
 " : , , "
, 2017. 28-29

© .

20

 004.451
V. Melnyk
Lutsk National Technical University

MODELING OF THE MESSAGES SEARCH MECHANISM IN THE MESSAGING PROCESS
ON BASIS OF TCP PROTOCOLS

. TCP.
 TCP/IP-

.
 TCP-

.

 TCP- ,
, .

,

.
: , , , , .

Melnyk V.M. Modeling of the messages search mechanism in the messaging process on the basis of TCP protocols.
In this paper a traditional socket interface expansion for the implementation of TCP/IP communication with the involvement of a
new mechanism is modeled for data retrieval instead of their traditional receipt in the established queue order. A message finding
approach through a TCP socket allows the user program to receive the expected data packet by skipping the queue for the
previous passage of all required packages to receive them in connection order. With the use of the reciprocal search procedure for
messaging, the application or library can consider the TCP socket as a typical list of message packets that can be received or
deleted along with their data from both: the top of the socket buffer and any arbitrary position of the socket in the message stack.
The simulated message search approach facilitates the data copying process between the message library and the user code,
bypassing first the need for unwanted data copying operations in the library buffer before they are received and subsequent
displaying of the received messages in the socket buffer.

Keywords: network interface, socket, message search, procedure of copying, performance.

.
TCP. TCP/IP-

. TCP-

.

 TCP- ,
, .

,

.
: , , , , .

1 Introduction. High-performance cluster computing are mainly used to perform long-term
cumbersome calculations of a scientific or applied nature. Such calculations can be divided into separate
computational parts and assign each of them to run on one or even several computers. Computers with the
appropriate frequency are sending the data and messages to each other in order to update the information
integrity related to the computing distribution, or to provide other computers with the data required as
parameters or additions for the subsequent parts to make calculation. The leading structures based on cluster
components [1-3] can provide a flexible and efficient environment for applications with intensive data processing
on distributed platforms [4]. For such structures, the applications are specifically developed from a set of selected
interacting software components, which, along with the computing resources, are important in terms of flexibility
and optimization of the program performance.

The publication [4] also describes that in many applications with intensive data processing, the volume
of data can be divided into user-defined sub-blocks that can be computed like pipelined one. If the organization of
work processing and communication may overlap, then the productivity improvement also depends on the
computing blocking and the size of messages, named data sub-blocks. There is noted that small blocks of data
lead to improve the loading balance and piping, and in the communication practice many messages for this matter
are generated with blocks of small sizes. However, the larger blocks reduce the number of messages and reach
the higher bandwidth in the communication channel, but probably make a load imbalance and reduce the
conveyance.

 " : , , "
, 2017. 28-29

© .

21

Along with the demands of performance and data processing intensity, the applications written using
kernel and TCP/IP socket interfaces also have other requirements, such as performance guarantee, scalability of
these guarantees and adaptability to heterogeneous networks. To allow such applications to get an advantage of
high-performance protocols usage, the researchers have used a several approaches, including performance of
high-performance socket levels through the user-level protocols. To these approaches are included: the virtual
interface architecture implementation and InfiniBand technology architecture [5]. The applications used them
should be written in taking into account the saving of the connection performance in TCP/IP.

The literature results show that because of the individual components reorganization in such applications
there are achieving the significant improvements in application performance, which leads to an increase of the
performance guaranty scalability and balancing with the small blocks loading. This approach in turn makes these
applications more adapted to heterogeneous networks. The different socket characteristics worked on the virtual
interface architecture allow for more effective data division at the output nodes, which increases the performance
up to one order. In union with high performance the sockets with low overhead allow the applications to achieve
quality results in many measurement areas that can be used in designing, developing and implementation of
applications with intensive computing on modern clusters.

Despite the cluster structure allows many computers to be used as fully as possible to reduce the
time spent on computing, yet clustered computer systems suffer overhead during the required high-
performance computer communications. The overheads to perform such calculations also depend on the
number of computers in the cluster, the libraries used to facilitate communication, and the choice of the
interface between computers and other component units within the computing cluster. Despite the wide
experimental results for cluster interactions, some studies have demonstrated the interdependence of
efficient library design for messaging in clusters that use TCP/IP and Ethernet components to achieve the
performance comparable to proprietary interconnects [6, 7].

