Hayxosuil srcypruan "Komi roTepHo-iHTErpoBaHi TEXHOJIOTIi: 0CBiTa, HAyKa, BUPOOHULITBO" 67
Jlyywvk, 2015. Bunyck Ne 20

UDK 004.254:004.052(045)
Melnyk V.M., Pekh P.A., Melnyk K.V., Zhyharevych O.K.
Lutsk national technical university

SIGNIFICANCE OF THE SOCKET PROGRAMMING FOR THE LABORATORY WITH
INTENSIVE DATA COMMUNICATIONS

Melnyk V.M., Pekh P.A., Melnyk K.V., Zhyharevych O.K. Significance of the socket programming for the
laboratory with intensive data communications. Many courses based on data communications are connecting with no
programming content. They are designed for computer science topics and should include programming. A lot of data
communication courses with a programming component make use of serial ports on PCs while some of them deal with detailed
network layer projects. UNIX socket programming allows the learners to deal with the same issues and problems, but in a context
that is more to be useful and interesting. In addition, if classes with sockets are used with C++, only as much detail of socket
operation as desired need be presented.

Keywords: data communications, socket programming, contention, C++ socket classes, server.

Meabauk B.M., Tlex ILA., Meabuuk K.B. JKurapesuu O.K. BaxiuBicTh cOkeTHOro nmporpaMyBaHHsl AJs
JadopaTopiii 3 iHTeHcMBHMM o00MiHOM pJaHuX. barato Kypcis, 3acHOBaHI Ha Iepefadi MaHWX, MiAKIIOYAIOThCA 0Oe3
IIPOrPaMHOT0O KOHTEHTY. BoHM cTBOpeHi st TeM 3 061acTi KOMI[JIOTePHUX HAyK 1 IOBHHHI BKJIIOUaTH MporpaMyBaHHs. bararo
KypciB Ha 0a3i KOMyHIKaIlil JaHUX 3 KOMIIOHEHTOM IIPOTPaMyBaHHS MOXXYTh BUKOPHCTOBYBATH HociifnoBHi noptu Ha [1IK, B Toit
9ac SK AesKi 3 HUX B3a€MOMIIOTH 3 KOHKPETHUMHU MEpeXeBUMH piBHAMH mpoekTiB. [Iporpamysanus UNIX-cokeriB mo3Bomse
BUBYAIOUNM 3aHMAaTHCSI THMH K IIMTAHHAMHE 1 IpoOIeMaMH, ane B KOHTEKCTI, 10 Moke OyTH OLIbIn KopucHMM i IikaBuM. Kpim
TOrO0, MPEJCTaBICHH COKETHHUX KJIAciB 3 BUKOpHCTaHHAM C++ MOBMHHO HACTINBKH JETali3yBaTu OIepalii COKETiB, CKiJIbKH 11¢
HE00XiJHO.

KurouoBi ci10Ba: 00MiH JaHUMH, COKETHE MporpaMyBaHHs, 3B 15130k, Kiiack cokeTiB C++, cepaep.

Meabauk B.M., Tlex ILA., Meabnunk K.B. Kurapesnu O.K. Ba:kHOCTH COKeTHOr0 MPOrpaMMHPOBAHHS ISl
J1a00paTOpUil ¢ HHTEHCHBHBLIM O0MEHOM JaHHBIX. MHOTHE KypChl, OCHOBaHHbIE Ha Mepenade NAHHBIX, IMOAKIIOYAroTcs 0e3
coziepakaHus porpammupoBanms. OHH peHa3HaueHb! U1 HHPOPMATUKHI TEMBI ¥ JODKESH BKJIIOYATh IPOrPAMMHOTO KOHTEHTA.
MHOro KypcoB Ha OCHOBAaHMM KOMMYHUKAIMM JAHHBIX C KOMIIOHEHTOM HPOTPAMMHPOBAHUSI MOTYT HCIIOJIB30BATh
rocuenoBaTenbHple NopTel Ha [IK, B TO BpeMs Kak HEKOTOpPBIE W3 HUX B3aUMOJCHUCTBYIOT C KOHKPETHBIMH CIIOSIMH CETEBBIX
npoekToB. [IporpammumpoBanne UNIX-cOkeTOB MO3BOMISET ydammuMCs 3aHHMAaThCSl TEMH JK€ BOIIPOCAMH M IpoOiIeMaMH, HO B
KOHTEKCTe, KOTOpHII sBiseTcss Oonee TONE3HBIM M HWHTepecHBIM. Kpome TOro, mpencraBieHHE COKETHBIX KIAacCOB C
ucnosb3oBaHueM C++ TOIHKHO HACTOJBKO JIETATM3UPOBATH OIEPALMK COKETOB, CKOJIBKO 3TO HEOOXOIUMO.

