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 Maksymovych O.V., Melnyk V.M., Bortnyk K.YaLavrenchuk S.V., Samarchuk V.F. Pliability of faults in open 
stack versions. Stacks of cloud-management have become an important elements in cloud computing. They are serving as the 
resource managers for cloud platforms. While their functionality has been constantly expanding, their fault resilience remains 
under-studied. This article presents a fault resilience systematic study of OpenStack – a popular cloud-management stack for the 
open source. We have built an example fault-injection framework directing service communications during the external requests 
processing, both among OpenStack services and between OpenStack and external services, and have thus far uncovered 23 bugs 
in two OpenStack versions. Our ndings hut light on defects in the design and implementation of advanced cloud management 
stacks from a fault-resilience perspective. 
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Introduction 
With the virtual machine (VM) technology development in both: software design and hardware 

support, cloud computing has become a major computing platform. In addition to public cloud services 
that have been available since the early stage of cloud platform deployment [1], there is an evolving 
demand for other types of cloud platforms, particularly, private and hybrid clouds. The demand leads to 
the role transition from cloud users to a cloud users and providers combination, broadening the scope of 
cloud providers from major IT companies to any size organizations. It has also prompted the cloud 
management stack research and development – a new software stack functioning as a high-level cloud 
operating system and remains key to resource management in cloud platforms.  

In recent years an attention to cloud-management stacks from academy and industry has led to a 
rapid increase in the number of features. However, fault resilience of this layer, as an optional feature, is 
still regarded and remains under-studied, despite its importance demonstrated by real-world failures and 
its signi cant impact on managed cloud platforms [2, 3, 4]. Fault-resilience-related issues constantly stun 
the  users  of  cloud-management  stacks.  For  example,  when  faults  occur,  VM  creation  may  fail  or  take  
some  long  time,  and  VMs  may  be  marked  as  successfully  created  but  lack  critical  resources  (IP  
addresses), thus remaining unusable. A fault resilience investigation of cloud-management stacks is long 
overdue that demysti es the above issues. 

In this paper, the rst systematic study on the fault resilience of OpenStack is present, as a popular 
open source cloud-management stack. The conventional wisdom in the fault-injection literature as well as 
its application in fault-injection studies directing large-scale distributed systems [5, 6, 7], that studied the 
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OpenStack execution in the two common faults presence with the cloud environment: server crashes and 
network partitions. OpenStack is considered fault-resilient during the external request processing, if it 
maintains correct and steady states and behaviours, even in case of faults occurrence. As external requests 
are an important source of inputs to OpenStack and usually trigger state transitions, focusing on 
OpenStack’s fault resilience during external request processing. We insert faults into inter-service 
communications during request processing, as they characterize service collaboration of which design and 
implementation is dif cult to be fault resilient. Speci cally, there are targeted communications among 
OpenStack’s computing, image, identity services, as well as external services such as databases, 
hypervisors, and messaging.  

An approach is taken in this fault-injection study, to expose high-level OpenStack semantics 
(service A sends a request R to service B via communication channel C) by supplementing its wrapper 
layer of communication libraries with our sorting and module of coordination. Exposing, instead of 
inferring, high-level semantics reduces the amount of logs, simpli es the extraction of communication 
patterns and facilitates ef cient fault injection. This approach can also be easily integrated into 
OpenStack’s noti cation mechanism. It closely mirrors OpenStack’s existing logging infrastructure. To 
mean broader, this white-box approach is valuable to the DevOps integration current trend [8], allowing 
developers and operators to better understand the software functioning in realistic deployment 
environments. It facilitates the spectrum design of approaches to hardening cloud-management stacks, 
such as fault-injection studies, and online fault detection and analysis, which are planned to explore in 
future.  

11 external APIs1 of OpenStack were been studied and for each API were been executed late 
request with identifying all fault injection cases, each corresponding to the combination of a fault type 
and location in the request execution path. A single-fault injections were conducted by re-executing the 
same request and iterating through the fault-injection cases, each time injecting a distinct fault into the 
execution ow. Upon completion of fault injection experiments, the results were checked against 
prede ned speci cations regarding the expected states and OpenStack behaviours. When speci cations 
are violated, the execution of OpenStack and bugs identifying were manually investigated.  

Two OpenStack versions were studied, namely, "essex" and "grizzly", the latter being the rst 
version of the most recent release series, and identify in total 23 bugs. As in the preliminary work version 
[9], those bugs were been categorized into seven groups and performed an in-depth study for each 
category. several common fault-resilience issues were been identified then in OpenStack, such as 
permanent service blocking due to the timeout protection lack, irrecoverable inconsistent system states 
due to the lack of periodic checking and state stabilization, and misleading behaviours due to code 
checking of the incautious return. The major contributions of this paper are three-fold:  

1. Applied fault-injection techniques to cloud management stacks and presented design and 
implementation for an operational prototype fault injection framework for this emerging software 
layer, using OpenStack as the study target.  

2. Conducted the rst systematic fault-resilience OpenStack study, identifying 23 bugs.  
3. Categorized bugs, presenting deep analysis for each bug category, and discussing related fault 

resilience issues.  
Cloud-Management Stack and OpenStack Background 
It is brie y discussed cloud-management stacks and then provided background information about 

OpenStack, concentrating on its components, supporting services, communication mechanisms, and 
threading model. Cloud-management stacks are an emerging software layer in the cloud ecosystem. They 
are responsible for the cloud platforms formation and management. A cloud management stack manages 
cloud platforms via distributed services cooperation, which including an external API service for 
communicating with external users, an image service for managing VM images (registration and 
deployment), a computer service for managing VMs (creating and deleting VMs) on supporting hosts, a 
volume service for managing persistent storage used by VMs (providing block devices and object stores) 
and network services for managing networks used by VMs (creating and deleting networks, manipulating 

rewalls on supporting hosts). Its own service as a cloud-management stack requires external services to 
ful l its functionality. In particular, it often relies on a hypervisor, described in [10] (Xen), [11] (KVM) or 
[12] (Hyper-V) for managing VMs. 
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OpenStack is a state-of-the-art open source cloud management stack [13], implemented in Python. 
It contains several common services, such as a computation service group, an image service group, 
network  service,  and  several  persistent  storage  services.  Other  OpenStack  services  in  a  typical  cloud  
setting include an identity service for validating services and users and a dashboard service for graphical 
interface providing to users and administrators. OpenStack relies on hypervisors installed on computer 
nodes (where VMs run) for VM management and uses database service to store persistent states related to 
its managed cloud.  

