPOTPaMIiCTy.

KuniouoBi ciioBa: nporpamue 3a0e3medeHHs, IPOrpaMyBaHHs, CTHIII IIPOTPaMyBaHHSI, OHTOJIOT1S], TAKCOHOMISI.

CunopoBa H.H. TakcoHomusi cTujieii mporpamMmupoBaHusi. B craThe HpHBEEHBI pe3yIbTaThl HCCICIOBAHUSL
JIOMEHa CTHJIMCTHKM TIPOTPaMMHpPOBAHMS, IPEICTABICHHBIE TAKCOHOMHEW IOHATHH, KOTOphIe OyIyT HCIIOIB30BAHBI IS
MIOCTPOEHMSI OHTOJIOTUH NPUMEHEHHUS CTIIIeH mporpamMmupoBaHiss. OHTOJIOTHS SIBIISICTCS COCTAaBHOM YacThIO CPEICTBA, KOTOPOe
CTPOUTCS COIJIACHO IPEJIOKCHHOIO METOJA IPUMEHEHMs CTWICH NPOrpaMMHPOBAHMSA U HAIPAaBJICHO HA OKA3aHUs ITOMOLIU
IIPOrPaMMHUCTY.

KnioueBble cioBa: mporpamMmHOe oOecnedeHHe, IPOrpaMMHpPOBAHKE, CTHIM IIPOTPAMMHUPOBAHHMS, OHTOJIOTHS,
TaKCOHOMUSL.

Sidorova N. Programming styles taxonomy. The results of the study of programming stylistics domain are presented.
The result is the taxonomy. A taxonomy of concepts will be used to construct the programming styles ontology. Ontology is a
part of the tools that is constructed according to the own method.

Key words: Software, programming, programming styles, ontology, taxonomy.

Formulation of scientific problem. Application of experience in software engineering plays an
important role in improving the efficiency of development and maintenance of software products.
Experience is applied through using of software development methods and life cycle models, based on the
use of legacy software, and reuse [1, 10].

Application of these methods and models increases the complexity of software and the collective
nature of its development and maintenance and requires the use of programming styles. [2, 7-9]
Therefore, the study and solution of problems related to the application programming styles for a long
time is of particular relevance.

Programming style ensures all processes of creating software, represented by a set of rules
expressed by the linguistic resources and reflects prevailing during the software life cycle is not only
technical, but also a cultural experience [2, 7-9].

Through collaborative development and reuse the style has a direct and through training -
indirectly related to all processes of the software lifecycle. Application of styles in programming means
the improvement of the efficiency of development and maintenance of software.

Analysis research. At various times the problem of style programming directly or indirectly was
studied by E.Dejkstra, 1.Kernigan, F.Plodger, W.Tassel, I.Velbitsky, A.Ershov, I.Pottosin, N.Sidorov. In
programming, the concept of style was introduced with the advent of structured programming.
I.Kernigan, F.Plodger were the first researches who began to use the style [3]. Later, there were different
interpretations of style, for example, by A.Ershov, V.Borovin, N.Sidorov.

There are two approaches to solving problems of application programming style: language-
oriented and technology-oriented [4]. The essence of the first approach is based on the assumption that
the use of programming style is done by writing the texts of programs by means of a programming
language, and hence texts of programs never go beyond language. This approach has the following
disadvantages:

- a translator for a changing variety of styles cannot be build;

- some of the rules that describe the style, can not be converted into grammar;

- some of the rules that describe the style, can not be realized only lexical and syntactic
computation.

The essence of the second approach is to develop and implement means, processes and
methodologies for automation solutions of the style application. In this case, the means to meet the
following requirements:

- ensure that the traditional notion of styles;

- implement the necessary actions associated with the use of empirical methods;

© Cumoposa H.M.

80 Hayxosuil srcypuan "Komi roTepHo-iHTErpoBaHi TEXHOJIOTIi: OCBiTa, HAyKa, BUPOOHULITBO"
Jlyywvk, 2015. Bunyck Ne 19

- does not depend on the phases of the life cycle.

The database is the basis of the means of applying the programming style. However, the use of
databases to represent the domain knowledge shown its limitations and appropriate use of new tools, such
as ontologies [5].

