
 " : , , "
, 2015. 21

© ., ., ., ., .

5

UDK 004.254 (045)
Maksymovych O.V., Melnyk V.M., Bortnyk K.Ya., Lavrenchuk S.V., Samarchuk V.F.
Lutsk national technical university

PLIABILITY OF FAULTS IN OPEN STACK VERSIONS

 Maksymovych O.V., Melnyk V.M., Bortnyk K.YaLavrenchuk S.V., Samarchuk V.F. Pliability of faults in open
stack versions. Stacks of cloud-management have become an important elements in cloud computing. They are serving as the
resource managers for cloud platforms. While their functionality has been constantly expanding, their fault resilience remains
under-studied. This article presents a fault resilience systematic study of OpenStack – a popular cloud-management stack for the
open source. We have built an example fault-injection framework directing service communications during the external requests
processing, both among OpenStack services and between OpenStack and external services, and have thus far uncovered 23 bugs
in two OpenStack versions. Our ndings hut light on defects in the design and implementation of advanced cloud management
stacks from a fault-resilience perspective.

Keywords: reliability, fault-injection framework, fault-resilience perspective, cloud-management stack, open stack.

., ., ., ., .
. cloud’ cloud .

 cloud- . ,
. Open Stack –

 cloud’ .
 ,

OpenStack, OpenStack , , , 23
 OpenStack.

 cloud’ .
: , , ,

cloud’ , .

., ., ., ., .
. cloud’ cloud- .
 cloud- . ,

. Open
Stack cloud’ .

,
OpenStack, OpenStack , , ,
23 OpenStack.

 cloud’
.

: , , ,
, .

Introduction
With the virtual machine (VM) technology development in both: software design and hardware

support, cloud computing has become a major computing platform. In addition to public cloud services
that have been available since the early stage of cloud platform deployment [1], there is an evolving
demand for other types of cloud platforms, particularly, private and hybrid clouds. The demand leads to
the role transition from cloud users to a cloud users and providers combination, broadening the scope of
cloud providers from major IT companies to any size organizations. It has also prompted the cloud
management stack research and development – a new software stack functioning as a high-level cloud
operating system and remains key to resource management in cloud platforms.

In recent years an attention to cloud-management stacks from academy and industry has led to a
rapid increase in the number of features. However, fault resilience of this layer, as an optional feature, is
still regarded and remains under-studied, despite its importance demonstrated by real-world failures and
its signi cant impact on managed cloud platforms [2, 3, 4]. Fault-resilience-related issues constantly stun
the users of cloud-management stacks. For example, when faults occur, VM creation may fail or take
some long time, and VMs may be marked as successfully created but lack critical resources (IP
addresses), thus remaining unusable. A fault resilience investigation of cloud-management stacks is long
overdue that demysti es the above issues.

In this paper, the rst systematic study on the fault resilience of OpenStack is present, as a popular
open source cloud-management stack. The conventional wisdom in the fault-injection literature as well as
its application in fault-injection studies directing large-scale distributed systems [5, 6, 7], that studied the

 " : , , "
, 2015. 21

© ., ., ., ., .

6

OpenStack execution in the two common faults presence with the cloud environment: server crashes and
network partitions. OpenStack is considered fault-resilient during the external request processing, if it
maintains correct and steady states and behaviours, even in case of faults occurrence. As external requests
are an important source of inputs to OpenStack and usually trigger state transitions, focusing on
OpenStack’s fault resilience during external request processing. We insert faults into inter-service
communications during request processing, as they characterize service collaboration of which design and
implementation is dif cult to be fault resilient. Speci cally, there are targeted communications among
OpenStack’s computing, image, identity services, as well as external services such as databases,
hypervisors, and messaging.

An approach is taken in this fault-injection study, to expose high-level OpenStack semantics
(service A sends a request R to service B via communication channel C) by supplementing its wrapper
layer of communication libraries with our sorting and module of coordination. Exposing, instead of
inferring, high-level semantics reduces the amount of logs, simpli es the extraction of communication
patterns and facilitates ef cient fault injection. This approach can also be easily integrated into
OpenStack’s noti cation mechanism. It closely mirrors OpenStack’s existing logging infrastructure. To
mean broader, this white-box approach is valuable to the DevOps integration current trend [8], allowing
developers and operators to better understand the software functioning in realistic deployment
environments. It facilitates the spectrum design of approaches to hardening cloud-management stacks,
such as fault-injection studies, and online fault detection and analysis, which are planned to explore in
future.

11 external APIs1 of OpenStack were been studied and for each API were been executed late
request with identifying all fault injection cases, each corresponding to the combination of a fault type
and location in the request execution path. A single-fault injections were conducted by re-executing the
same request and iterating through the fault-injection cases, each time injecting a distinct fault into the
execution ow. Upon completion of fault injection experiments, the results were checked against
prede ned speci cations regarding the expected states and OpenStack behaviours. When speci cations
are violated, the execution of OpenStack and bugs identifying were manually investigated.

Two OpenStack versions were studied, namely, "essex" and "grizzly", the latter being the rst
version of the most recent release series, and identify in total 23 bugs. As in the preliminary work version
[9], those bugs were been categorized into seven groups and performed an in-depth study for each
category. several common fault-resilience issues were been identified then in OpenStack, such as
permanent service blocking due to the timeout protection lack, irrecoverable inconsistent system states
due to the lack of periodic checking and state stabilization, and misleading behaviours due to code
checking of the incautious return. The major contributions of this paper are three-fold:

1. Applied fault-injection techniques to cloud management stacks and presented design and
implementation for an operational prototype fault injection framework for this emerging software
layer, using OpenStack as the study target.

2. Conducted the rst systematic fault-resilience OpenStack study, identifying 23 bugs.
3. Categorized bugs, presenting deep analysis for each bug category, and discussing related fault

resilience issues.
Cloud-Management Stack and OpenStack Background
It is brie y discussed cloud-management stacks and then provided background information about

OpenStack, concentrating on its components, supporting services, communication mechanisms, and
threading model. Cloud-management stacks are an emerging software layer in the cloud ecosystem. They
are responsible for the cloud platforms formation and management. A cloud management stack manages
cloud platforms via distributed services cooperation, which including an external API service for
communicating with external users, an image service for managing VM images (registration and
deployment), a computer service for managing VMs (creating and deleting VMs) on supporting hosts, a
volume service for managing persistent storage used by VMs (providing block devices and object stores)
and network services for managing networks used by VMs (creating and deleting networks, manipulating

rewalls on supporting hosts). Its own service as a cloud-management stack requires external services to
ful l its functionality. In particular, it often relies on a hypervisor, described in [10] (Xen), [11] (KVM) or
[12] (Hyper-V) for managing VMs.