KuroueBsbie ci10Ba: 00MeH TaHHBIMH, COKETHOE IPOrPaMMHUPOBAHHKE, CBA3b, Kilacchl cokeToB C++, cepaep.

Introduction. Data communications is a common part of most Multi Interface Socket (MIS) and
Client Socket (CS) programs. As evidenced, the actual implementation of the course varies widely by the
available text books variety. Many texts, oriented on toward MIS or CS, provide little or absolutely no
laboratory activity. MIS programs tendency to emphasize on a data communications and networks
management. Recent news lists postings indicate an emphasis on using data communications and
investigations of the types and available communication styles. National or international cooperative
projects are too popular and CS programs may use very technical texts or a broad text, such as used in [1],
where principles, design approaches and standards are going to be highlighted. Obviously, an engineering
program would have a much more extensive and detailed course/courses to investigate the physical and
structural data communication aspects. The course taught by the author requires for all CS majors.
Students or outside users in the course maybe in any of the specialized tracks (artificial intelligence,
business information systems, graphics or scientific programming) as well as more generic CS major.

The possible laboratory experiences types are also wide-ranging. The "global cooperation model”
teaches how data communications works by forcing students to use sophisticated communication
mechanisms and provides a basis for explaining how these systems function. It is possible to consider
design alternatives, based on the available resources, by allowing learners to explore different physical or
logical communication types.

At the other extreme are exercises that emphasize low-level physical understanding of data
communications almost an engineering approach. A typical example could be the use of serial ports on
PCs. In addition to writing code with aim to manipulate the physical hardware can be studied many more
complicated concepts. In material the author has used in the past [2], file transfer assignments using a
modified BiSynch protocol and implemented token rings. An alternative low-level approach is modelled
by the NetCp software [3]. This laboratory tactic involves a large scale project based on the 0SI IS0 data

© Menpauk B.M., Ilex I1.A., Mensauk K.B., XXurapesma O.K.

68 Hayxosuil srcypuan "Komi roTepHo-iHTErpoBaHi TEXHOJIOTIi: OCBiTa, HAyKa, BUPOOHULITBO"
Jlyywvk, 2015. Bunyck Ne 20

link layer developing. None of these approaches provide practical hands-on hardware experience. In
addition to the exercises described in this work, the author assigns a project involving installation of
hardware and software to add a PC to a network. A server can be installed and configured for extra credit.
Such a project was continued after the socket model was adopted. Users placed in practice or in their first
job to consider how the data communications course is important and they have typically not believed
that PC serial port programming is to be so important.

The approach presented here is designed to provide a broad overview of data communication and
network issues to students. The goals for the laboratory part of the data communication course also were
presented later in publications.

UNIX sockets. Simply say, sockets area mechanism by which messages may be sent between
processes on the same or different machines. If the processes are located on the same machine, the
sockets may be used as pipes. Internet sockets allow communication between processes running on
different machines. The system calls are the same as file input/output. A typical attitude to socket
programming is to create a process that opens a server socket port and listens for another process to
attempt connection. A client can open a socket with the same port number as the server socket, requesting
connection to the service. A connection is established when server hears the request from the client.
Communication can now operate using the read() and write() system calls.

There are many types of standard protocols. Two of the most common are UDP (user datagram
protocol) and TCP (transmission control protocol). Both protocols transmit packages of information
between processes via socket. UDP does not put a guarantee, that data will be received or that a
transmission of multiple packets will be received in order. TCP is a stream protocol that is reliable and
sequenced. Practically, input and output to the programmer on a TCP socket appears as a byte stream
from a terminal or a file. If TCP data cannot be successfully transmitted within a reasonable amount of
time, then will be indicated an error. There is less overhead involved in UDP, but programming must be
much more sophisticated if there is important orderly message receipt.