OpenStack employs two major communication mechanisms. Compute services use remote 
procedure calls (RPCs) compatible to the Advanced Message Queuing Protocol (AMQP) for internal 
communications within the service group. Other OpenStack services conform to the RE presentational 
State Transfer (REST) architecture and communicate with each other via the Web Server Gateway 
Interface (WSGI). OpenStack uses the SQL Alchemy library to communicate with database back ends, 
such as MySQL and SQLite. Interaction with hypervisors is inattentive to virtualization drivers. 
Speci cally, OpenStack designs a common hypervisor-driver interface and implements drivers using 
common hypervisor APIs (libvirt and Xen). Its services are implemented as green threads via event let 
and green let libraries, which employ a user-level cooperative multithreading model: a thread runs non-
pre-emptively until it surrenders control. Upon thread yielding, a hub thread turn out to be active, makes a 
scheduling decision and then transfers control to the scheduled thread. This model requires several 
standard Python libraries to be patched with green thread-compatible implementations in order to prevent 
I/O functions issued by one green thread from blocking the other in same process. 

Project Scope, Design Principles, Components and Work ow Overview 
This section presents the project scope, followed by our design principles discussion. It is present 

an overview of the components and the work ow of our fault-injection framework. The fault-resilience-
related programming bugs are target in OpenStack. They affect OpenStack’s inherent fault-resilience 
from its design and implementation perspective. Con guration bugs, in contrast, are considered faults in 
this article. For example, a mistaken con guration may lead to network partitions, which are used for 
fault injection in our framework. Bugs that can only be manifested by a sequence of faults are not in this 
paper scope, due to single-fault injections use. 

Design builds on prior research in distributed systems tracing, fault injection, and speci cation 
checking. Instead of proposing a new fault-injection methodology, it is discussed experience in building 
an operational fault-injection prototype for OpenStack, following below design principles. Cloud 
management stacks rely on the services cooperation distributed to a cloud environment to ful l their 
functionality. This cooperation requires fault-resilient communication mechanisms. Given the service 
communications importance and the fast advances of sophisticated single-process debugging techniques, 
fault injection prototype targets service communications in OpenStack.  

Domain knowledge has proven valuable for debugging, monitoring, and analysing distributed 
systems. In [14] showed that developers of applications running in a distributed environment were willing 
to expose and exploit domain knowledge in a production-level tracing infrastructure designed for 
application transparency, despite the infrastructure’s decent performance without such knowledge. In our 
prototype OpenStack’s high-level semantics expose the fault-injection module and achieve high fault-
injection ef ciency by injecting faults to high-level communication ows but generic low-level events in 
runtime systems or operating systems. It is extremely dif cult and costly to thoroughly investigate every 
aspect of the cloud-management stacks fault resilience. It is focused on common cases, injecting common 
faults during the processing of OpenStack’s most commonly used external APIs. These faults are based 
on existing knowledge related in works [6, 7], and experience with large-scale production-level cloud 
systems. The APIs selection is based on experience with OpenStack several experimental deployments. 

To simplify adoption of our framework, it is used building blocks that cloud-management stack 
developers are aware with. The choice between the high-level semantics exposure and inference is an 
exempli cation of this principle, because developers have built logging and noti cation mechanisms 
exposing such information. Another example is that it is used hybrid approach to implement OpenStack 
speci cations, combining imperative checking via generic Python scripts with declarative checking via 
the SQL Alchemy library, both of which are widely employed by developers of OpenStack. 
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Our fault-injection framework consists of a logging and coordination module, a fault injection 
module, and a speci cation-checking module. The logging and coordination module is responsible for 
logging communications among services during external request processing and coordinating the 
execution of OpenStack and a fault-injection controller. The fault injection module is conceptually 
composed of a fault injection controller running at a test server node and fault-injection stubs running 
with OpenStack. The fault injection controller manufactures information collected by the logging and 
coordination module, makes fault injection decisions, and demands fault-injection stubs to inject faults 
into OpenStack. The speci cation-checking module veri es whether the internal states and the externally 
visible behaviours (HTTP status code returned to external user) of OpenStack at the end of each fault-
injection experiment comply with prede ned speci cations. Fig. 1 presents a system overview and a high-
level work ow, latter discussed in next. 

The work ow consists fault-free execution, fault injection, and speci cation checking. For given 
external request, it starts with fault-free OpenStack 
execution resulting in successful request processing. 
The logs produced during the fault-free execution are 
fed to a parser to generate an execution graph (next 
detailed), describing communications among services. 
Combining the execution graph and a prede ned fault 
speci cation, the framework generates a test plans 
collection, each consisting of a fault type from the 
fault speci cation and a fault-injection location in the 

execution graph. Fault-injection experiments are then conducted via logging and coordination module and 
the fault-injection module collaboration, with each experiment corresponding to a test plan. The results of 
experiment are checked against prede ned state and behaviour speci cations. It is manually identified 
experiment bugs causing speci cation violations. 