Fig. 1. The dependence of the expected message receiving effectiveness from the previous messages
in the queues and unexpected messages

The overheads dependence that appeared when using messages based on TCP/IP protocols depends

not only on the message sizes and their receipt frequency, but also on whether the message is expected or
unexpected. A message may occur as an unexpected one if its data is received by the receiver before a
system call to the library in order to receive such message in the memory buffer on the user program
level. It is known [7, 8] that unexpected data is first copied to a temporary library buffer. For sending
messages through TCP/IP protocols, the message can be considered as received when its data appears on
the network, and the TCP stack places it in the connection socket buffer between the two communicated
hosts. Fig. 1 shows us a situation where host expects the appointed message along with unexpected
messages in the socket buffer that were arrived to the system at the same time or before. For example, the
system expects a message with the interface of its transmission with a specified type of tag [9]. The
message passing interface (MPI) is a standardized and portable messaging system. It was developed by a
group of scientific and industrial researchers and appointed for implementation on a variety of parallel
architectures to make a data computing. In cluster communication practice, there is present several quite
effective interface implementations, many of which are free-license available and open to use. These
raised an approach that pushed for parallel software development and large-scale and portable
applications creation that are designed to perform parallel computing. In case of the network
communication, the operating system socket interface for TCP protocols receives certain bytes from the
formed connection in the established order, using one of the system calls: recv() or read().To count this it
first need to release the socket from the previous unexpected messages in order to access the expected
message in next step. In the general process of message receiving by applications, these data most likely

 " : , , "
, 2017. 28-29

© .

22

are to be needed later, then each of them should be copied to the reception pool of unexpected messages.
Such operations of unexpected messages copying cause significant overheads. In the next step, before to
receive the expected message on application level, it need to check first the pool of unexpected messages
receiving, and only then to call for the message to receive it at the socket level.

The purpose of this work is to simulate the usual socket interface of the operating system for its
extension through which it can be possible to access the random expected message, i.e. to its location in
the socket buffer, bypassing the receiving queue of all previous incoming messages that were arrived
before expected one. The new advanced interface should perform the search for the required information
(message) in the socket buffer and allow the user to receive the expected message from any stack position
bypassing the operation of copying the previous messages into the pool of unexpected messages that
arrived before the specified expected message (fig. 1). From the side of the development requires
implementation it need to involve the multiple search process. The messaging program or the usage
library should consider the TCP socket as a list of messages that can be received by the user application,
and during the receiving procedure it need immediately to delete the received data not only from the top
but from the arbitrary point of the socket buffer, where expected message was set.

An interface for sockets that search for messages in the stack by the method described above is
complementary to those works that aim to increase the performance of the messaging process by using
TCP protocols. Among them can be selected those works, that are focused to use a re-constructed
libraries with a more efficient design. These libraries can be managed by events from the side of its own
complementary architecture [10] and/or can use a special support from the side of hardware
reconfiguration, other than the generally accepted, or the network card interface. The second type of re-
constructed libraries can be those that are based on TCP-level splitting [7, 11]. However, this work is
based on the efficiency of using the operating system interface on the socket level. Therefore, the model
described in this paper should collaborate with ideas that focus on supporting the network card interface
or on usage a well-designed library to enhance the performance of other system components for TCP
messaging.

The interface to perform a search procedure of the expected message on the socket can be
developed and implemented on the basis of the Linux kernel and verified by using the method of a simple
microbenchmark, the data for which is obtained outside the query, implemented for this socket. The
results of some qualitative calculations reveal that reducing of the processing time with using sockets that
directly search the message in the stack should reach more than on a third part. The performance growth
of such system will depend on the receipt of expected messages with large volume or the number of
messages that are to be bypassed in the receiving queue.

Fig. 2. The algorithm of the recvmsg() function for the Linux-based TCP messaging

2 Basics of the functions work on Linux TCP. The TCP stack under control of the Linux kernel

works with socket buffers that are mentioned in literary sources as sk_buff's, sock_buf's or simply skb's.
The data packets in the receiving process are received by the network device, they are placed in a ring
buffer, and sk_buff is assigned to the data and associated to them. The buffer sk_buff saves the metadata

 " : , , "
, 2017. 28-29

© .

23

for each package, and the stack of the Linux operating system for TCP/IP, interacting with sk_buff to
process the data packet. For each particular connection sk_buff is placed in the socket buffer queue.

To facilitate the procedure for receiving them in the correct order and managing the packages, for
each of them is assigned a serial number in the queue, which specifies the number of bytes sent for each
packet particularly during the connection. The implementation like this allows to recover packets on the
reception side during retry at the network level and remove data from socket buffers. The user application
does not know or should know the ordering of the data in the packets or the timeliness of their receipt in
the network. Tasks that are solely associated with a user's application are considering in that, how data
elements are sent from a source and their real fixed lengths.

