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Introduction. While studying rates of various biological and biochemical processes, it is important 

to describe a complex system using a small amount of differential equations [1] that represents one of the 
main tasks of mathematical modeling. General laws for rates are the same for both chemical reactions and 
biochemical reactions and reproduction of individuals of coexisting species. 

Problems of studying reaction rates of various substances are rather difficult and their solution 
requires application of many sciences including quantum mechanics. 

One of the main rules of kinetics is this: in order to interact, one needs to meet. In chemical 
reactions, it is necessary that two molecules and atoms meet; in the problem of coexistence of species, it 
is necessary that, for example, a lynx and a hare meet (this accompanying by an absorption reaction). 
However, meetings are usually random and it is impossible to foresee each of them. Therefore, we 
consider the processes that consist of many meetings in which we can talk about the probability of a 
meeting and the average number of reactive objects in a reaction, i.e. about the concentration of objects. 
In the case of chemical reactions, they are just usual concentrations; in the case of interaction of 
microorganisms with each other or with molecules of nutrient, by concentrations we mean the number of 
microorganisms (or the amount of organic substance contained in them) per unit volume. In ecology, for 
example, in coexistence of species, concentration is the number of individuals per unit area. 

Main part. Consider at what rate the reaction of interaction between two molecules M and N of 
different substances goes. This reaction (the second-order reaction) can result in the creation of the 
complex molecule P or two new molecules P1 and P2: 

M N P   or  1 2 .M N P P  

The reaction rate depends primarily on the probability of collision of the molecules M and N. The 
probability of collision is proportional to the product of concentrations CM and CN.  The reaction rate  of  
their interaction  

,MN MN M Nv k C C  

where the coefficient kMN is absolute reaction rate. This coefficient takes into account the average 
efficiency of the collision, i.e. the probability that a collision will be efficient. This coefficient depends on 
a number of factors, for example, on temperature determining the rate of motion of molecules or on rate 
that can develop a hare running away from a predator.  

If the reaction involves three objects M, N, Q (the third-order reaction): 

,M N Q P  

then the rate of formation of the product P is proportional to the product of all three concentrations: 
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 .MNQ MNQ M N Qv k C C C  (1) 

In the case, if all three molecules are identical, for example, in the polymerization reaction, the rate 
is proportional to the cube of concentration. 

However, as a rule, similar reactions go in two stages:  

[ ],M N MN  

[ ] ,MN Q P  

i.e. first, the complex [MN] of two molecules is formed, and then the third molecule joins this complex 
(each of these reactions is the second-order reaction). Then 

 [ ] [ ] .MNQ MN Q MN Qv k C C  (2) 

If the intermediate compound [MN] is unstable and quickly decays into components, then the 
concentration C[MN] becomes proportional to the product of concentrations of the initial substances: 

[ ]MN M NC C C  and formula (2) transforms to formula (1). 
Processes of lower order (first-order reactions) are possible. For example, in the process of decay 

of a complex molecule into two simpler molecules, the decay rate is proportional to the concentration of 
the substance decaying: 

 M N Q M Mv k C  

but not to the probability of their meeting. 
There are also possible zero-order reactions which rate is independent of concentrations, for 

example, processes in which substance flows into (or flows out) the reaction region (or from the reaction 
region) at a constant rate. 

We can also use similar  formulas for  rates  when the number of  reacting molecules  is  small.  The 
limiting case is case if there is only one molecule in the reaction region. If this molecule reacts 
irreversibly turning into another, then the process ends, such case being not interesting. However, if this 
molecule is a catalyst, i.e. it reacts with another molecule which is a substratum (there being a lot of 
substrata  in  the  reaction  region),  it  processes  a  substratum,  it  turns  a  substratum into  a  final  product,  a  
catalyst itself recovering to previous form (regenerating), then for sufficient time, this one molecule of a 
catalyst may process a lot of molecules of a substratum. For this, it is necessary that processing time, i.e. 
time during which the catalyst and substratum are in bound state, may be much less than monitoring time. 
Then we can speak about the probability p to find the molecule of the catalyst in a free state or the 
probability 1q p  in a bound state. In the kinetics of the formation of the catalyst-substratum complex, 
the probability p would play the same role as the concentration of free molecules of a catalyst if there 
were a lot of them.  

The example given is not an abstraction. In the application of chemical kinetics to biological 
objects, we often encounter such a situation. The number of molecules of some specific substances, i.e. 
enzymes, in a cell, is often calculated with unities. The application of equations of chemical kinetics to 
describe such systems is very necessary. 