 
Fig. 1  System overview and work ow 

Logging and Coordination  
After the framework overview we start an in depth discussion of its major components with the 

logging and coordination module. Following the domain speci c information design principle exposing to 
the fault-injection controller, logging and coordination module openly maintains high-level several 
communications types’ semantics in its logs, including RPC, REST, database, hypervisor and shell 
operations. Key attributes in communication log are enumerated in Table 1. A unique tag is created when 
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OpenStack receives an external request. The tag is then broadcast through OpenStack services along the 
request processing path. Recent OpenStack versions employ similar techniques for tracing the request 
processing within service groups. In contrast, the framework assigns a system-wide unique tag to each 
external request and traces its processing within the entire stack scope. Unique tags facilitate the log 
entries extraction related to a given external request. Otherwise, concurrent request processing would 
cause OpenStack to generate intertwined log entries and increase complexity of the log analysis. 
Although study currently boards fault injection during the single external request processing, the unique 
tag is still useful in that. It distinguishes the logs related to request processing from those generated by 
background tasks, such as periodic service liveness updates. 

Boxes in fig. 1 with a solid border represent framework OpenStack and major components. Boxes 
with a dashed border represent key non-executable objects in the framework. Three stages: fault-free 
execution, fault injection and speci cation checking are separated by arrows: step «log OpenStack 
communications» in a fault-free execution, step «convert logs» to an execution graph, step «log 
communications» in a fault-injection experiment and pause communicating entities during logging, step 
«send logs» to fault-injection controller, step «make fault-injection decisions» according to a test plan, 
step «inform fault-injection stub» of the fault-injection decisions, step «inject faults», step «resume 
execution», step «collect results» from fault-injection experiments, step «check results» against 
speci cations, step «report speci cation violations». 

System-wide tag broadcast requires modi cations to the communication mechanisms in 
OpenStack. Speci cally, it is inserted a new eld representing unique tags in both request contexts used 

by OpenStack services and thread-
local storage for those services. 
When a green service thread is 
activated during the request 
processing, it updates the tag value 
in its thread-local storage with 
either the tag in the activating 
request  if  such  a  tag  exists,  or  a  
newly initialized one. The thread 
associates this tag to all inter-
service communications during its 
current activation. Framework 
cannot trace a unique tag once it 
broadcasts across the OpenStack 
boundary to external services. 
Consequently, if an OpenStack 
service communicates with an 
external service, which in turn 
communicates with another 

OpenStack service, then our framework will treat the second communication independent from the rst 
one. So far, it is not encountered such cases in this study, and the logging mechanism suf ces for the use. 

Implementation Pattern  
There is the logging module implement by supplementing the communication layers between 

OpenStack and external services and libraries. On the whole, this module can be implemented at several 
layers along with communication paths: inside the logic of the OpenStack’s core application where high-
level communications are initiated, at OpenStack’s wrapper layer of communication libraries, in 
communication libraries themselves, and in system libraries and interfaces. The logging arrangement 
resides at OpenStack’s communication libraries wrapper layer as shown in Fig. 2. The advantages of 
logging at this layer are two-fold. First, semantics of the high-level can be precisely exposed instead of 
being incidental at this layer. Second, logging at this layer suffers minimum implementation effort, 
because it combines communications invented from and destined for OpenStack services. From one side, 
this  layer  is  shared  across  OpenStack  services  and  can  use  the  same  implementation  to  log  
communications from different services. On the other side, this layer is implemented at the 
communication category granularity (one implementation for all AMQP client libraries) and can use the 
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same implementation to log 
communications from supporting 
services in each category, 
conceptualizing away details related to 
individual services. 

Whiteboxes with a solid border 
represent the instrumented layers for 
exposing high-level communications 
semantics between OpenStack core 
logic and supporting services and 
libraries. Logging snippets are placed in 
the WSGI implementation of 
OpenStack and the event let library, as 
well as several OpenStack client-side 
libraries for logging REST 
communications, and in the AMQP 
interface of OpenStack for logging RPC 
communications. For logging 
communications between OpenStack 
and hypervisors, we implement a 
logging driver acquiescent with 
OpenStack’s hypervisor interface and 
use  it  to  wrap  the  real  drivers  
OpenStack selects to communicate with 
hypervisors. Communications between 
OpenStack and hypervisors are thus 
intercepted and recorded by the logging 

driver. We insert logging snippets into the SQL Alchemy library for logging database operations. The 
compute service gears a helper function to perform shell operations on local hosts. We also supplement 
that function to log such operations.  

One drawback of this integrated user-level logging implementation is logging incompleteness. 
Compared to a system-level logging approach targeting a language level interface (Java SDK) or an 
operating system interface, the approach is incomplete in that it can only cover major communication 
mechanisms and is unaware to other channels (a customized socket communication). It need to submit 
that in a well-designed cloud management stack, the majority of inter-service communications are 
conducted via several well-de ned interfaces, which were instrumented in the study on OpenStack. 
Additionally, system-level approaches usually lead to a signi cantly larger number of logs, humiliating 
system performance and necessitating the use of advanced log parsing and inference logic in the fault 
injection module. In the framework, there are traded logging completeness for simplicity in exposing 
high-level semantics and potentially high logging performance. 

RPC communications within the compute service group is realised in part by modifying 
OpenStack’s AMQP implementation. Such modi cations cannot form a complete RPC communications 
picture, because the RPC caller and called (or producer and consumer in AMQP terminology) is 
decoupled  by  an  AMQP  broker.  RPC  cast  from  an  OpenStack  compute  service  is  sent  to  AMQP  
exchange at the broker and then routed to a message queue. Another compute service subscribing to the 
message queue then receives the RPC, thus effecting the RPC cast. RPC calls are similar except that the 
return value goes through the AMQP broker as well.  