The socket connection between two processes usually is a connection between host-port pairs
where the port number indicates a particular available service that is made. Many of the services
commonly available via TCP sockets are recognizable acronyms: SMTP (Simple Mail Transport
Protocol), NNTP (Network News Transport Protocol) and FIT (File Transport Protocol). Telnet and rsh
are also additional socket services. UNIX provides a mechanism whereby the name of an available
service is translated to a port number. Sockets are also used for the interprocess communication necessary
in concurrent or parallel processing. Therefore, parallel processing assignments as well as data
communications projects can be built on the same framework.

Advantages of sockets. One obvious disadvantage of using socket programming for the data
communications lab is that they are less direct hardware interaction than with PC serial ports. However,
most graduates will not be in situations where such detailed knowledge will be important. Even with the
serial port approach the concepts have remained to some extent abstract to many students. The socket
based approach has the advantage that the abstract sockets concepts (and practical uses such as mail,
telnet, etc.) become much more concrete.

One advantage that PC based labs have had in the past is that they were inexpensive. However,
there are at least two factors that balance this advantage. One is that UNIX workstations are now
commonly available. PC labs can be converted to workstations by installing free UNIX versions. Most of
socket assignments, given in a data communications course, are not compute intensively and do not
require a graphical interface; workstations have not to be dedicated to the course as it would be true for
PCs. Another factor is that even though PCs are relatively inexpensive, what happens practically is that
older, less reliable, machines are assigned to a dedicated project such as a data communications lab. Our
experience says that the machines we could use were quite unreliable.

Although the higher level nature of socket programming has been stressed as an advantage. It is
possible to make assignments so much detailed as desired. Socket programming without any support
software can require a great deal of low level understanding and manipulation. One simple modification

© Menpauk B.M., Ilex I1. A., Mensauk K.B., XXurapesma O.K.

Hayxosuil srcypruan "Komi roTepHo-iHTErpoBaHi TEXHOJIOTIi: 0CBiTa, HAyKa, BUPOOHULITBO" 69
Jlyywvk, 2015. Bunyck Ne 20

would be to base assignments on UDP packets rather than TCP one. Much additional programming (error
checking via CRCS, sequence numbers, acknowledgment of receipt, negative acknowledgment for receipt
of a bad packet) would be also necessary. With either UDP or TCP packets, properly designed
handshaking mechanisms may be necessary for applications like file transfer.

With serial port assignments, lecture time was devoted to such low level concepts as control, status
and data registers, and parallel to serial conversion. With a socket based approach can be discussed
analogous concepts such as packet headers and network and machine byte order. If looked-for, many of
the topics appropriate for serial port communication can be required for socket programs and many of the
same assignments can be given. Even if high level applications are assigned, the learners must still
understand the differences between streams and buffers.

Advantages of C++ socket classes. Many references provide details of socket communication
[4,5,6]. These references provide examples and ideas for assignments. All of the establishing
communications details, converting the communication into a buffered stream and error checking, can be
done with UNIX system calls. Much low level understanding may be required to write applications that
are stable. A well designed set of C++ classes can be constructed which will provide the full power of
sockets with simple semantics requiring. It is possible to write up clients to established servers, event
driven servers, polling servers, etc.

The author [7] provided the students with a set of C++ socket classes written and copyright by G.
Swaminathan from Electrical Engineering Department. These routines have been written to work with
GNU libg++ and appear the same as the iostream library. These classes have functioned very well for the
given assignments. The interface is the same as the iostream library and provides type-safe input and
output. There are sockstream classes in the UDP and TCP domains as well as a pipestream class. The
sockbuf classes are derived from the streambuf class of the libg++ iostream library. Thus, learners must
learn about streams and buffers for non-socket input and output.

Sockbuf classes include error functions: ready checks, flush operations, and overflow, underflow,
and timeout functions. There can also be set socket options, such as message routing, reuse of local
address, broadcast etc. Therefore, socket detail may be included as it may be desired.

