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В работе рассматривается математическая проблема 
определения взаимного положения и ориентации двух орбитальных 
аппаратов по данным видеосъемки. Обсуждаются недостатки простейших 
процедур оценивания, основанных на прямом (попиксельном) сравнении 
изображений, и предлагается более строгий метод, обеспечивающий 
быстрое и точное оценивание относительных параметров. Метод 
составлен из трех основных частей (инициализация, обновление и 
наблюдение), каждая из которых допускает независимую программную 
реализацию. Предложенный алгоритм тестировался на упрощенной задаче 
и обнаружил высокую точность получаемого результата. 

Ключевые слова: орбитальная стыковка, оценивание 
положения и ориентации, орбитальная видеосъемка, техническое зрение. 

 
В роботі розглянуто математичну проблему визначення 

взаємного положення та орієнтації двох орбітальних апаратів за даними 
відео зйомки. Обговорюються недоліки найпростіших процедур 
оцінювання, що ґрунтуються на прямому (попіксельному) порівнянні 
зображень, і пропонується більш строгий метод, що забезпечує швидке та 
точне оцінювання відносних параметрів. Метод складається з трьох 
основних частин (ініціалізація, оновлення та спостереження), кожна з яких 
може бути реалізована незалежно від інших. Запропонований алгоритм 
випробувався на спрощеній задачі та показав високу точність 
одержуваного результату. 

Ключові слова: орбітальна стиковка, оцінювання 
положення та орієнтації, орбітальна відео зйомка, технічний зір. 

 
 
INTRODUCTION 
 

The problem of mutual pose estimation of two spacecraft (a target with 
respect to a chaser) relates to the area of space rendezvous. Its solution strongly 
relies on technical facilities of each participant of the process. Natural docking 
conditions assume that the shell of the target is equipped with special reflectors 
which simplify its tracking by the chaser by means of built-in location tools. This 
case allows the easiest possible solution which consists in selection of attitude and 
position of the target for which computed configuration of reflectors coincides with 
the actually observed. 

In this article we considered situations which do not assume friendly docking 
interfaces such as reflectors. Target objects corresponding for such situations 
would be further referred to as non-cooperative space objects (NSO). They include 
broken-down satellites and other parts of space debris. Thus, the docking problem 
should be reformulated as the berthing problem which consists in capturing NSO 
by the onboard manipulator of the chaser. Noted conditions require specific 
methods for estimation of position and attitude of the target object with respect to 
the chaser. These methods are generally based on computer vision techniques and 
machine learning theory. 
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PROBLEM STATEMENT 
 

Each object is being associated with its reference frame (RF) whose directions 
are fixed with respect to the shell. By relative attitude (relative position) we will 
understand attitude (origin position) of the target RF within the chaser RF. For the 
sake of brevity we will further skip the word relative when referring to these 
notions. Attitude is specified in terms of traditional parameters such as Euler angles 
or quaternion which characterize angular position of the axes of the target frame 
with respect to the same axes of the chaser frame. Hence, the problem is reduced to 
determination of mutual position and orientation of reference frames. Parameters to 
be determined we will refer to as configuration variables and denote as a 6-DOF 

vector Trx ),( Ω= , where r  is a radius-vector connecting target RF with chaser 
RF, Ω  is a vector of Euler angles. 

Traditionally, there are two major approaches for solving specified problem. 
• Feature-based approaches assume preliminary selection of visual 

features of observed object and loading them into the memory of the onboard 
computer. Basically, visual features represent a set of texture spots belonging to the 
object shell surface. Information to be obtained must be enough to recognize 
correlation between geometric appearance of features and configuration variables 
of the object. In this area, one of the most powerful methods is based on scale-
invariant feature transform (SIFT) [1], which is notable for its relatively high 
performance, but is useless for objects with uniform texture. 

• Model-based approaches require the visual 3D model of an object 
under observation to be available during execution. It should be noted that for most 
artificial orbital objects such model is really available (or, at least, reproducible) 
along with other design information. 

The purpose of the article is to construct a model-based algorithm for online 
solving aforementioned problem. 

First, it is essential to define the concept of model. To wide extent, this term 
covers any data structure whose content uniquely describes space configuration of 
the object. This interpretation assumes to consider as a model any mathematical 
construction which is enough to restore position and attitude of the object. In 
particular, model-based approach formally involves feature-based and reflector-
based approaches. We will deal with the visual models in their proper sense, i.e. 
with wire-frame models which characterize geometry of the object. 
 
DEVELOPMENT OF A MODEL-BASED ALGORITHM 
 

The simplest solution of the stated problem assumes considering a camera 
snapshot as 2-dimensional array of fixed size whose items encode the color of 
pixels of the image. Given this array it is possible by means of exploring local 
variation of color intensity to build a bitmap corresponding to a contour of 
observed object. The bitmap representation is equivalent to specifying discrete 
indicator function for those pixels of the image where the largest color difference is 
localized. Next, it is being compared with virtual (synthetic) plane projections of 
3D model corresponding to the plane of CCD-sensor. As the comparison criterion 
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it is usually taken the quadratic functional defined on the set of all matrices of 
given order, wherein the comparison test is implemented as the least squares 
method for this functional. We stress the fact that this solution is ineligible at real 
conditions since it is non-scalable depending on object position and assumes that 
image of the object is strictly fixed within the bounds of the snapshot. Furthermore, 
its implementation requires significant computational resources. 