Any real process consists of many separate stages as a rule. Thus, the mathematical model of the 
process (the model of a chain of reactions) involves many elementary acts. To construct the full 
mathematical model of the process, it is necessary to express rates of change of concentrations of 
different  substances  in  terms  of  rates  of  separate  elementary  reactions.  The  rate  of  change  of  

concentration of each substance idC
dt

 is a derivative of the concentration iC  with respect to time t . It is 

equal to the difference between rates of formation and disappearance of this substance in separate 
reactions. If we write differential equations for all the components of the process (let their number be 
equal to n), then we get the system of differential equations: 
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 (3) 

The number of differential equations in this system is equal to the number of variables, i.e. the 
number of various substances taking part in the process. Then the system is always closed.  

The functions 1 2( , , , )i nf C C C  are algebraic sums of rates of separate reactions; as a rule, these 
functions are rational and often are polynomials of low degrees determining by the order of corresponding 
reactions. 

Consider the reaction catalyzing by a biological catalyst (an enzyme), that is by a large protein 
molecule (i.e. by macromolecule which molecular weight is of the order of hundreds of thousands), often 
containing a special group of non-protein nature, i.e. coenzyme [2], [3]. The mechanism of catalysis is as 
follows: first, the molecule that turns, so called substratum, as a rule, is a small molecule that joins 
enzyme and forms a complex. Then the enzyme processes the molecule of the substratum: either breaks it 
down or interchanges or replaces some groups of atoms. This usually takes place in several stages. The 
enzyme produces the molecule (product) formed ready, i.e. the substratum S connecting with the enzyme 
F, forms the complex [FS]:  

 1 2

1
[ ] .

k k
k

S F FS P F  (4) 

The coefficient k+1 is  a  constant  of  a  rate  (or  an absolute  rate)  of  the reaction of  synthesis  of  the 
complex. The reverse arrow indicates that the reaction is reversible; the absolute rate of decay of the 
complex is k–1. The arrow on the right of [FS] means that the complex decays into the product P and the 
enzyme F at the absolute rate k+2. 

For simplicity, we consider this reaction to be irreversible which is in most cases. The process of 
synthesis of the complex is a second-order reaction and the process of its decay is a first-order reaction.  

Denoting, for simplicity, concentrations of substances by the same symbols which were denoted 
substances by, according to the reaction scheme (4) and taking into account (3), we write the system of 
equations: 

 

1 1

1 1 2

1 1 2

2

[ ],

[ ] [ ],

[ ] [ ] [ ],

[ ].

dS k FS k FS
dt
dF k FS k FS k FS
dt
d FS k FS k FS k FS
dt
dP k FS
dt

 (5) 

 Positive terms in the system of equations (5) describe the grow of corresponding concentrations 
and negative ones describe their decline.  

The condition of conservation of enzyme molecules in the reaction simplifies the system of 
equations (5). Indeed, if we add the third differential equation of the system (5) to the second one, we 
obtain: 

 ( [ ]) 0d F FS
dt

 

or 

 0[ ] const,F FS F  (6) 
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where 0F  is initial concentration of the enzyme, F  is  concentration  of  a  free  enzyme,  [FS]  is 
concentration of a bound enzyme. 

Thus, one of the differential equations of the system (5), for example, the second one can be 
replaced by the algebraic relation (6) which expresses the law of conservation of the enzyme in the 
reaction. 

We separately write the third differential equation of the system (5) taking into account (6): 

 1 0 1 2[ ] ( [ ]) [ ] [ ]d FS k F FS S k FS k FS
dt

 

or 

 1 0 1 2 1[ ] [ ]( ).d FS k F S FS k k Sk
dt

 (7) 

Consider a stationary (concerning [FS]) solution of the differential equation (7), i.e. put [ ] 0d FS
dt

 

where [ ] const [ ]FS FS . Then for the stationary (constant) concentration of the complex [ ]FS , from 
the differential equation (7), we obtain: 

 0[ ]
m

F SFS
K S

   or   0[ ] ,
m

SFS F
K S

 (8) 

where 1 2

1
.m

k kK
k

 As mS K , then from the formula (8), we obtain 0[ ]
2
FFS , namely in this case, 

a half of the enzyme molecules is in the state of the complex.  
The concentration of the enzyme F being much less than the concentration of the substratum S, 

during the “turnover” time of the enzyme, the concentration of the substratum changes very slightly. As a 
rule, characteristic concentrations of substrata and products, during biochemical reactions, are of the order 
S P from 210  to 310  mole per litre and the concentration of the enzymes F from 510  to 610  
mole per litre. It is necessary for the enzyme “to work” for a long time to substantially change the initial 
concentration of the substratum. It is such situations that are in studies of enzymatic processes in vitro. 
Processes occur similarly in a live cell. The substratum enters the cell from the environment.  