For ne-grained fault injection control, it is intended to differentiate two stages of RPC message 
propagation – the rst from the RPC caller to the AMQP broker and the second from the AMQP broker to 
the RPC collie. A direct solution would be to extend our logging module to the AMQP broker 
implementation (either Rabbit MQ or Qpid). This solution requires a general-purpose AMQP broker to 
include OpenStack-speci c programming logic. Moreover, retrieving unique tags from RPC messages at 
an AMQP broker implies the abstraction layers elevation from the message transferring protocol 
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(detailing packet formats) to a high-level RPC message with application semantics incurring signi cant 
implementation overhead.  

The implementation leaves the AMQP broker intact and instead logs its activity via RPC 
trampolines – compute service proxies responsible for RPC forwarding. The created trampoline for each 
compute service is modifying OpenStack’s client-side AMQP implementation so that RPCs addressed to 
a service are delivered instead to its trampoline. The trampoline records those RPCs and forwards them to 
the original destination. From the execution ow logging perspective, RPC trampolines represent the 
AMQP broker, thus completing the RPC communications picture. 

Generating detailed logs with high-level semantics, the logging scraps also serve as coordination 
points, synchronizing the OpenStack execution and fault-injection servers. During fault-injection 
experiments, the logging module sends log messages to a fault-injection server and then blocks the logged 
OpenStack service. The server makes decisions of fault-injection, injects faults once necessary, and 
resumes the logged service execution by replying a «continue execution» message to the logging module. 
The logging module use for coordination is also one major difference between our implementation and 
the existing noti cation mechanisms in OpenStack. 

Fault Injection 
The fault-injection module is responsible for extracting execution graphs from logs, generating test 

plans, and injecting faults to OpenStack. An execution graph depicts the OpenStack execution during the 
external request processing. It is directed acyclic graph extracted from logs of fault free request 
processing procedure with each vertex representing in OpenStack a communication event. Each event is 
characterized by the communicating entity (an image-API service) and the communication type (REST 
request send operation). Edges represent causality among events. An edge connects two vertices: 1) if 
they form a sender-receiver pair or 2) if they belong to the same service and one precedes other. Fig. 3 
shows a simpli ed execution graph related to a VM-creation request. 

A test plan consists of three elements: an execution graph, a fault-injection location, and a fault 
type. Two types of faults are studied: servercrash6 and network partition. These fault types are common 
failure causes in cloud environments and are well-studied in the literature. Other fault types, such as 
invalid inputs [15] and performance degradation [16] are not considered here. Correlated faults are also 
common in real-world deployments but are not within the scope of this work, due to the limitation 
imposed by our current single-fault injection implementation. 

Procedure1  Test Plan Generation 
test_plans  an empty list  
for all node in exe graph do  
    for all fault in fault specs do  
         if fault can be injected to node then  
             new_plan  Test Plan (exe graph, node, fault)  
             test_plans.append(new plan)  
return test_plans 

Procedure1 demonstrates the test plans generation. Iterating over an execution graph, the algorithm 
accounts  for  all  fault  types  applicable  to  each  vertex  (a  sender  server  crash  targeting  REST  
communications can only be inserted to the vertices performing REST request or response send 
operations) and makes accordingly test plans. This procedure provides an opportunity for global testing 
optimization: global because the fault-injection module has a view of the entire execution ow. For 
example, execution-graph vertices can be clustered by customized criteria, each cluster assigned with a 
testing priority. Vertices can then be selectively tested within each cluster to reduce overall testing cost. 
Given that a fault-injection experiment in the framework takes several minutes to complete and that an 
exhaustive set of test plans for one external request usually leads to hundreds of experiments, such a 
global optimization opportunity provided by an execution graph is valuable and worth further exploration. 
For test plan generation, a fault speci cation is used to de ne the faults types to be injected and the types 
of communications in which faults are injected. AS a test-case lter, the fault speci cation functions 
enabling the design of experiments set focusing only on a speci c fault type (sender-server-crashes) 
and/or a speci c communication type (REST communications). The speci cation format can be extended 
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to support other lters, such as con ning fault injection to OpenStack services subset. A test plan is 
ful lled via the test server cooperation and the logging and coordination module. The test server 
initializes the execution environment and then re-executes the external request to which the test plan 
resembles. Then, the test server employs the same log parsing logic for execution graph generation to 
analyse each log sent by the logging and coordination module. It tracks OpenStack’s execution by using 
the execution graph in the test plan until the fault-injection location has been reached. A fault is then 
injected as plan speci ed. And OpenStack runs till the request processing is completed. 

Faults of the server-crash are injected by killing relevant service processes via system. 
Con gurations of system are modified such that when it stops the relevant services, a signal SIGKILL is 
sent, instead of the default signal SIGTERM. Forcing them to drop packets from each other, network-
partition faults are injected by inserting IP-tables rules to service hosts that should be network-partitioned. 

Speci cation Checking 
The speci cation-checking module is responsible for verifying whether the results collected from 

OpenStack executions with injected faults comply with expectations on the states and OpenStack 
behaviors. Writing speci cations for a large-scale complex distributed system is notoriously dif cult, due 
to the numerous interactions and implicit inter-dependencies among various services and their execution 
environments. It is a key task for developing an effective speci cation checking module. In effect, the 
coverage and the states and behaviors granularity in the speci cations determine the checking module 
ability to detect erroneous behaviors and target system states. A few approaches have been reported in the 
literature, including relying on developers to generate speci cations [17], reusing system design 
speci cations [6], and employing statistical methods [18]. To the best of our knowledge, OpenStack does 
not provide detailed and comprehensive speci cations on system behaviors or state transitions during the 
external requests processing. The speci cations that are used in this study are generated based on 
OpenStack understanding, existing knowledge in fault-resilient system design, and rst principles, which 
mirrors the developer speci cation-generation approach. Speci cally, speci cations generated manually 
by inferring OpenStack developers’ expectations on system states and behaviors. This process requires 
extensive reverse-engineering efforts, such as source-code reading and log analysis. Speci cations 
generated in such a manner may require further debugging and re nements (similar to xing incorrect 
expectations in [17]). Such speci cations are best-efforts, with a coverage constrained by OpenStack 
understanding. Such speci cations usefulness also is demonstrated by the bugs identi cation reported in 
this paper. 