Main material and justification of the results. For the first time we propose a method of
application programming style based on ontologies, providing greater efficiency through using of style
complete, by the way precise and formal description of the domain ontology and using OWL-DL to
automate processes associated with its creation and maintenance.

Fig. 1 shows the organization of the method. Processes are supported by three ontologies. One
reflects the knowledge of programming styles, and the second, about the styles of programming
languages, and the third, about programming languages.

Style
Ontologies(programming
style, programming

language style)

:

Programming
> Styles

&

. Sourse
Programming Code

’_1:

&

L Programming
Languages

Languages
Ontology

Fig. 1. Ontology-driven using of programming style

The use of ontologies requires some work, which consists in the analysis of the subject area and
constructing the source structures (thesaurus, taxonomy dictionaries) (Figure 2).

The construction of Description Checking the
Domain analysis —® taxonomies and |—® ontologiesdescriptivi—m solubility of
thesauri (e logic ontologies

Fig. 2 The processes of preparation of ontologies

The article discusses the results of the first two processes.

Domain analysis is fulfilled with the help of the domain analysis techniques. As a result, a
number of charts are created as the domain knowledge. Domain is called a programming stylistics.
Knowledge about the domain is represented by three ontologies - programming style, programming
language style, programming language (Fig.3).

© Cumoposa H.M.

Hayxosuil srcypruan "Komi roTepHo-iHTErpoBaHi TEXHOJIOTIi: 0CBiTa, HAyKa, BUPOOHULITBO"

Jlyywvk, 2015. Bunyck Ne 19

Programming style

Programming language
style

Programming language

A

Programming
denotation style

!

Programming stylistics

Fig.3. Programming stylistics

Knowledge is based on the definition of programming style. Programming style by the definition
is the style that is used in human activity (domain), whose essence consists in programming (Fig. 4).

«programming style denotation»:

programming style

ldea = «any»

Existent time = « some time »

Action = « programming »

l

Fig.4. Class-programming style

81

The «programming» domain consists of three essences — subject (programmer), tool
(programming language), and product (program) (Fig.5).

Studies p d Belong
1 [
Programming
language
1 1
Programmer Program
1
Wntes ’

Fig.5. Programming domain

© Cumoposa H.M.

82 Hayxosuil srcypuan "Komi roTepHo-iHTErpoBaHi TEXHOJIOTIi: OCBiTa, HAyKa, BUPOOHULITBO"
Jlyywvk, 2015. Bunyck Ne 19

Programming style consists of the rules that apply to parts of the program text (Fig. 6)

Parts of program text Programming style Rules of style

Fig. 6. Programming style with associated terms

The set of style rules consists of three types of rules - syntactic, semantic and pragmatic (Fig. 7).

Rules of style

Pragmatic rules

Semantic rules

Fig.7. Rules of style

Description of the programming style is represented by the set of style rules. For example [6],

Syntax rule:

Synopsis: Do not use an underscore in identifiers
Language: C#

Level: 8

Category: Naming

Semantic rule:

Synopsis: Do not change a loop variable inside a for loop block

Language: C#

Level: 2

Category: Control flow

Description

Updating the variable loop within the loop body is generally considered to be confusing, even
more so if the variable loop is modified in more than one location. This rule also applies to foreach loops.

Pragmatic rule:

Synopsis: Name an identifier according to its meaning and not its type

Language: C#

Level: 6

Category: Naming

Programming style is applied to parts of the program text. Part of the program text can be of two
types — predefined by syntax parts, and parts, that can be defined (Fig. 8).

© Cumoposa H.M.

Hayxosuil srcypruan "Komi roTepHo-iHTErpoBaHi TEXHOJIOTIi: 0CBiTa, HAyKa, BUPOOHULITBO" 83
Jlyywvk, 2015. Bunyck Ne 19

Fredefined by syntax
parts

Fig.8 Parts of program text

Programming languages are represented with the help of the encapsulation levels [1].
Each level has its own type of the programming construction (Figure 9). There are lexems (lexical level),
operators (operator level), subroutines (subroutines level), modules (module level), classes (class level).