Since for the stationary mode [ ] 0d FS
dt

, then from the third differential equation of the system  

(5), we get: 

 1 1 2[ ] [ ].k FS k FS k FS  (9) 

Thus, for the stationary (concerning the concentration of the bound enzyme [ ]FS ) mode the system 
of equations (5) taking into account (9) and (8), takes on the form: 

 
2 01 1 2

2 2 0

,[ ], [ ],

[ ] .

m

m

dS SdS dS k Fk FS k FS k FS dt K Sdt dt
dP dP dS dP Sk FS k F
dt dt dt dt K S

 (10) 

As it is seen in (10), dP dS
dt dt

, namely if the substratum does not enter additionally from outside, 

the rate of decrease of the concentration of the substratum dS
dt

 is  equal  to  the rate  of  increase of  the 

concentration of the product dP
dt

, which corresponds to the law of conservation of substance.  

The system of equations (10) reflects the main property of enzymatic reactions, that is saturation. 
Indeed, as we see from the second equation of the system (10), as concentrations of the substratum are 
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low, the rate of product synthesis depends strongly on S and as S , the rate of product synthesis 
takes a constant independent of the concentration of the substratum value 2 0k F  where 2 0k F  is  a  
maximum rate of the enzymatic reaction and a  constant k+2 is an enzyme turnover number indicating how 
many acts of catalysis the enzyme can make per unit time when fully saturated with the substratum.  

The characteristic time of the enzymatic reaction F  depends on the enzyme turnover number k+2 

(or on the time 
2

1
k

 for which one enzyme turnover is occurred) but it is much greater than . Indeed, 

the denotation F  means  such  time  for  which  the  enzyme  manages  to  process  a  great  amount  of  the  

substratum. Then taking into account the first equation of the system (10) and assuming 1
m

S
K S

, we 

can determine F : 

 
2 0

.F
S S
dS k F
dt

 

Thus,  

 3

0
10 .F

S
F

 

Similar to formulas (5)–(10), we can obtain formulas describing stopping of enzymatic reactions by 
special substances, i.e. inhibitors. It is very important because it enables us to control biochemical 
processes.  

In  nature,  as  a  rule,  enzymes  rarely  work  at  “maximum  power”  they  are  often  taken  with  a  
“reserve”. Regulation of biochemical processes is carried out by inhibiting activities of enzymes and 
managerial regulatory apparatus of a cell is an apparatus of “violence and inhibition”. To speed up the 
process, the cell decreases stopping and to slow the process, it increases stopping. Biochemical processes 
regulate themselves in such a way. 

As a rule, inhibitors are relatively small molecules often similar in structure to the molecules of 
substrata or products.  

There are two types of stopping (inhibition): competitive (isosteric) and non-competitive  
(allosteric).  

In the first case, the inhibitor is similar to the substratum and can take the place of the substratum in 
the active center; the inhibitor and substratum seem to compete for the same place on the enzyme, namely 
it is “the competitive stopping”. 

In the second case, the inhibitor is not similar to the substratum and joins the enzyme molecule in 
another place. However, it does not interfere with the formation of the complex but paralyzes the work of 
the enzyme, i.e. interferes with the formation of the product.  

In the case of competitive (isosteric) stopping, the second equation of the system (10) takes on the 
form: 

 2 0
0

.
m

i

dP Sk F Idt K S
K

 (11) 

 
In the case of non-competitive (allosteric) stopping, the second equation of the system (10) takes on 

the form:  

 2 0
0

.
( ) 1m

i

dP Sk F
dt IK S

K

 (12) 
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In the formulas (11), (12), 0I  is a concentration of the inhibitor, iK  is an inhibitor constant 
determining by rates of formation and dissociation of the enzyme and inhibitor complex.  

Along with the inhibitors are substances which can enhance the activity of the enzyme and speed 
up its work. This regulation method can be called the encouragement method.  

The essence of the process is as follows: special substance, i.e. the activator A connects with the 
enzyme F or with the existing enzyme and substratum complex; along with the common reaction 

 2[ ] kFS P F  

occurs the decay of the triple complex: 

 2[ ] [ ]
akFAS P FA  (13) 

where 2 2
ak k , namely the decay constant of the active complex is much greater than of non-active 

one. In this case (if we neglect 2k  compared to 2
ak ), the rate of release of the product (taking into 

account the second equation of the system (10) and according to the scheme of the reaction (13)) can be 
written in the form: 

 2 0
a

m a

dP S Ak F
dt K S K A

 (14) 

where aK  is an activation constant.  
Conclusions. Thus, mathematical analysis of some types of enzymatic reactions is made in this 

article. Obtained formulae (10)–(12), (14) enable us to determine the rate of release of a separate reaction 
product.  
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