 " : , , "
, 2015. 21

© ., ., ., ., .

7

OpenStack is a state-of-the-art open source cloud management stack [13], implemented in Python.
It contains several common services, such as a computation service group, an image service group,
network service, and several persistent storage services. Other OpenStack services in a typical cloud
setting include an identity service for validating services and users and a dashboard service for graphical
interface providing to users and administrators. OpenStack relies on hypervisors installed on computer
nodes (where VMs run) for VM management and uses database service to store persistent states related to
its managed cloud.

OpenStack employs two major communication mechanisms. Compute services use remote
procedure calls (RPCs) compatible to the Advanced Message Queuing Protocol (AMQP) for internal
communications within the service group. Other OpenStack services conform to the RE presentational
State Transfer (REST) architecture and communicate with each other via the Web Server Gateway
Interface (WSGI). OpenStack uses the SQL Alchemy library to communicate with database back ends,
such as MySQL and SQLite. Interaction with hypervisors is inattentive to virtualization drivers.
Speci cally, OpenStack designs a common hypervisor-driver interface and implements drivers using
common hypervisor APIs (libvirt and Xen). Its services are implemented as green threads via event let
and green let libraries, which employ a user-level cooperative multithreading model: a thread runs non-
pre-emptively until it surrenders control. Upon thread yielding, a hub thread turn out to be active, makes a
scheduling decision and then transfers control to the scheduled thread. This model requires several
standard Python libraries to be patched with green thread-compatible implementations in order to prevent
I/O functions issued by one green thread from blocking the other in same process.

Project Scope, Design Principles, Components and Work ow Overview
This section presents the project scope, followed by our design principles discussion. It is present

an overview of the components and the work ow of our fault-injection framework. The fault-resilience-
related programming bugs are target in OpenStack. They affect OpenStack’s inherent fault-resilience
from its design and implementation perspective. Con guration bugs, in contrast, are considered faults in
this article. For example, a mistaken con guration may lead to network partitions, which are used for
fault injection in our framework. Bugs that can only be manifested by a sequence of faults are not in this
paper scope, due to single-fault injections use.

Design builds on prior research in distributed systems tracing, fault injection, and speci cation
checking. Instead of proposing a new fault-injection methodology, it is discussed experience in building
an operational fault-injection prototype for OpenStack, following below design principles. Cloud
management stacks rely on the services cooperation distributed to a cloud environment to ful l their
functionality. This cooperation requires fault-resilient communication mechanisms. Given the service
communications importance and the fast advances of sophisticated single-process debugging techniques,
fault injection prototype targets service communications in OpenStack.

Domain knowledge has proven valuable for debugging, monitoring, and analysing distributed
systems. In [14] showed that developers of applications running in a distributed environment were willing
to expose and exploit domain knowledge in a production-level tracing infrastructure designed for
application transparency, despite the infrastructure’s decent performance without such knowledge. In our
prototype OpenStack’s high-level semantics expose the fault-injection module and achieve high fault-
injection ef ciency by injecting faults to high-level communication ows but generic low-level events in
runtime systems or operating systems. It is extremely dif cult and costly to thoroughly investigate every
aspect of the cloud-management stacks fault resilience. It is focused on common cases, injecting common
faults during the processing of OpenStack’s most commonly used external APIs. These faults are based
on existing knowledge related in works [6, 7], and experience with large-scale production-level cloud
systems. The APIs selection is based on experience with OpenStack several experimental deployments.

To simplify adoption of our framework, it is used building blocks that cloud-management stack
developers are aware with. The choice between the high-level semantics exposure and inference is an
exempli cation of this principle, because developers have built logging and noti cation mechanisms
exposing such information. Another example is that it is used hybrid approach to implement OpenStack
speci cations, combining imperative checking via generic Python scripts with declarative checking via
the SQL Alchemy library, both of which are widely employed by developers of OpenStack.

 " : , , "
, 2015. 21

© ., ., ., ., .

8

Our fault-injection framework consists of a logging and coordination module, a fault injection
module, and a speci cation-checking module. The logging and coordination module is responsible for
logging communications among services during external request processing and coordinating the
execution of OpenStack and a fault-injection controller. The fault injection module is conceptually
composed of a fault injection controller running at a test server node and fault-injection stubs running
with OpenStack. The fault injection controller manufactures information collected by the logging and
coordination module, makes fault injection decisions, and demands fault-injection stubs to inject faults
into OpenStack. The speci cation-checking module veri es whether the internal states and the externally
visible behaviours (HTTP status code returned to external user) of OpenStack at the end of each fault-
injection experiment comply with prede ned speci cations. Fig. 1 presents a system overview and a high-
level work ow, latter discussed in next.

The work ow consists fault-free execution, fault injection, and speci cation checking. For given
external request, it starts with fault-free OpenStack
execution resulting in successful request processing.
The logs produced during the fault-free execution are
fed to a parser to generate an execution graph (next
detailed), describing communications among services.
Combining the execution graph and a prede ned fault
speci cation, the framework generates a test plans
collection, each consisting of a fault type from the
fault speci cation and a fault-injection location in the

execution graph. Fault-injection experiments are then conducted via logging and coordination module and
the fault-injection module collaboration, with each experiment corresponding to a test plan. The results of
experiment are checked against prede ned state and behaviour speci cations. It is manually identified
experiment bugs causing speci cation violations.

Fig. 1 System overview and work ow

Logging and Coordination
After the framework overview we start an in depth discussion of its major components with the

logging and coordination module. Following the domain speci c information design principle exposing to
the fault-injection controller, logging and coordination module openly maintains high-level several
communications types’ semantics in its logs, including RPC, REST, database, hypervisor and shell
operations. Key attributes in communication log are enumerated in Table 1. A unique tag is created when

 " : , , "
, 2015. 21

© ., ., ., ., .

9

OpenStack receives an external request. The tag is then broadcast through OpenStack services along the
request processing path. Recent OpenStack versions employ similar techniques for tracing the request
processing within service groups. In contrast, the framework assigns a system-wide unique tag to each
external request and traces its processing within the entire stack scope. Unique tags facilitate the log
entries extraction related to a given external request. Otherwise, concurrent request processing would
cause OpenStack to generate intertwined log entries and increase complexity of the log analysis.
Although study currently boards fault injection during the single external request processing, the unique
tag is still useful in that. It distinguishes the logs related to request processing from those generated by
background tasks, such as periodic service liveness updates.

Boxes in fig. 1 with a solid border represent framework OpenStack and major components. Boxes
with a dashed border represent key non-executable objects in the framework. Three stages: fault-free
execution, fault injection and speci cation checking are separated by arrows: step «log OpenStack
communications» in a fault-free execution, step «convert logs» to an execution graph, step «log
communications» in a fault-injection experiment and pause communicating entities during logging, step
«send logs» to fault-injection controller, step «make fault-injection decisions» according to a test plan,
step «inform fault-injection stub» of the fault-injection decisions, step «inject faults», step «resume
execution», step «collect results» from fault-injection experiments, step «check results» against
speci cations, step «report speci cation violations».