When the user proggram makes a call any of recv(), recvfrom() or recvmsg() functions on the TCP
socket, then tcp_recvmsg() function is used in the kernel (e.g., net/ipv4/tcp.c). Fig. 2 shows a working
algorithm chart for these functions. The tcp_recvmsg() function begins the data copying from sock_buff’s
buffers in the socket queue which point to the actual data placed in the ring buffer. The function checks
the first skb in the socket buffer, and then copies the data to the user's space buffer. If skb has more data
than is requested, the tcp_recvmsg() function leaves a "reminder" in the socket buffer queue. If the user
requests more data than the data amount placed on the first skb, it is selecting along with the
corresponding data in the ring buffer, and the specified steps described above continue with the next
going skb in the queue. By default, the function tcp_recvmsg() returns all query data from the socket
buffer after the full read procedure in full volume, removing all the skb's buffers that contained their data,
and updates the sequence number of the first byte to perform the next socket reading operation.

TCP usually uses sequence numbers to track the way that was read from the socket buffer, and
determines the continuation order of the readout procedure. At each step, the copied_seq variable, which
records the order of the duplication, receives the sequence number for which the data will be read. In
other words, this variable will contain an ordered sequence of what has already been copied and that will
be read further from the reception queue. In this case, if the sequence of numbers copied_seq was greater
than the number of the first basic skb sequence, and the part has already been read from it, then the full
length of the data request will be copied starting from the sequence number specified in the copied_seq.
Thus, using the sequence numbers will be used to determine the data that the reception request should
read from the socket.

3 Implementation of additional socket search procedure. The main purpose of using sockets
that are directly seeking for a message in a queue is to receive data placed on the socket receiving buffer
in any order. When the data is copied from the socket, the corresponding skb with the copied data must be
removed from the buffer, and the current list of skb’s should also be corrected. As data that was read in
the sequence numbers is no longer present and available, then the subsequent requests for their receipt on
the socket should "know" and take into account that these data are missing in the buffer. This can be
implemented through a connection list that contains the initial and final sequence numbers for each "hole"
in the socket reception buffer. Creating a hole frees up memory space in the socket buffer and allows to
normalize the behavior of the TCP stream independently from the location place in the buffer from which
the data was deleted. When the reception request begins the process of data copying to the user, it avoids
any met hole on the path and continues normally to receive the data from the ordinal number that follows
after the hole. In the process of the data receiving the list of holes increases with their integrity, and at the
same time takes place the dynamic reduction associated with their removal.

The model developed in this paper proposes to create a new streaming protocol
SOCK_FIND_STREAM. It should use the same stack as the TCP and ordinary SOCK_STREAM
sockets. However, the basic functions should be modified so that it could be possible to make search of
the sockets with SOCK_FIND_STREAM type. If a socket request is performed to a socket that does not
make the search procedure, or if the call does not find the package that is expected to receive, then the
way through the TCP stack with its functions is almost identical to the code used by the normal Linux
kernel. But when the search request is performed on the socket that makes the search procedure, then the
way through the TCP stack remains the same, only may change the code way through separate functions.
Basically, the changes are related to the tcp_recvmsg() function code that is introduced into this function.
All the introduced modifications are required for managing the list of holes, their sequence numbers and
skb 's, which have already been read yet.

Another major change should be made in the function tcp_recvmsg() that relates to the procedure
for socket obtaining on which the search procedure has to be made. It includes a disabling of the TCP
queue pre-loading mechanism. Although the TCP queue pre-loading mechanism allows some better
manage with the stream resources in the exchange process, however it causes a slight decrease in

 " : , , "
, 2017. 28-29

© .

24

performance. Also in the general messaging procedure, it is not possible to easily change the downloading
queue to allow further searches. In connection with the foregoing, the pre-loading mechanism was turned
off at the receiving moment on the socket that makes the search.

After the SOCK_FIND_STREAM socket has been created, the known above functions recv() and
recvmsg() can be used as ordinary functions. The new search function find_recv() should be realized like
a system call, that needs to get the following arguments:

size_t find_recv(int s, void *buf, size_t len, int flags, size_t offset);
The arguments to call find_recv() are identical to the function recv(), with the change added to indicate
the number of bytes to be transmitted to the stream. This offset always points to the first byte that must be
obtained through the use of recv() system call.