Speci cation 1 VM State Stabilization Speci cation 
query = selectVM from compute database  
     where VM.state in collection(VM unstable states)  
if query.count() = 0 then 
    return Pass  
return Fail 

Speci cation-Generation Guidelines listed below are usable speci cation-generation guidelines. 
“Do not block external users” announce that OpenStack shouldn’t block external users due to faults 
during request processing. “Present clear error messages via well-de ned interfaces” says that 
OpenStack should expose clear error states to external users via well-de ned interfaces and avoid 
confusing information. “Stabilize system states eventually” informs that upon restoration of faulty 
services and with the quiescence of externally triggered activities, OpenStack should eventually stabilize 
inconsistent states caused by faults during request processing time. 

Speci cation checking can be implemented via a general-purpose programming language or a 
specially designed speci cation language, using an imperative approach or a declarative approach. 
Following the using developer-familiar building blocks principle, a hybrid approach is adopted, applying 
declarative checking on persistent states stored in OpenStack’s databases and imperative checking on the 
other states and OpenStack behaviors. Database-related checks are implemented via the SQL Alchemy 
library and others are implemented as generic scripts. This hybrid approach largely imitates OpenStack’s 
existing implementation: Open Stack adopts the same approaches to controlling its states and behaviors.  
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Speci cations implemented for OpenStack’s states stored in databases and local lesystems and 
OpenStack’s  behaviors,  such  as  the  Http  status  code  returned  to  an  external  user  after  processing  a  
request. The specified expected states of cloud platforms are managed by OpenStack, such as the local 
hypervisors states on compute hosts and the Ethernet bridge con gurations.  

Speci cation 2 Ethernet Con guration Speci cation 
if(VM.state = ACTIVE) and  
    ((VM.host.Ethernet not setup) 
    or (network controller.Ethernet not setup)) then  
    return Fail  
return Pass 

Speci cation 3 Image Local Store Speci cation 
query = select image from image database  
    where image.location is local  
if local image store.images = query.all() then  
    return Pass  
return Fail 

Below was present three speci cation examples. Speci cation 1 indicates the VM state 
stabilization expectation. The VM state after the external request processing (VM creation) and a 
suf cient quiescence period should enter as table state (the ACTIVE state, indicating the VM running 
activity) instead of remaining in a transient state (the BUILD state, indicating the VM creation process). 
This is a using example declarative checking on database states.  

Speci cation 2 requires VM actively running, the Ethernet bridges on the compute host where that 
VM resides and the host running the network controller service have been correctly set up. It is checked 
whether the bridges have been associated with the correct Ethernet interfaces dedicated to the subnet to 
which the VM belongs. It exempli es the imperative checking on OpenStack-managed cloud platforms.  

Speci cation 3 checks whether the database maintained states of OpenStack image service 
regarding the image store in the local lesystem are in accordance with the lesystem. It requires that if 
an image is uploaded to the local image store and thus exists in the lesystem of the image service host, 
the nits location attribute in the image database should be local, and vice versa. This speci cation shows a 
combined check on the database views and the service host lesystem.  

Results 
Here is discussing the bugs uncovered by our framework applied to OpenStack essex and grizzly 

versions, and nd 23 bugs in total: 13 common to both versions, 9 unique to essex, and 1 unique to 
grizzly. The study covers three OpenStack service groups: the identity service (keystone), the image 
service (glance), and the compute service (nova). For external services, the framework supports the Qpid 
messaging service, the MySQL database service, the libvirt service for hypervisor interaction and the 
Apache Http server used as an image store for OpenStack.  

The identity service is con gured to use UUID tokens for authentication. Regarding the image 
service, it is con gured to use a local lesystem or Http server as its backend store. As for the compute 
service, QEMU is used as the backend hypervisor, controlled by the libvirt interface. In essex, itis limited 
the reconnection from the Qpid client library to the backend broker equal 1.  

OpenStack services run in VMs with 1 virtual CPU and 2GB memory. All OpenStack VMs run on 
an HP Blade System c7000 enclosure, each blade equipped with 2 AMD Opteron 2214HE (2.2GHz) 
processors and 8GB memory. For each fault-injection experiment, all services are deployed in one VM by 
default, each started as a single example. There are two exceptions to the above placement guideline. If a 
shell-operation fault should be injected to a compute service, then that service is placed in one VM and 
the other services are placed in another VM in order to prevent interference among similar shell 
operations  of  different  services.  If  a  network  partition  fault  should  be  injected,  then  the  pair  of  to  be  
partitioned services are placed in two VMs and the other services are launched in a third VM. 

There are tested 11 external OpenStack APIs, inject 3848 faults, implement 26 speci cations, 
detect 1520 violations and identify 23 bugs. The results are summarized in Table 2. The table shows the 
bugs signi cance and issues discovered in our study, because they are manifested (I) in several frequently 
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used APIs and (II) in numerous locations along the execution paths of those APIs. The former observation 
is drawn from the fact that the bugs sum in the table exceeds by far the number of distinct bugs. The fact 
is that the ratio of speci cation violations to bugs is greater than 1 for each API, which is also shown in 
Fig. 4.  

The bugs are classified into seven categories (Table 3) and present deep discussion of each 
category. Compared to our preliminary work [9], this article contains newly-identi ed bugs in OpenStack 
and also discusses the bugs evolution and xes across the two OpenStack versions that is studying, 
demonstrating the OpenStack’s fault resilience improvement and the outstanding issues. 