System-wide tag broadcast requires modi cations to the communication mechanisms in
OpenStack. Speci cally, it is inserted a new eld representing unique tags in both request contexts used

by OpenStack services and thread-
local storage for those services.
When a green service thread is
activated during the request
processing, it updates the tag value
in its thread-local storage with
either the tag in the activating
request if such a tag exists, or a
newly initialized one. The thread
associates this tag to all inter-
service communications during its
current activation. Framework
cannot trace a unique tag once it
broadcasts across the OpenStack
boundary to external services.
Consequently, if an OpenStack
service communicates with an
external service, which in turn
communicates with another

OpenStack service, then our framework will treat the second communication independent from the rst
one. So far, it is not encountered such cases in this study, and the logging mechanism suf ces for the use.

Implementation Pattern
There is the logging module implement by supplementing the communication layers between

OpenStack and external services and libraries. On the whole, this module can be implemented at several
layers along with communication paths: inside the logic of the OpenStack’s core application where high-
level communications are initiated, at OpenStack’s wrapper layer of communication libraries, in
communication libraries themselves, and in system libraries and interfaces. The logging arrangement
resides at OpenStack’s communication libraries wrapper layer as shown in Fig. 2. The advantages of
logging at this layer are two-fold. First, semantics of the high-level can be precisely exposed instead of
being incidental at this layer. Second, logging at this layer suffers minimum implementation effort,
because it combines communications invented from and destined for OpenStack services. From one side,
this layer is shared across OpenStack services and can use the same implementation to log
communications from different services. On the other side, this layer is implemented at the
communication category granularity (one implementation for all AMQP client libraries) and can use the

 " : , , "
, 2015. 21

© ., ., ., ., .

10

same implementation to log
communications from supporting
services in each category,
conceptualizing away details related to
individual services.

Whiteboxes with a solid border
represent the instrumented layers for
exposing high-level communications
semantics between OpenStack core
logic and supporting services and
libraries. Logging snippets are placed in
the WSGI implementation of
OpenStack and the event let library, as
well as several OpenStack client-side
libraries for logging REST
communications, and in the AMQP
interface of OpenStack for logging RPC
communications. For logging
communications between OpenStack
and hypervisors, we implement a
logging driver acquiescent with
OpenStack’s hypervisor interface and
use it to wrap the real drivers
OpenStack selects to communicate with
hypervisors. Communications between
OpenStack and hypervisors are thus
intercepted and recorded by the logging

driver. We insert logging snippets into the SQL Alchemy library for logging database operations. The
compute service gears a helper function to perform shell operations on local hosts. We also supplement
that function to log such operations.

One drawback of this integrated user-level logging implementation is logging incompleteness.
Compared to a system-level logging approach targeting a language level interface (Java SDK) or an
operating system interface, the approach is incomplete in that it can only cover major communication
mechanisms and is unaware to other channels (a customized socket communication). It need to submit
that in a well-designed cloud management stack, the majority of inter-service communications are
conducted via several well-de ned interfaces, which were instrumented in the study on OpenStack.
Additionally, system-level approaches usually lead to a signi cantly larger number of logs, humiliating
system performance and necessitating the use of advanced log parsing and inference logic in the fault
injection module. In the framework, there are traded logging completeness for simplicity in exposing
high-level semantics and potentially high logging performance.

RPC communications within the compute service group is realised in part by modifying
OpenStack’s AMQP implementation. Such modi cations cannot form a complete RPC communications
picture, because the RPC caller and called (or producer and consumer in AMQP terminology) is
decoupled by an AMQP broker. RPC cast from an OpenStack compute service is sent to AMQP
exchange at the broker and then routed to a message queue. Another compute service subscribing to the
message queue then receives the RPC, thus effecting the RPC cast. RPC calls are similar except that the
return value goes through the AMQP broker as well.

For ne-grained fault injection control, it is intended to differentiate two stages of RPC message
propagation – the rst from the RPC caller to the AMQP broker and the second from the AMQP broker to
the RPC collie. A direct solution would be to extend our logging module to the AMQP broker
implementation (either Rabbit MQ or Qpid). This solution requires a general-purpose AMQP broker to
include OpenStack-speci c programming logic. Moreover, retrieving unique tags from RPC messages at
an AMQP broker implies the abstraction layers elevation from the message transferring protocol

 " : , , "
, 2015. 21

© ., ., ., ., .

11

(detailing packet formats) to a high-level RPC message with application semantics incurring signi cant
implementation overhead.

The implementation leaves the AMQP broker intact and instead logs its activity via RPC
trampolines – compute service proxies responsible for RPC forwarding. The created trampoline for each
compute service is modifying OpenStack’s client-side AMQP implementation so that RPCs addressed to
a service are delivered instead to its trampoline. The trampoline records those RPCs and forwards them to
the original destination. From the execution ow logging perspective, RPC trampolines represent the
AMQP broker, thus completing the RPC communications picture.

Generating detailed logs with high-level semantics, the logging scraps also serve as coordination
points, synchronizing the OpenStack execution and fault-injection servers. During fault-injection
experiments, the logging module sends log messages to a fault-injection server and then blocks the logged
OpenStack service. The server makes decisions of fault-injection, injects faults once necessary, and
resumes the logged service execution by replying a «continue execution» message to the logging module.
The logging module use for coordination is also one major difference between our implementation and
the existing noti cation mechanisms in OpenStack.

Fault Injection
The fault-injection module is responsible for extracting execution graphs from logs, generating test

plans, and injecting faults to OpenStack. An execution graph depicts the OpenStack execution during the
external request processing. It is directed acyclic graph extracted from logs of fault free request
processing procedure with each vertex representing in OpenStack a communication event. Each event is
characterized by the communicating entity (an image-API service) and the communication type (REST
request send operation). Edges represent causality among events. An edge connects two vertices: 1) if
they form a sender-receiver pair or 2) if they belong to the same service and one precedes other. Fig. 3
shows a simpli ed execution graph related to a VM-creation request.

A test plan consists of three elements: an execution graph, a fault-injection location, and a fault
type. Two types of faults are studied: servercrash6 and network partition. These fault types are common
failure causes in cloud environments and are well-studied in the literature. Other fault types, such as
invalid inputs [15] and performance degradation [16] are not considered here. Correlated faults are also
common in real-world deployments but are not within the scope of this work, due to the limitation
imposed by our current single-fault injection implementation.