In this particular prospectus a side benefit of using these C++ classes is that clients (students) are
required to use C++ in a junior/senior level course to help them retain skills gained at the
freshman/sophomore level.

Assignments. In choosing assignments to give hour course (during a 1,5 year), several goals were
desired. It was hoped to design a set of assignments which would require the student to write a client
application, a server application a peer-to-peer application and also provide experience with some
standard applications such as electronic mail and file transfer. In addition, the assignments should begin
simply and become more complicated during the semester. They outlined below met these criteria.

The assignments were very well received by the students. They were perceived to be of practical
interest and, at the same time, to be fun projects. Some of them, who don’t have a history of applying
themselves well to project assignments spent much effort on these assignments and produced good
results. Specifically, we are giving five assignments here:

Assignment 1 [] socket client to SMTP server. Write a client program to connect with an SMTT
server on a local or remote machine and send a mail message to a userid. The user need not be on either
the local or remote machine. For example, the program might be named smtp and have two arguments:
hostname and userid. A simple command line interface is required but learners were free to develop much
more elaborate e-mail style interfaces. There must be used commands understood by SMTP. A subset are
follows:

HELO Identifies connecting machine [localname is not needed LI some servers
localname do not need HELO, but include it before do something.

HELP Sends commands list.

r'\1/|af\mltla_ FROM May be anything you wish L it is not checked for validity.

© Menpauk B.M., Ilex I1.A., Mensauk K.B., XXurapesma O.K.

70 Hayxosuil srcypuan "Komi roTepHo-iHTErpoBaHi TEXHOJIOTIi: OCBiTa, HAyKa, BUPOOHULITBO"
Jlyywvk, 2015. Bunyck Ne 20

RCPT TO: name Recipient of mail 1 need not be local name.

DATA Allows entry of message [terminate message with [].[] as only character on
line.

QUIT Disconnect.

This assignment, as well as others, teaches students how to do improper activities. The following
warning was provided to them: «Obviously one could do ill-mannered things with this program. For
example, it could be sent a bunch of messages from Dafi Duck to some administrator. It would take some
work, but the sender of these messages could be traced. Please, do not involve in such juvenile behavior».
Some of them would argue that such assignments are too «dangerous». However, the students are
learning how to manipulate sockets and could figure out how to send such mail on their own. For this it
need to be ready to acknowledge the problem and announce a warning.

Assignment 2 [simple network information server. Write a network server program which will
behave as follows: accept commands from the input socket; interpret the commands and gather the
information; and send the commands output to the output socket.

You will no need to write a client program for this assignment as the standard telnet client will
provide the necessary functions. Telnet allows you to send information over a client to a server process
and handles the return information printing. A selection of information providing system commands such
as domain name, who, etc. was chosen. The system functions can be executed from within a C++
program. The difficult part is to take the commands output and send the output to the socket connected to
the client. The output of the commands should be connected directly to the socket. Two approaches are
suggested: using the pipestream class and using a traditional C fork() to execute the system function
which is connected by a user-constructed pipe.

Assignment 3 — peer-to-peer socket communications. Write a “chat” program which will execute as
two idential programs. It should allow users to type information that will appear as output on the
connected process. The two processes have to be connected via socket. The program will allow the user to
connect to a certain process or to listen for another process or trying to connect to it.

The same program runs on both machines. Topics necessary for this assignment include: timeout
on listen, creating a child process as done by many server programs, closing sockets and killing child
processes. A finite-state transition model could be presented to help in this program design.

Assignment 4 [file transfer O client and server. Write a pair or programs to transfer files over a
TCP/IP network socket connection. The first program should operate in much the same way as an FIT
server. It should be run in the background and wait for a connection on a specified port. The second
program will function in much the same way as an FIT client. Therefore, a user interface will be needed.
Commands will be entered and sent to the server with noted responses and files may be transferred in
either direction. The client program should accept the following commands with corresponding actions:

Is list files on server

put transfer file from client to server

get transfer file from server to client

quit disconnect from server

:<command> execute <command> on client useful for Is on client

The capabilities (and therefore, protocol) of this client/server pair are much simpler than FIT. SFTP
(Simple File Transfer Protocol) is closer to what is required. FTP, for example, uses 2 TCP connections: a
telnet-like connection for control and a second one for data transfer. SFTP uses a single TCP connection
and supports user access control, directory listing and changing, file renaming and tile erasure. There,
only directory listing is required here for these commands. FIT also supports lcd, input, messageget, etc.
A hand-shaking protocol was required for this assignment.