Table 2: Summary of fault-injection results. 
Faults Specification Violations Bugs 

essex grizzly essex grizzly essex grizzly API 
crash part crash part crash part crash part crash part crash part 

VM create 217 133 311 229 93 43 150 49 8 6 3 2 
VM delete 79 61 102 82 51 15 45 23 9 5 5 2 
VM pause 24 17 35 29 16 13 6 4 5 6 2 1 
VM reboot 64 36 139 104 9 11 0 5 3 4 0 1 
VM rebuild 159 106 242 183 103 67 0 13 5 5 0 1 
VM image 

create 
(local) 

142 119 171 150 59 106 90 79 4 2 3 3 

VM image 
create 
(http) 

107 92 171 150 24 84 79 71 3 2 3 3 

VM image 
delete 
(local) 

59 44 22 15 23 37 12 9 3 2 2 2 

VM image 
delete 
(http) 

59 44 22 15 23 37 10 8 2 2 1 1 

Tenant create 7 6 7 6 0 6 0 6 0 1 0 1 
User create 7 6 7 6 0 6 0 6 0 1 0 1 
Role create 7 6 7 6 0 6 0 6 0 1 0 1 
User-role 
create 9 8 10 9 0 8 0 9 0 1 0 1 

Sum 940 678 1246 984 401 439 392 288 42 38 19 20 

The results of image service APIs are broken down according to whether a local le system or an 
Http  service  is  used  as  the  image  store.  Speci cation  violations  related  to  an  API  are  counted  as  the  
number of fault-injection experiments in which at least one violation is detected. The network-partition 
fault is shortened to "Part." 
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Table3: Bug Categories 

Count 

Category commo
n 

esse
x 

only 

grizzl
y only 

Timeout 1 1 0 
Periodic 
checking 

6 4 0 

State 
transition 

1 0 1 

Return code 
checking 

4 1 0 

Cross-layer 
coordination 

0 1 0 

Library 
interference 

0 1 0 

Miscellaneou
s 

1 1 0 

Total 13 9 1  
 

Timeout is a common mechanism in distributed systems to avoid one faulty service from 
inde nitely blocking other services and affecting system-wide functionality. OpenStack extensively uses 
the timeout mechanism with settings scattered across multiple service con gurations to control various 
timeout behaviors of OpenStack services and external supporting services. Setting correct timeout values 
is known to be dif cult. Given the numerous interactions and inter-dependencies among service groups 
and the deployment environments variety, it is very dif cult if not impossible for OpenStack to provide a 
comprehensive set of timeout values covering all execution paths that can block the system.  

For example, REST communications, one of the two major communication mechanisms used in 
OpenStack, fall out of the safety net of the timeout mechanism in the OpenStack essex version. 
Consequently, service is waiting for a response from another service via the REST mechanism may be 
indefinitely blocked if the two services become network partitioned after the request is sent but before the 
response is received. This also exempli es the advantage of an execution-graph-based fault injection over 
coarser-grained approaches [19], such a bug can hardly be ef ciently revealed by the latter due to the 
requirement on the synchronization between fault injections and send or receive operations.  

This bug is xed in the OpenStack grizzly version by supporting timeout values for REST 
communications and exposing such settings in its con gurations. For instance, the image client library 
provides a default 600 seconds timeout. The identity client library, on the other hand, uses a default value 
of None, effectively disabling the timeout mechanism. While a system-wide default timeout value for 
REST communications might be a better solution, the fault OpenStack resilience has been clearly 
enhanced due to this critical timeout setting support. 

Periodic checking is another critical mechanism for achieving fault resilience in OpenStack. In a 
cloud environment where faults are in evitable, periodic checking can monitor service liveness, resume 
interrupted executions, clean up garbage, and prevent resource leakage.  

The fault-injection framework identi es several bugs caused by the lack of proper periodic 
checking mechanisms. Take the processing of a VM creation request as an example. During fault-free 
request processing, the VM state transits from None (non-existence) to BUILD (under construction) to 
ACTIVE (actively running). If the execution is interrupted after the VM has transited to BUILD, it is 
possible that, in essex, the VM inde nitely remains in that transient state. This is a bug because VM 
creation should cause the VM to enter a stable state (ACTIVE if the processing is successful but 
otherwise ERROR) in a timely manner, despite faults. This bug can be xed by a periodic checking logic 
that converts VM’s state from BUILD to ERROR if the related VM creation request is detected as failed. 
A bug x has been integrated into grizzly, conducting such a transition based on a con gurable VM 
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creation timeout value. This x although effective in preventing the prolonged BUILD state, leads to a 
state transition bug.  

Another bug in both OpenStack versions that can be xed by periodic checking is related to 
database access in a fault-handling logic. OpenStack implements a decorator function wrap instance fault, 
injecting a fault record into a database table upon VM related faults detection. This fault-handling logic 
fails when the VM related fault that it intends to log is itself a database fault (database service crash fault 
during a VM creation). In such situation the fault record is discarded, making it dif cult for post mortem 
fault analysis. This bug can be xed by keeping a temporary log of the fault messages that cannot be 
stored in the designated database table at the time when they are generated. Then periodically checking 
the database service state and merging those temporary messages into the database when possible.  

OpenStack maintains a large number of states in its databases, with complicated state-transition 
diagrams among them. A tool indicates that in faulty situations users may experience problematic state 
transitions. For example, grizzly employs a periodic task to convert a VM from BUILD to ERROR if it 
exceeds  the  maximum time  that  a  VM is  allowed  to  remain  in  BUILD.  However,  OpenStack  does  not  
cancel the VM creation request related to that VM. If a VM creation request experiences a transient fault, 
then a VM may transit from BUILD to ERROR and then to ACTIVE, because it can be created after the 
execution of the periodic task and the fault disappearance.  