Procedure1 Test Plan Generation
test_plans an empty list
for all node in exe graph do
 for all fault in fault specs do
 if fault can be injected to node then
 new_plan Test Plan (exe graph, node, fault)
 test_plans.append(new plan)
return test_plans

Procedure1 demonstrates the test plans generation. Iterating over an execution graph, the algorithm
accounts for all fault types applicable to each vertex (a sender server crash targeting REST
communications can only be inserted to the vertices performing REST request or response send
operations) and makes accordingly test plans. This procedure provides an opportunity for global testing
optimization: global because the fault-injection module has a view of the entire execution ow. For
example, execution-graph vertices can be clustered by customized criteria, each cluster assigned with a
testing priority. Vertices can then be selectively tested within each cluster to reduce overall testing cost.
Given that a fault-injection experiment in the framework takes several minutes to complete and that an
exhaustive set of test plans for one external request usually leads to hundreds of experiments, such a
global optimization opportunity provided by an execution graph is valuable and worth further exploration.
For test plan generation, a fault speci cation is used to de ne the faults types to be injected and the types
of communications in which faults are injected. AS a test-case lter, the fault speci cation functions
enabling the design of experiments set focusing only on a speci c fault type (sender-server-crashes)
and/or a speci c communication type (REST communications). The speci cation format can be extended

 " : , , "
, 2015. 21

© ., ., ., ., .

12

to support other lters, such as con ning fault injection to OpenStack services subset. A test plan is
ful lled via the test server cooperation and the logging and coordination module. The test server
initializes the execution environment and then re-executes the external request to which the test plan
resembles. Then, the test server employs the same log parsing logic for execution graph generation to
analyse each log sent by the logging and coordination module. It tracks OpenStack’s execution by using
the execution graph in the test plan until the fault-injection location has been reached. A fault is then
injected as plan speci ed. And OpenStack runs till the request processing is completed.

Faults of the server-crash are injected by killing relevant service processes via system.
Con gurations of system are modified such that when it stops the relevant services, a signal SIGKILL is
sent, instead of the default signal SIGTERM. Forcing them to drop packets from each other, network-
partition faults are injected by inserting IP-tables rules to service hosts that should be network-partitioned.

Speci cation Checking
The speci cation-checking module is responsible for verifying whether the results collected from

OpenStack executions with injected faults comply with expectations on the states and OpenStack
behaviors. Writing speci cations for a large-scale complex distributed system is notoriously dif cult, due
to the numerous interactions and implicit inter-dependencies among various services and their execution
environments. It is a key task for developing an effective speci cation checking module. In effect, the
coverage and the states and behaviors granularity in the speci cations determine the checking module
ability to detect erroneous behaviors and target system states. A few approaches have been reported in the
literature, including relying on developers to generate speci cations [17], reusing system design
speci cations [6], and employing statistical methods [18]. To the best of our knowledge, OpenStack does
not provide detailed and comprehensive speci cations on system behaviors or state transitions during the
external requests processing. The speci cations that are used in this study are generated based on
OpenStack understanding, existing knowledge in fault-resilient system design, and rst principles, which
mirrors the developer speci cation-generation approach. Speci cally, speci cations generated manually
by inferring OpenStack developers’ expectations on system states and behaviors. This process requires
extensive reverse-engineering efforts, such as source-code reading and log analysis. Speci cations
generated in such a manner may require further debugging and re nements (similar to xing incorrect
expectations in [17]). Such speci cations are best-efforts, with a coverage constrained by OpenStack
understanding. Such speci cations usefulness also is demonstrated by the bugs identi cation reported in
this paper.

Speci cation 1 VM State Stabilization Speci cation
query = selectVM from compute database
 where VM.state in collection(VM unstable states)
if query.count() = 0 then
 return Pass
return Fail

Speci cation-Generation Guidelines listed below are usable speci cation-generation guidelines.
“Do not block external users” announce that OpenStack shouldn’t block external users due to faults
during request processing. “Present clear error messages via well-de ned interfaces” says that
OpenStack should expose clear error states to external users via well-de ned interfaces and avoid
confusing information. “Stabilize system states eventually” informs that upon restoration of faulty
services and with the quiescence of externally triggered activities, OpenStack should eventually stabilize
inconsistent states caused by faults during request processing time.

Speci cation checking can be implemented via a general-purpose programming language or a
specially designed speci cation language, using an imperative approach or a declarative approach.
Following the using developer-familiar building blocks principle, a hybrid approach is adopted, applying
declarative checking on persistent states stored in OpenStack’s databases and imperative checking on the
other states and OpenStack behaviors. Database-related checks are implemented via the SQL Alchemy
library and others are implemented as generic scripts. This hybrid approach largely imitates OpenStack’s
existing implementation: Open Stack adopts the same approaches to controlling its states and behaviors.

 " : , , "
, 2015. 21

© ., ., ., ., .

13

Speci cations implemented for OpenStack’s states stored in databases and local lesystems and
OpenStack’s behaviors, such as the Http status code returned to an external user after processing a
request. The specified expected states of cloud platforms are managed by OpenStack, such as the local
hypervisors states on compute hosts and the Ethernet bridge con gurations.

Speci cation 2 Ethernet Con guration Speci cation
if(VM.state = ACTIVE) and
 ((VM.host.Ethernet not setup)
 or (network controller.Ethernet not setup)) then
 return Fail
return Pass

Speci cation 3 Image Local Store Speci cation
query = select image from image database
 where image.location is local
if local image store.images = query.all() then
 return Pass
return Fail

Below was present three speci cation examples. Speci cation 1 indicates the VM state
stabilization expectation. The VM state after the external request processing (VM creation) and a
suf cient quiescence period should enter as table state (the ACTIVE state, indicating the VM running
activity) instead of remaining in a transient state (the BUILD state, indicating the VM creation process).
This is a using example declarative checking on database states.

Speci cation 2 requires VM actively running, the Ethernet bridges on the compute host where that
VM resides and the host running the network controller service have been correctly set up. It is checked
whether the bridges have been associated with the correct Ethernet interfaces dedicated to the subnet to
which the VM belongs. It exempli es the imperative checking on OpenStack-managed cloud platforms.

Speci cation 3 checks whether the database maintained states of OpenStack image service
regarding the image store in the local lesystem are in accordance with the lesystem. It requires that if
an image is uploaded to the local image store and thus exists in the lesystem of the image service host,
the nits location attribute in the image database should be local, and vice versa. This speci cation shows a
combined check on the database views and the service host lesystem.

Results
Here is discussing the bugs uncovered by our framework applied to OpenStack essex and grizzly

versions, and nd 23 bugs in total: 13 common to both versions, 9 unique to essex, and 1 unique to
grizzly. The study covers three OpenStack service groups: the identity service (keystone), the image
service (glance), and the compute service (nova). For external services, the framework supports the Qpid
messaging service, the MySQL database service, the libvirt service for hypervisor interaction and the
Apache Http server used as an image store for OpenStack.