Programming
Language

included included

Modular level

included included

Subroutine level

included

Operator level

included

Lexical level

Fig. 9 Levels of encapsulation of programming language

Thus, using levels of encapsulation the style rules can be classified as the following (Figure 10).

Programming
Style

Rules of
subroutine

included Rules of module

Programming
Style rules

Rules of
variables

Comments Rules

Rules of
statements

Rules of Classes

File organization
Rules

Rules of methods

Fig. 10 Ontology of programming style's rules

© Cumoposa H.M.

84 Hayxosuii srcypuan "Komi roTepHo-iHTErpoBaHi TEXHOJIOTIi: OCBiTa, HayKa, BUPOOHULITBO"
Jlyywvk, 2015. Bunyck Ne 19

The concrete programming styles are a created for concrete programming languages (Figure 11).

Programming
language

‘Web-languages

OO0 - languages

Module -
languages

Subroutine
language

Fig. 11 Programming language styles

Fragment taxonomy rules for object-oriented language (C#) is shown in the Figure 12

| NamingConvention

MethodNamingRule

|

|

|

|

|

| E
| " InterfaceNamingRule
|

|

|

|

|

|

NamingConvention |
= =
&

ELocaIVariableNamingRule
lypel |

EGIobﬁIVariableNamingRule
lypel |

gLoopCOunterMamingRule
lypel |

EParameteerlmingRule

VariableNamingRule
VariableNamingRule

ProgrammingStyleRule
b (=x
lopel 7
StatementRule LoopStatementRule
pe | StatementRule [type [LoopStatementRule

DeclarationRule

pe | DeclarationRule

WhiteSpaceRule 0

pe | WhiteSpaceRule

IndentationRule B

pe | IndentationRule

CommentsRule

ype | CommentsRule
FileOrganizationRule

H

type | FileOrganizationRule

Fig. 12 Taxonomy of programming rules

© Cumoposa H.M.

Hayxosuil srcypruan "Komi roTepHo-iHTErpoBaHi TEXHOJIOTIi: 0CBiTa, HAyKa, BUPOOHULITBO" 85
Jlyywvk, 2015. Bunyck Ne 19

Results and future researches. The results of the study programming stylistics domain are
presented. The result is the taxonomy. A taxonomy of concepts will be used to construct the programming
styles ontology. Ontology is a part of the tools that is constructed according to the own method. The
future researches are creating programming style ontology and programmer assistant tool.

References

1. Sidorov M.O. Software engineering. [texcr] /Sidorov M.O.// — 2007. — Kyiv. — NAU.- 135p.

2. Sidorov N.A. Software stylistics [rexcr]/Sidirov N.A.// Proc. of the National Aviation University — 2005. - Ne2. — ¢.98-103

3. Kepuwran b., Dnementst crunst mporpammupoBanust [tekcer] // Kepuuran b., Tltomkep ®.// Pamuo u cBsizp — 1984. —. 160c.

4. Kpamap FO.M. Cpencrea [uisi aBTOMaTH3HPOBAHHOTO CHHTE3a CTIUIEl mporpammuposanmst [texct]/Kpamap FO.M.// Becuuk
HAY 2002. —.- Ne2.- ¢.52-60

5. Sidorova N.M. Ontology of programming style [tekcr] /Sidorova N.M., Kramar Y.M.// — Proc. the sixth world longest
“Aviation in the XXI-st Century.- 2014.- v.1.- P.1.13.28- 1.13.36”

6. Philips Healthcare — C# Coding Standart [texcr].- Philips.- 2009.57p.

7. Knuth D.E. Literate are programming [texcr] / Knuth D.E. //Computer Journal. - 1984. - Vol. 27, N 2. - P. 42-44.

8. Goldberg A. Programmer as Reader [texcr] / Goldberg A.// IEEE Software -1987. Sept.-P. 62-70.

9. V. Railich Software cultures and evolution /V. Railich, N. Wilde, M. Buckellew // Computer. - 2001. - Sept. - P. 25-28.

10. Cunopos H.A. Crunucrrka nporpammuoro obecriedenus [teker] / Cumopos H.A. //TIpo6nemu nporpamysanss. — 2006.— Ne
2, 3.— C.245-255.

© Cumoposa H.M.