The state transition from ERROR to ACTIVE without external event triggering can be confusing 
and problematic. According to experience, upon VM creation error receipt an external user is likely to 
issue another VM creation request. The bug x for the previous periodic-checking-related problem 
induces a new state-transition bug, potentially creating more VMs than needed for an external user. It 
suggest canceling an external request and negating its effect once it is believed to be erroneous in addition 
to the state stabilization employed by OpenStack. 

Return code is commonly used as an indicator of the execution state from a function callee to its 
caller. Although thorough checking on return codes has long been established as a good programming 
practice, prior work has identi ed return code related bugs to be a major bug’s source even in well-
organized projects [20, 21]. Study on OpenStack con rms this observation. For example, during the 
processing of a VM creation request, when the identity service cannot authenticate a user-provided token 
passed from a compute API service due to an internal fault, it returns an error code to the compute API 
service correctly indicating the service fault. Due to a awed return code checking logic the compute API 
service attributes such an error to the token invalidity generates a misleading error message accordingly 
and returns it to the external user.  

Another example in this category is related to the execution of shell commands. OpenStack 
compute services implement a common function for executing shell commands allowing the caller to 
specify a list of expected return codes. If the return value falls out of that list, an exception is raised. A 
common bug pattern related to improper use of this function results from disabling its return code 
checking logic causing OpenStack when executing under faults, to deviate from expected execution ows 
without being detected. During the network setup procedure related to a VM creation, the brctl addif 
command is used to associate an Ethernet interface with a bridge on the compute host where the VM is 
placed. OpenStack assumes that the command can be fruitfully executed without checking its return code 
proceeds to start the VM. So, the VM may lose network connectivity if a fault occurs during execution of 
that command. 

OpenStack relies on various supporting services to maintain its functionality and supports 
interaction with multiple services in each external service category via set of abstraction layers. Take the 
RPC messaging services as  an example.  OpenStack implements  a  uni ed layer  for  the AMQP protocol  
used for RPC communications, giving operations to a lower layer implemented for a speci c AMQP 
broker. The lower layer is a client-side library wrapper provided by its corresponding broker such as 
RabbitMQ and Qpid. This client-side library comprises messaging implementation details and is 
responsible for the actual communication with the AMQP broker.  

This valuable and well-designed multi-layer abstraction stack imposes stringent requirements on 
cross layer coordination. Incorrect interpretations of one layer behaviors may lead to subtle bugs in 
another layer. The Qpid client library is con gured to automatically reconnect the AMQP broker after a 
connection disruption in essex. A threshold value is designed to control the maximum reconnections 
number. A connection maintained by the client library resides in a temporary erroneous state until the 
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threshold is reached at the time the connection enters a permanent erroneous state. The OpenStack client 
library wrapper does not coordinate properly with the client library regarding the temporary-permanent 
error state transition and causing the wrapper to vainly retry a connection that has been marked as 
irrecoverable by the client library. 

The extensive external libraries use commonly found in large-scale software systems may lead to 
unexpected library interference. OpenStack uses a patched version of Python standard library functions to 
support cooperative thread scheduling. Subtle incompatibility in the patched functions, however, can 
engender bugs that are hard detected. Take the communication between OpenStack and Qpid broker again 
as an example. During a reconnection from the Qpid client library to a Qpid broker service the client 
internally uses a conventional consumer/producer synchronization via a select/read call pattern on a pipe. 
Due to incompatibility between the patched version of select and its counterpart in Python standard 
library, this Qpid client library, when invoked in essex, may perform a read on the pipe read-end that is 
not yet ready for reading, thus permanently blocking an entire compute service. 

The framework also detects a simple implementation bug: in essex, when a fault disrupts a 
connection opening procedure in the Qpid wrapper layer, a subsequent open call is issued without rst 
invoking close to clean up sour states in the connection object resulting from the previously failed open, 
causing all following retries to fail with an «already open» error message. 

Comparing the results of the two versions, there are identified several interesting aspects in the 
OpenStack’s fault resilience evolution. Using timeouts to limit the distributed operations execution is a 
well-known and important approach to fault-resilience improvement [22]. Use of timeout for REST 
communications effectively solves the inde nite sender blocking issue in essex. Systematically 
con guring timeouts also remains an open question. Different components in a REST communication 

ow (WSGI pipeline) have different default timeout values. The timeout settings of some important 
supporting services cannot be controlled by OpenStack. For example, OpenStack does not specify the 
timeout for SQL statement execution, thus causing long blocking time if the SQL statement issuing 
service and the database backend is network partitioned. These issues need to be properly addressed 
further improving the OpenStack fault resilience.  

Carefully checking return codes enables prompt error detection. In grizzly, during the VM deletion 
request processing the compute service issues a RPC call instead of a RPC cast as in essex to the network 
service, demanding the latter to reclaim relevant network resources. This modi cation allows the compute 
service to detect errors in the network service and reacts accordingly (transiting the VMtothe ERROR 
state), reducing the possibility of network resource leakage under faults.  

By simplifying the cross-layer coordination, OpenStack reduces the bugs hiding chances between 
abstraction layers. By disabling automatic reconnection in the Qpid client library and reserving full 
control only in its wrapper layer OpenStack avoids the bug discussed before. Con ning the decision-
making logic regarding a speci c aspect of cloud-management stack to a single layer, instead of 
coordinating the decision making in different layers, is considered a good design practice. 

Discussions 
The framework can be applied to solve fault-resilience issues related to cloud-management stacks 

in real-world deployments. One of Amazon’s cascading failures [3] was caused by a memory leakage bug 
on storage servers, which was triggered by the data-collection server crash, the subsequent inability to 
connect to that failed server from storage servers, and the de cient memory reclamation for failed 
connections. This bug can be detected by the framework via the crash fault combination injected to the 
data-collection server and speci cation on the memory usage of the data reporting logic on storage 
servers. The framework needs to be extended for supporting multiple faults injection and scaling 
speci cation-checking logic from an individual request to multiple requests. Such improvements will 
enable the framework to handle complicated issues with multiple root causes [2].  