The identity service is con gured to use UUID tokens for authentication. Regarding the image
service, it is con gured to use a local lesystem or Http server as its backend store. As for the compute
service, QEMU is used as the backend hypervisor, controlled by the libvirt interface. In essex, itis limited
the reconnection from the Qpid client library to the backend broker equal 1.

OpenStack services run in VMs with 1 virtual CPU and 2GB memory. All OpenStack VMs run on
an HP Blade System c7000 enclosure, each blade equipped with 2 AMD Opteron 2214HE (2.2GHz)
processors and 8GB memory. For each fault-injection experiment, all services are deployed in one VM by
default, each started as a single example. There are two exceptions to the above placement guideline. If a
shell-operation fault should be injected to a compute service, then that service is placed in one VM and
the other services are placed in another VM in order to prevent interference among similar shell
operations of different services. If a network partition fault should be injected, then the pair of to be
partitioned services are placed in two VMs and the other services are launched in a third VM.

There are tested 11 external OpenStack APIs, inject 3848 faults, implement 26 speci cations,
detect 1520 violations and identify 23 bugs. The results are summarized in Table 2. The table shows the
bugs signi cance and issues discovered in our study, because they are manifested (I) in several frequently

 " : , , "
, 2015. 21

© ., ., ., ., .

14

used APIs and (II) in numerous locations along the execution paths of those APIs. The former observation
is drawn from the fact that the bugs sum in the table exceeds by far the number of distinct bugs. The fact
is that the ratio of speci cation violations to bugs is greater than 1 for each API, which is also shown in
Fig. 4.

The bugs are classified into seven categories (Table 3) and present deep discussion of each
category. Compared to our preliminary work [9], this article contains newly-identi ed bugs in OpenStack
and also discusses the bugs evolution and xes across the two OpenStack versions that is studying,
demonstrating the OpenStack’s fault resilience improvement and the outstanding issues.

Table 2: Summary of fault-injection results.
Faults Specification Violations Bugs

essex grizzly essex grizzly essex grizzly API
crash part crash part crash part crash part crash part crash part

VM create 217 133 311 229 93 43 150 49 8 6 3 2
VM delete 79 61 102 82 51 15 45 23 9 5 5 2
VM pause 24 17 35 29 16 13 6 4 5 6 2 1
VM reboot 64 36 139 104 9 11 0 5 3 4 0 1
VM rebuild 159 106 242 183 103 67 0 13 5 5 0 1
VM image

create
(local)

142 119 171 150 59 106 90 79 4 2 3 3

VM image
create
(http)

107 92 171 150 24 84 79 71 3 2 3 3

VM image
delete
(local)

59 44 22 15 23 37 12 9 3 2 2 2

VM image
delete
(http)

59 44 22 15 23 37 10 8 2 2 1 1

Tenant create 7 6 7 6 0 6 0 6 0 1 0 1
User create 7 6 7 6 0 6 0 6 0 1 0 1
Role create 7 6 7 6 0 6 0 6 0 1 0 1
User-role
create 9 8 10 9 0 8 0 9 0 1 0 1

Sum 940 678 1246 984 401 439 392 288 42 38 19 20

The results of image service APIs are broken down according to whether a local le system or an
Http service is used as the image store. Speci cation violations related to an API are counted as the
number of fault-injection experiments in which at least one violation is detected. The network-partition
fault is shortened to "Part."

 " : , , "
, 2015. 21

© ., ., ., ., .

15

Table3: Bug Categories

Count

Category commo
n

esse
x

only

grizzl
y only

Timeout 1 1 0
Periodic
checking

6 4 0

State
transition

1 0 1

Return code
checking

4 1 0

Cross-layer
coordination

0 1 0

Library
interference

0 1 0

Miscellaneou
s

1 1 0

Total 13 9 1

Timeout is a common mechanism in distributed systems to avoid one faulty service from
inde nitely blocking other services and affecting system-wide functionality. OpenStack extensively uses
the timeout mechanism with settings scattered across multiple service con gurations to control various
timeout behaviors of OpenStack services and external supporting services. Setting correct timeout values
is known to be dif cult. Given the numerous interactions and inter-dependencies among service groups
and the deployment environments variety, it is very dif cult if not impossible for OpenStack to provide a
comprehensive set of timeout values covering all execution paths that can block the system.

For example, REST communications, one of the two major communication mechanisms used in
OpenStack, fall out of the safety net of the timeout mechanism in the OpenStack essex version.
Consequently, service is waiting for a response from another service via the REST mechanism may be
indefinitely blocked if the two services become network partitioned after the request is sent but before the
response is received. This also exempli es the advantage of an execution-graph-based fault injection over
coarser-grained approaches [19], such a bug can hardly be ef ciently revealed by the latter due to the
requirement on the synchronization between fault injections and send or receive operations.

This bug is xed in the OpenStack grizzly version by supporting timeout values for REST
communications and exposing such settings in its con gurations. For instance, the image client library
provides a default 600 seconds timeout. The identity client library, on the other hand, uses a default value
of None, effectively disabling the timeout mechanism. While a system-wide default timeout value for
REST communications might be a better solution, the fault OpenStack resilience has been clearly
enhanced due to this critical timeout setting support.

Periodic checking is another critical mechanism for achieving fault resilience in OpenStack. In a
cloud environment where faults are in evitable, periodic checking can monitor service liveness, resume
interrupted executions, clean up garbage, and prevent resource leakage.

The fault-injection framework identi es several bugs caused by the lack of proper periodic
checking mechanisms. Take the processing of a VM creation request as an example. During fault-free
request processing, the VM state transits from None (non-existence) to BUILD (under construction) to
ACTIVE (actively running). If the execution is interrupted after the VM has transited to BUILD, it is
possible that, in essex, the VM inde nitely remains in that transient state. This is a bug because VM
creation should cause the VM to enter a stable state (ACTIVE if the processing is successful but
otherwise ERROR) in a timely manner, despite faults. This bug can be xed by a periodic checking logic
that converts VM’s state from BUILD to ERROR if the related VM creation request is detected as failed.
A bug x has been integrated into grizzly, conducting such a transition based on a con gurable VM

 " : , , "
, 2015. 21

© ., ., ., ., .

16

creation timeout value. This x although effective in preventing the prolonged BUILD state, leads to a
state transition bug.

Another bug in both OpenStack versions that can be xed by periodic checking is related to
database access in a fault-handling logic. OpenStack implements a decorator function wrap instance fault,
injecting a fault record into a database table upon VM related faults detection. This fault-handling logic
fails when the VM related fault that it intends to log is itself a database fault (database service crash fault
during a VM creation). In such situation the fault record is discarded, making it dif cult for post mortem
fault analysis. This bug can be xed by keeping a temporary log of the fault messages that cannot be
stored in the designated database table at the time when they are generated. Then periodically checking
the database service state and merging those temporary messages into the database when possible.