Since the call find_recv() changes structure msghdr, and then calls the general function
sock_recv(), then the standard library function recvmsg() can also be used to search for recipients. The
variable msg_find has been added to the msghdr to indicate a search offset. By modifying the msghdr
structure taken to the function recvmsg() it is easier to search for the package that is expected to be
received without the new special function involvement. In order to be able to search previous messages of
a large size, it need to increase the maximum message reception buffer size. This parameter adjusts the
system variable net.core.rmem_max(sysctl). It allows to set the maximum buffer size for each received
message. The maximum buffer size can be reset by using the known function setsockopt(). Consequently,
the parameter sysctl should be set to a sufficiently large number of bytes, and the reception buffer should
be increased, if necessary, over the entire interval of the user program work. In the case where the buffer
is fully filled, then the usual TCP actions are executed, and the call to receive the result in the course of
the search implementation should return an error. Then the program should clearly respond to the error of
the socket buffer overflow and delete some data remaining in the buffer to release more space in the
kernel.

5 Conclusion. In this paper the model for a new socket level extension is proposed, which allows
to get an irregular access to expected message from a single TCP connection. The interface for sockets
with searching procedure for expected message and obtaining data outside the query is proposed, which
in the opinion of the authors can be implemented in Linux system. The model shows that for developing
start of an application code are required only small changes to implement message exchange.

1. Beynon, M. D. Distributed processing of very large datasets with DataCutter. [Text] / Beynon M. D., Kurc T., Catalyurek U.,

Chang C., Sussman A., Saltz J.// Parallel Computing – October 2001 – 27(11) – .1457-1478.
2. Oldfield, R. Armada: A parallel file system for computational. [Text] / R.Oldfield, D. Kotz //In Proceedings of CCGrid2001 –

May 2001. – .194--201.
3. Plale, B. dQUOB: Managing Large Data Flows by Dynamic Embedded Queries [Text] / Plale B., Schwan K.// IEEE High

Performance Distributed Computing (HPDC) – August 2000 – .1-8.
4. . . , . . , K. . . /

 «ScienceRise» 6/2(11)2015. – . 38-48.
5. Infiniband Trade Association. [] / : http://www.infinibandta.org.
6. M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control. IETF RFC 2581, April 1999.
7. N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic, and W.-K. Su. Myrinet: A Gigabit-

per-Second Local Area Network. IEEE MICRO, 15(1):29–36, 1995.
8. P. Buonadonna and D. Culler. Queue Pair IP: A Hybrid Architecture for System Area Networks. In Proceedings of the

29th International Symposium on Computer Architecture, pages 247–256, May 2002.
9. D. Dunning, G. Regnier, G.McAlpine, D. Cameron, B. Shubert, F. Berry, A. Merritt, E. Gronke, and C. Dodd. The

Virtual Interface Architecture. IEEE MICRO, 18(2):66–76, March 1998.
10. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. Hypertext Transfer Protocol.-

HTTP 1.1. IETF RFC 2616, June 1999.
11. S. Majumder and S. Rixner. Comparing Ethernet and Myrinet for MPI Communication. In Proceedings of the Seventh

Workshop on Languages, Compilers, and Run-time Support for Scalable Systems (LCR 2004), pages 83–89, October
2004.

12. S. Majumder, S. Rixner, and V. S. Pai. An Event-driven Architecture for MPI Libraries. In Proceedings of the 2004
Los Alamos Computer Science Institute Symposium, October 2004.

13. S. H. Rodrigues, T. E. Anderson, and D. E. Culler. High-Performance Local Area Communication With Fast Sockets.
In Proceedings of the 1997 USENIX Technical Conference, pages 257–274, January 1997.

14. T. M. P. I. Forum. MPI: A Message-Passing Interface Standard. International Journal of Supercomputer Applications,
8(3/4), 1994.

15. V. Melnyk, N. Bahnyuk, K. Melnyk, O. Zhyharevych, N. Panasyuk. Implementation of the simplified communication
mechanism in the cloud of high performance computations. East-European journal of Enterprise Technologies. –
Kharkiv (Scopus, DOI: 10.15587/1729-4061.2017.98896). – 2017. – 2/2/86. – p. 24-32.

16. P. Gilfeather and A. B. Macabe. Making TCP Viable as a High Performance Computing Protocol. In Proceedings of
the Third LACSI Symposium, October 2002.