One may consider the generality of this study in two aspects: the implementation reusability and 
ndings applicability to other cloud-management stacks. As to implementation reusability, the fault-

injection module and the speci cation-checking module of the framework are reusable in relevant studies 
for other cloud-management stacks. The logging and coordination module and the speci cations used for 
checking the behaviors and states of OpenStack are domain-speci c and require porting efforts. This also 
holds the study across two OpenStack versions. Such cross-version porting is straightforward. The 
logging and coordination module integrated in OpenStack contains some code lines, most of which are 
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reusable across the two versions. Speci cations need to be moderately adjusted to handle with minor 
semantic (database schema changes) evolution.  

Regarding the ndings, the speci c bugs and the related analysis presented in this work are 
OpenStack speci c and cannot be sweeping to other cloud management stacks. The bug categories and 
the related fault-resilience issues are general. Despite the numerous differences in the detailed design and 
implementation of cloud-management stacks, many of them [23, 24] share common high-level scheme. 
They have similar service groups, rely on similar external supporting services, and employ similar 
communication mechanisms. The ndings in this article have the potential to elucidate fault resilience in 
other cloud management stacks with a similar design. 

The execution graphs and test plans use is optional. Instead of obtaining an execution graph related 
to request processing and generating test plans based on the graph before fault-injection experiments, an 
experiment could be started without prior knowledge and inject faults when a relevant communication 
event occurs.  

Our choice of the execution graph use is mainly for future framework extensibility. On the one 
hand, an execution graph depicts the entire execution ow related to the external request processing and 
thus allows an intelligent test planner to conduct fault injection experiments with better test coverage and 
less resource consumption. On the other hand, execution graphs are useful for fault-resilience studies 
other than our current fault-injection framework, such as graph-comparison-based online fault detection 
[18]. 

In The framework is required that the external request processing during a fault-injection 
experiment match its execution graph up to the fault-injection location. The communication events 
observable by our framework in fault-free execution generally need to be deterministic. This requirement 
is satis ed in most of experiments. There are cases where additional care is required to accommodate 
nondeterminism. One source of nondeterminism is periodic tasks, which is resolved by deferring the tasks 
interfering with experiments. Another source is environmental inputs. The operations taken by a compute 
service for network setup on its local host depend on whether the compute service and network service 
are co-located on the same host. There are handled such cases by annotating related execution graphs so 
that all the paths observed in fault-free execution are marked as valid.  

Related Work 
Cloud-management stacks are type of distributed system. Our fault resilience study of this layer 

bene ts from prior research on fault pliability of distributed systems in general and cloud systems. Here is 
compared the result of this work with existing fault resilience studies and execution path extraction and 
speci cation checking with similar techniques employed in distributed systems debugging and failure 
detection. 

Fault injection is commonly used to study the cloud systems fault resilience.  FATE  is  a  fault-
injection framework directing the recovery logic in cloud applications and exploring failure scenarios 
with multiple-failure injection [6]. In the work [5] crash faults were been injected to components on 
Hadoop’s compute nodes and studied their effects on application performance. The framework targets 
cloud-management stacks and examines the recovery logic by conducting single-fault injection during the 
external requests processing. Similar to the target of FATE, it is studied the recovery logic functionality 
and correctness, which is dif cult to be made correct.  

Failure of Service (FaaS) is proposed as a new generic service to improve the cloud applications 
fault  resilience  in  real  deployments  [25].  It  is  suggested  that  an  alternative  approach  for  cloud-
management stacks, presenting an integrated fault-injection framework with domain knowledge. By 
combining them, cloud management stacks may enhance fault resilience by better balancing the cost and 
fault injection coverage.  

Model checking in [7] is another common approach to examining the distributed systems fault 
resilience. Compared to our fault-injection-based approach, it checks the target system more thoroughly 
by exploring all possible execution paths instead of those observed by a fault-injection framework. This 
same thoroughness requires the extensive domain knowledge use in order to make it practical to check 
highly complicated operations in cloud-management stacks of the VM creation. 

Execution path have been extensively used for workload modeling [26, 27], performance [28] and 
correctness debugging [18, 29], and evolution analysis [30] in distributed systems. Such information is 
exposed via special logging modules or inferred in sophisticated post-processing. Applying existing 
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knowledge to the framework, execution paths is extracted relating to external request processing via user-
level logging, which explicitly exposes high-level semantics. 

Prior research has explored various approaches to speci cation checking in distributed systems. 
Regarding speci cation expression, imperative approaches [31, 32] and declarative approaches [6, 17] 
have been studied. In our framework, a hybrid approach is employed in expressing speci cations on the 
states and behaviors of cloud-management stacks, combining imperative and declarative checking. 
Similar combinations have been used to query and analyze distributed trace events [33]. Regarding 
speci cation generation, our and most existing approaches require developers to implement 
speci cations. Recent advances in lesystem-checker testing leverage the characteristics in the checkers 
to automatically generate implicit speci cations [34]. The applicability of similar approaches to cloud-
management stacks remains an open question for today. 

10 Conclusions 
In this article, a systematic study is conducted on the fault resilience of OpenStack. It is designed 

and implemented a prototype fault-injection framework that injects faults during the external requests 
processing. Using this framework, it is uncovered 23 bugs in two OpenStack versions, classi ed them 
into seven categories, and presented deep discussion of the fault resilience issues, which must be 
addressed in order to build fault-resilient cloud-management stacks. In future for the research can be 
taken re ning and automating speci cation generation logic in fault-resilience areas and exploring 
potential use of execution graphs. 
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