OpenStack maintains a large number of states in its databases, with complicated state-transition
diagrams among them. A tool indicates that in faulty situations users may experience problematic state
transitions. For example, grizzly employs a periodic task to convert a VM from BUILD to ERROR if it
exceeds the maximum time that a VM is allowed to remain in BUILD. However, OpenStack does not
cancel the VM creation request related to that VM. If a VM creation request experiences a transient fault,
then a VM may transit from BUILD to ERROR and then to ACTIVE, because it can be created after the
execution of the periodic task and the fault disappearance.

The state transition from ERROR to ACTIVE without external event triggering can be confusing
and problematic. According to experience, upon VM creation error receipt an external user is likely to
issue another VM creation request. The bug x for the previous periodic-checking-related problem
induces a new state-transition bug, potentially creating more VMs than needed for an external user. It
suggest canceling an external request and negating its effect once it is believed to be erroneous in addition
to the state stabilization employed by OpenStack.

Return code is commonly used as an indicator of the execution state from a function callee to its
caller. Although thorough checking on return codes has long been established as a good programming
practice, prior work has identi ed return code related bugs to be a major bug’s source even in well-
organized projects [20, 21]. Study on OpenStack con rms this observation. For example, during the
processing of a VM creation request, when the identity service cannot authenticate a user-provided token
passed from a compute API service due to an internal fault, it returns an error code to the compute API
service correctly indicating the service fault. Due to a awed return code checking logic the compute API
service attributes such an error to the token invalidity generates a misleading error message accordingly
and returns it to the external user.

Another example in this category is related to the execution of shell commands. OpenStack
compute services implement a common function for executing shell commands allowing the caller to
specify a list of expected return codes. If the return value falls out of that list, an exception is raised. A
common bug pattern related to improper use of this function results from disabling its return code
checking logic causing OpenStack when executing under faults, to deviate from expected execution ows
without being detected. During the network setup procedure related to a VM creation, the brctl addif
command is used to associate an Ethernet interface with a bridge on the compute host where the VM is
placed. OpenStack assumes that the command can be fruitfully executed without checking its return code
proceeds to start the VM. So, the VM may lose network connectivity if a fault occurs during execution of
that command.

OpenStack relies on various supporting services to maintain its functionality and supports
interaction with multiple services in each external service category via set of abstraction layers. Take the
RPC messaging services as an example. OpenStack implements a uni ed layer for the AMQP protocol
used for RPC communications, giving operations to a lower layer implemented for a speci c AMQP
broker. The lower layer is a client-side library wrapper provided by its corresponding broker such as
RabbitMQ and Qpid. This client-side library comprises messaging implementation details and is
responsible for the actual communication with the AMQP broker.

This valuable and well-designed multi-layer abstraction stack imposes stringent requirements on
cross layer coordination. Incorrect interpretations of one layer behaviors may lead to subtle bugs in
another layer. The Qpid client library is con gured to automatically reconnect the AMQP broker after a
connection disruption in essex. A threshold value is designed to control the maximum reconnections
number. A connection maintained by the client library resides in a temporary erroneous state until the

 " : , , "
, 2015. 21

© ., ., ., ., .

17

threshold is reached at the time the connection enters a permanent erroneous state. The OpenStack client
library wrapper does not coordinate properly with the client library regarding the temporary-permanent
error state transition and causing the wrapper to vainly retry a connection that has been marked as
irrecoverable by the client library.

The extensive external libraries use commonly found in large-scale software systems may lead to
unexpected library interference. OpenStack uses a patched version of Python standard library functions to
support cooperative thread scheduling. Subtle incompatibility in the patched functions, however, can
engender bugs that are hard detected. Take the communication between OpenStack and Qpid broker again
as an example. During a reconnection from the Qpid client library to a Qpid broker service the client
internally uses a conventional consumer/producer synchronization via a select/read call pattern on a pipe.
Due to incompatibility between the patched version of select and its counterpart in Python standard
library, this Qpid client library, when invoked in essex, may perform a read on the pipe read-end that is
not yet ready for reading, thus permanently blocking an entire compute service.

The framework also detects a simple implementation bug: in essex, when a fault disrupts a
connection opening procedure in the Qpid wrapper layer, a subsequent open call is issued without rst
invoking close to clean up sour states in the connection object resulting from the previously failed open,
causing all following retries to fail with an «already open» error message.

Comparing the results of the two versions, there are identified several interesting aspects in the
OpenStack’s fault resilience evolution. Using timeouts to limit the distributed operations execution is a
well-known and important approach to fault-resilience improvement [22]. Use of timeout for REST
communications effectively solves the inde nite sender blocking issue in essex. Systematically
con guring timeouts also remains an open question. Different components in a REST communication

ow (WSGI pipeline) have different default timeout values. The timeout settings of some important
supporting services cannot be controlled by OpenStack. For example, OpenStack does not specify the
timeout for SQL statement execution, thus causing long blocking time if the SQL statement issuing
service and the database backend is network partitioned. These issues need to be properly addressed
further improving the OpenStack fault resilience.

Carefully checking return codes enables prompt error detection. In grizzly, during the VM deletion
request processing the compute service issues a RPC call instead of a RPC cast as in essex to the network
service, demanding the latter to reclaim relevant network resources. This modi cation allows the compute
service to detect errors in the network service and reacts accordingly (transiting the VMtothe ERROR
state), reducing the possibility of network resource leakage under faults.

By simplifying the cross-layer coordination, OpenStack reduces the bugs hiding chances between
abstraction layers. By disabling automatic reconnection in the Qpid client library and reserving full
control only in its wrapper layer OpenStack avoids the bug discussed before. Con ning the decision-
making logic regarding a speci c aspect of cloud-management stack to a single layer, instead of
coordinating the decision making in different layers, is considered a good design practice.

Discussions
The framework can be applied to solve fault-resilience issues related to cloud-management stacks

in real-world deployments. One of Amazon’s cascading failures [3] was caused by a memory leakage bug
on storage servers, which was triggered by the data-collection server crash, the subsequent inability to
connect to that failed server from storage servers, and the de cient memory reclamation for failed
connections. This bug can be detected by the framework via the crash fault combination injected to the
data-collection server and speci cation on the memory usage of the data reporting logic on storage
servers. The framework needs to be extended for supporting multiple faults injection and scaling
speci cation-checking logic from an individual request to multiple requests. Such improvements will
enable the framework to handle complicated issues with multiple root causes [2].