Assignment 5 — three options were given:

© Menpauk B.M., Ilex I1. A., Mensauk K.B., XXurapesma O.K.

Hayxosuil srcypruan "Komi roTepHo-iHTErpoBaHi TEXHOJIOTIi: 0CBiTa, HAyKa, BUPOOHULITBO" 71
Jlyywvk, 2015. Bunyck Ne 20

Assignment 5A — FIT file transfer using UDP. Implement the file transfer programs of assignment 4
built on UDP sockets rather than TCP sockets. The programs will need to assemble data packets, provide
CRC error checking and provide packet sequencing.

Packets may arrive in different order, duplicated or missing. They may need to be re-requested
and/or rearranged. Each packet should be acknowledged (positively or negatively). A protocol will need
to be adopted, which will describe the packet format error messages, acknowledgments, etc. In order to
test the robustness of the protocol used, allow the user to specify transmissions fractions that will
(randomly) be done in error.

Assignment 5B — two channel bidirectional file transfer. Implement of the file transfer programs of
assignment 4 modified to have two sockets open: one for control information and other for data transfer.
In addition, it need to allow the two programs to send files back and forth at the same time. A transfer can
be aborted by using the control channel. It may be helpful to fork multiple processes (a finite state
machine approach would be a good idea). FTP works in a similar manner. It has two socket connections,
but does for different reasons since it is a true client-server protocol rather than the peer-to-peer protocol
implemented here.

Assignment 5C — multi-user chat program. Assignment 2 involved a peer-to-peer chat program.
This assignment requires a multiplexing chat server program creation which can handle multiple socket
connections. There is no need to write a client program because telnet can be used here.

The server should accept input lines from any connected socket and output them to the rest of the
connected sockets. When a user connects to the chat server, the server should prompt for a user name.
This name should be broadcast to the rest of the users as "user <name> has just joined the session”.
Similarly, a message should be broadcast when the user leaves the conference. When a user’s message is
sent to the other connected users, the user name should be included for identification.

Conclusions. The goals of the laboratory component redesigning of the data communications
course were to provide assignments that are: more meaningful and practical to the students; more
enjoyable and, therefore, will be done better; more modern but are still oriented toward understanding,
what is happening rather than simply using data communications; increasingly complex and build on
previous assignments; based on more reliable hardware that the discarded PCs used previously.

Once the socket paradigm was chosen, goals were to create assignments which required students to
write code that: makes use of C++ classes; provides simple client access to a well-defined server;
provides simple server functionality; provides peer-to-peer communication; provides multiplexing server
functionality; functions in a manner similar to a well-known network service; requires students to be
concerned with unreliable communications; uses some form of fork() and programming for interprocess
communications. The use of C++ socket classes and the assignments chosen meet all of the above goals if
the optional forms of assignment 5 are chosen.

1. W. Stallings. Data and Computer Communications. / 4-th edition, MacMillan, New York, 1994.

2. W. D. Smith. The Design of An Inexpensive Undergraduate Data Communications Laboratory, SIGC’SE Bulletin. []
1991. O Vol 23, Ne 1. [J p. 273-276.

3. D. Finkel, S. Chandra, NetCp [1 A Project Environment for an Undergraduate Computer Networks Course, SIGCSE
Bulletin. (1 1994. (1 Vol 26, Ne 1. [p. 174-177.

4. A Socket-Based Interprocess Communications Tutorial. Chapter 10 of SunOS Network Programming Guide.

5. An Advanced Socket-Based InterProcess Communications Tutorial. Chapter 11 of SunOS Network Programming
Guide.

6. R. Quinton. An Introduction to Socket Programming, Computing and Communication Skrvices. The University of
Western Ontario, London, Ontario.

7. G. Swaminathan. C++ Socket Classes, Electrical Engineering Department, University of Virginia.

© Menpauk B.M., Ilex I1.A., Mensauk K.B., XXurapesma O.K.