One may consider the generality of this study in two aspects: the implementation reusability and
ndings applicability to other cloud-management stacks. As to implementation reusability, the fault-

injection module and the speci cation-checking module of the framework are reusable in relevant studies
for other cloud-management stacks. The logging and coordination module and the speci cations used for
checking the behaviors and states of OpenStack are domain-speci c and require porting efforts. This also
holds the study across two OpenStack versions. Such cross-version porting is straightforward. The
logging and coordination module integrated in OpenStack contains some code lines, most of which are

 " : , , "
, 2015. 21

© ., ., ., ., .

18

reusable across the two versions. Speci cations need to be moderately adjusted to handle with minor
semantic (database schema changes) evolution.

Regarding the ndings, the speci c bugs and the related analysis presented in this work are
OpenStack speci c and cannot be sweeping to other cloud management stacks. The bug categories and
the related fault-resilience issues are general. Despite the numerous differences in the detailed design and
implementation of cloud-management stacks, many of them [23, 24] share common high-level scheme.
They have similar service groups, rely on similar external supporting services, and employ similar
communication mechanisms. The ndings in this article have the potential to elucidate fault resilience in
other cloud management stacks with a similar design.

The execution graphs and test plans use is optional. Instead of obtaining an execution graph related
to request processing and generating test plans based on the graph before fault-injection experiments, an
experiment could be started without prior knowledge and inject faults when a relevant communication
event occurs.

Our choice of the execution graph use is mainly for future framework extensibility. On the one
hand, an execution graph depicts the entire execution ow related to the external request processing and
thus allows an intelligent test planner to conduct fault injection experiments with better test coverage and
less resource consumption. On the other hand, execution graphs are useful for fault-resilience studies
other than our current fault-injection framework, such as graph-comparison-based online fault detection
[18].

In The framework is required that the external request processing during a fault-injection
experiment match its execution graph up to the fault-injection location. The communication events
observable by our framework in fault-free execution generally need to be deterministic. This requirement
is satis ed in most of experiments. There are cases where additional care is required to accommodate
nondeterminism. One source of nondeterminism is periodic tasks, which is resolved by deferring the tasks
interfering with experiments. Another source is environmental inputs. The operations taken by a compute
service for network setup on its local host depend on whether the compute service and network service
are co-located on the same host. There are handled such cases by annotating related execution graphs so
that all the paths observed in fault-free execution are marked as valid.

Related Work
Cloud-management stacks are type of distributed system. Our fault resilience study of this layer

bene ts from prior research on fault pliability of distributed systems in general and cloud systems. Here is
compared the result of this work with existing fault resilience studies and execution path extraction and
speci cation checking with similar techniques employed in distributed systems debugging and failure
detection.

Fault injection is commonly used to study the cloud systems fault resilience. FATE is a fault-
injection framework directing the recovery logic in cloud applications and exploring failure scenarios
with multiple-failure injection [6]. In the work [5] crash faults were been injected to components on
Hadoop’s compute nodes and studied their effects on application performance. The framework targets
cloud-management stacks and examines the recovery logic by conducting single-fault injection during the
external requests processing. Similar to the target of FATE, it is studied the recovery logic functionality
and correctness, which is dif cult to be made correct.

Failure of Service (FaaS) is proposed as a new generic service to improve the cloud applications
fault resilience in real deployments [25]. It is suggested that an alternative approach for cloud-
management stacks, presenting an integrated fault-injection framework with domain knowledge. By
combining them, cloud management stacks may enhance fault resilience by better balancing the cost and
fault injection coverage.

Model checking in [7] is another common approach to examining the distributed systems fault
resilience. Compared to our fault-injection-based approach, it checks the target system more thoroughly
by exploring all possible execution paths instead of those observed by a fault-injection framework. This
same thoroughness requires the extensive domain knowledge use in order to make it practical to check
highly complicated operations in cloud-management stacks of the VM creation.

Execution path have been extensively used for workload modeling [26, 27], performance [28] and
correctness debugging [18, 29], and evolution analysis [30] in distributed systems. Such information is
exposed via special logging modules or inferred in sophisticated post-processing. Applying existing

 " : , , "
, 2015. 21

© ., ., ., ., .

19

knowledge to the framework, execution paths is extracted relating to external request processing via user-
level logging, which explicitly exposes high-level semantics.

Prior research has explored various approaches to speci cation checking in distributed systems.
Regarding speci cation expression, imperative approaches [31, 32] and declarative approaches [6, 17]
have been studied. In our framework, a hybrid approach is employed in expressing speci cations on the
states and behaviors of cloud-management stacks, combining imperative and declarative checking.
Similar combinations have been used to query and analyze distributed trace events [33]. Regarding
speci cation generation, our and most existing approaches require developers to implement
speci cations. Recent advances in lesystem-checker testing leverage the characteristics in the checkers
to automatically generate implicit speci cations [34]. The applicability of similar approaches to cloud-
management stacks remains an open question for today.

10 Conclusions
In this article, a systematic study is conducted on the fault resilience of OpenStack. It is designed

and implemented a prototype fault-injection framework that injects faults during the external requests
processing. Using this framework, it is uncovered 23 bugs in two OpenStack versions, classi ed them
into seven categories, and presented deep discussion of the fault resilience issues, which must be
addressed in order to build fault-resilient cloud-management stacks. In future for the research can be
taken re ning and automating speci cation generation logic in fault-resilience areas and exploring
potential use of execution graphs.

1. Amazon. Amazon elastic compute cloud (Amazon EC2). http://aws.amazon.com/ec2/. Retrieved in September 2013.
2. Amazon. Summary of the Amazon EC2 and Amazon RDS service disruption in the US east region.

http://aws.amazon.com/ message/65648/. Retrieved in September 2013.
3. Amazon. Summary of the October 22, 2012 AWS service event in the US-east region. http://

aws.amazon.com/message/680342/. Retrieved in September 2013.
4. Microsoft. Summary of Windows Azure service disruption on Feb 29th, 2012.

http://blogs.msdn.com/b/windowsazure/archive/2012/03/09/ summary-ofwindows-azure-service-disruptionon-feb-29th-
2012.aspx. Retr. in September 2013.

5. F. Dinu and T. E. Ng. Understanding the effects and implications of compute node related failures in Hadoop. In
Proceedings of the 21st international symposium on High-Performance Parallel and Distributed Computing, HPDC ’12,
pages 187–198, New York, NY, USA, 2012. ACM.

6. H. S. Gunawi, T. Do, P. Joshi, P. Alvaro, J. M. Hellerstein, A. C. Arpaci-Dusseau, R. H. ArpaciDusseau, K. Sen, and D.
Borthakur. FATE and DESTINI: a framework for cloud recovery testing. In Proceedings of the 8th USENIX conference
on Networked systems design and implementation, NSDI’11, Berkeley, CA, USA, 2011. USENIX Association.

7. J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin, M.Yang, F.Long, L.Zhang, L.Zhou. Modist: transparent model checking
of unmodi ed distributed systems. In Proceedings of the 6th USENIX symposium on Networked systems design and
implementation, NSDI’09, pages 213– 228, Berkeley, CA, USA, 2009. USENIX Association.

A. Reddy. DevOps: The IBM approach. Technical report, IBM, 2013.
8. X. Ju, L. Soares, K. G. Shin, and K. D. Ryu. Towards a fault-resilient cloud management stack. In USENIX Workshop on

Hot Topics in Cloud Computing, HotCloud’13. USENIX Association, 2013.
9. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and A. War eld. Xen and the art of

virtualization. In Proceedings of the nineteenth ACM symposium on Operating systems principles, SOSP ’03, pages 164
– 177, New York, NY, USA, 2003. ACM.

A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm: the Linux virtual machine monitor. In Ottawa Linux
Symposium, pages 225 – 230, 2007.

10. Microsoft. Microsoft Hyper-V server 2012. http://www.microsoft.com/enus/server-cloud/hyper-v-server/ default.aspx.
Retrieved in September 2013.

11. OpenStack. OpenStack open source cloud computing software. http://www.openstack.org/. Retrieved in September 2013.
12. B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal, D. Beaver, S. Jaspan, C.Shanbhag. Dapper, a

large-scale distributed systems tracing infrastructure. Technical report, Google, Inc., 2010.
13. B.P. Miller, L. Fredriksen, B. So. An empirical study of the reliability of UNIX utilities. Commun. ACM, 33(12):32 – 44,

Dec. 1990.
14. T. Do, M. Hao, T. Leesatapornwongsa, T. Patanaanake, and H. S. Gunawi. Limplock: Understanding the impact of

limpware on scale-out cloud systems. In2013ACMSymposiumonCloudComputing, SOCC’13, New York, NY, USA,
2013. ACM.

15. P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah, and A. Vahdat. Pip: detecting the unexpected in
distributed systems. In Proceedings of the 3rd conference on Networked Systems Design and Implementation - Volume 3,
NSDI’06, Berkeley, CA, USA, 2006. USENIX Association.

16. M. Y. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patterson, A. Fox, and E. Brewer. Path-based failure and evolution
management. In Proceedings of the 1st conference on Symposium on Networked Systems Design and Implementation –
Vol. 1, NSDI’04,Berkeley,CA,USA,2004.USENIXAssociation.

 " : , , "
, 2015. 21

© ., ., ., ., .

20

17. C. Bennett and A. Tseitlin. Chaos monkey released into the wild. http://techblog. netflix.com/2012/07/chaos-
monkeyreleased-into-wild.html. Retrieved in September 2013.

18. H. S. Gunawi, C. Rubio-Gonz´alez, A. C. ArpaciDusseau, R. H. Arpaci-Dussea, and B. Liblit. Eio: error handling is
occasionally correct. In Proceedings of the 6th USENIX Conference on File and Storage Technologies, FAST’08, pages
207–222, Berkeley, CA, USA, 2008. USENIX Association.

19. P. D. Marinescu, G. Candea. Ef cient testing of recovery code using fault injection. ACM Trans. Comp. Syst., 29(4):11:1
– 11:38, Dec. 2011.

20. J. B. Leners, H. Wu, W.-L. Hung, M. K. Aguilera, M. Wal sh. Detecting failures in distributed systems with the falcon
spy network. In Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles, SOSP ’11, pages
279 – 294, New York, NY, USA, 2011. ACM.

21. CloudStack. Apache CloudStack: Open source cloud computing. http://cloudstack. apache.org/. Retrieved in September
2013.

22. Eucalyptus. The Eucalyptus cloud. http://www.eucalyptus.com/eucalyptuscloud/iaas. Retrieved in September 2013.
23. H. S. Gunawi, T. Do, J. M. Hellerstein, I. Stoica, D. Borthakur, and J. Robbins. Failure as a service (Faas): A cloud

service for large-scale, online failure drills. In Technical Report UCB/EECS-201187.
24. P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using magpie for request extraction and workload modelling.

InProceedingsofthe6thconferenceon Symposium on Operating Systems Design & Implementation - Volume 6, OSDI’04,
pages 18–18, Berkeley, CA, USA, 2004. USENIX Association.

25. B. C. Tak, C. Tang, C. Zhang, S. Govindan, B. Urgaonkar, R.N.Chang. vpath: precise discovery of request processing
paths from black-box observations of thread and network activities. In Proceedings of the 2009 conference on USENIX
Annualtechnicalconference,USENIX’09,pages19– 19, Berkeley, CA, USA, 2009. USENIX Association.

26. P. Reynolds, J. L. Wiener, J. C. Mogul, M. K. Aguilera, A.Vahdat. WAP5: black-box performance debugging for wide-
area systems. In Proceedings of the 15th international conference on WorldWideWeb’06, pp. 347 –356, New York, NY,
USA, 2006. ACM.

27. D.Geels, G.Altekar, S.Shenker and I.Stoica. Replay debugging for distributed applications. In Proceedings of the annual
conference on USENIX ’06 Annual Technical Conference, ATEC ’06, Berkeley, CA, USA, 2006. USENIX Association.

28. S.A. Baset, C. Tang, B.C. Tak, and L. Wang. Dissecting open source cloud evolution: An open stack case study. In
USENIX Workshop on Hot Topics in Cloud Computing, HotCloud’13.USENIXAssociation, 2013.

29. X. Liu, Z. Guo, X. Wang, F. Chen, X. Lian, J. Tang, M. Wu, M. F. Kaashoek, and Z. Zhang. D3S: debugging deployed
distributed systems. In Proceedings of the 5th USENIX Symposium on Networked Systems Design and Implementation,
NSDI’08, pages 423–437, Berkeley, CA, USA, 2008. USENIX Association.

30. X. Liu, W. Lin, A. Pan, and Z. Zhang. Wids checker: combating bugs in distributed systems. In Proceedings of the 4th
USENIX conference on Networked systems design and implementation, NSDI’07, pp. 19 –19, Berkeley, CA, USA, 2007.
USENIX Association.

31. U.Erlingsson, M.Peinado, S.Peter, M.Budiu, and G. Mainar-Ruiz. Fay: Extensible distributed tracing from kernels to
clusters. ACM Trans. Comp. Syst., 30(4):13:1–13:35, Nov. 2012.

32. J. Carreira, R. Rodrigues, G. Candea, and R. Majumdar. Scalable testing of file system checkers. In Proceedings of the
7th ACM European conference on Computer Systems, EuroSys ’12, pages 239– 252, New York, NY, USA, 2012. ACM.