Thereupon, it is reasonable to divide the solution into several generic stages 
listed below. 

• Initialization is intended to discovering rough initial approximation of 
configuration variables. 

• Pose refinement provides adjustment of previously estimated values 
as updated video information arrives. This stage is implemented as a recurrent 
procedure where the first step uses initial approximation and each subsequent step 
is based on the previous one. 

• Pose tracking, i.e. further adjustment of the result provided that 
equations of motion are available. If these equations are given the stage is being 
merged with the previous, if equations are unknown the stage is being skipped. 

The content of the further subsections is devoted to the detailed discussion of 
each of the listed stages. 

Initialization. As stated above, initial approximation is obligible for 
subsequent stages due to their recurrent nature. It is required both for preliminary 
tuning of estimation algorithm and for the case when the target is being lost to view 
or computational fail occurs. Note that this stage is redundant if there are other 
sources of initial approximation. 

Initialization stage should be implemented as a self-suficient procedure which 
in its turn does not require any initial approximations. Thus, it may be much more 
computationally intensive than further stages. However, since initialization is 
nonrecurring (i.e. one-time-only), this claim is mainly defensible. 

Implementation of the stage may be based on the well-known techniques from 
the theory of pattern recognition [2, 3]. 

Let’s consider a procedure of initial estimation which is based on the methods 
of linear algebra [3]. To be exact, a video frame from CCD-sensor is being 
matched with the certain collection of previously prepared images which make up 
a training set and correspond to the known values of configuration variables. The 
result of the matching is an image from the training set which is closest to the 
actual image from CCD-matrix. Its configuration values approximately 
characterize position and attitude of the target. In order to make it possible to 
match and compare images, we build a certain linear space whose basis is 
composed from the items of the trainig set. The structure of this space makes it 
possible to approximate arbitrary image of given resolution as a linear combination 
of basis images, wherein proximity is understood in the metric sense. 

Implementation of any image processing method assumes specific convention 
about the image storage format. Traditional representation of a raster graphical 
object involves specification of a bitmap, i.e. a matrix of the fixed size mn×  
whose entries characterize color of each pixel. For the aims of the present method, 
this matrix should be transformed into nm -vector by means of arrangement of 

 В.А. Симаков, В.Ф. Губарев, Н.Н. Сальников, С.В. Мельничук, 2016 
ISSN 2519-2205 (Online), ISSN 0454-9910 (Print). Киб. и выч. техн. 2016. Вып. 185. 



 

38 

neighbouring columns into a single column. As the result of this operation we will 
get a set of p  vectors that correspond to the training set of p  images. 

Note that the color is usually defined as an object of a certain color space. 
Such a space has a fixed set of primary colors (color channels), all other colors are 
generated as combinations of primary colors with the use of color coordinates. 
Each color coordinate characterizes the value of color intensity regarding 
appropriate color channel. In practice, the RGB color space (with Red, Green and 
Blue primary colors) is widespread. If the image is monochrome, one confines 
himself with a single color channel. But in the case of color images, the set of 
bitmaps corresponding to each channel should be specified separately. To keep 
things simple, we will consider only monochrome images. 

Further calculations utilize the linear span of the training set of p  vectors. In 
order to construct an orthonormal basis for this span, we make up rectangular 
matrix A  of size pnm ×  and apply singluar-value decomposition (SVD): 

TVUA Σ= , (1) 

where U , V  — orthogonal matrices of order nm  and p  respectively, 
Σ  — pnm × -matrix with singular values on the diagonal and nulls on other 
places. Singular values generalize the concept of eigenvalues for the case of 
rectangular matrices. By definition, they are arithmetic square roots of common 

part of the set of eigenvalues for the matrices AAT  and TAA . Representation (1) 
gives an opportunity to select the orthonormal basis corresponding to the original 
training set. Indeed, according to geometric meaning of SVD [4], matrix U  is 
comprised of principal axes of an ellipsoid which is obtained from a unit sphere 
under transformation A  with singular values corresponding to principal 
components of the ellipsoid. If some of principal components are insignificant 
compared to others they and their training images may be regarded as negligible as 
considered ellipsoid degenerates to the ellipsoid of lower dimension. As far as 
diagonal entries of Σ  are filled with the singular values in non-increasing order, all 
images with small singular values are localized at the end of the training set with 
indices pp ,1,~ K+ . Then the columns of the matrix U  with numbers p~,1,K  
constitute orthonormal basis for the linear span of the training set. 

For the further construction we need to modify original decomposition (1) in 
the following way. Let pnmEE ×=  be “rectangular unity”, i.e. identity matrix of 

order ),(min pnm  augmented with null rows or columns to the size pnm × . Since 

IEET = , we have: 

pp
T

pp
T

pnm
TTT VEUEVUEEVUA ××× Σ=Σ=Σ= )()()( . 

We now redenote UEU =: , Σ=Σ TE:  and consider U  as an pnm × -matrix 
everywhere in what follows. 
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Given the orthogonal basis puu
~1 ,,K  as the columns of the orthogonal matrix 

U , one can easily take projection of an arbitrary vector pRe∈  on the span 
puu
~1 ,,K : 

∑
=

≈
p

i

i
iuce

~

1
 (2) 

with coefficients ),( i
i uec =  taken as dot-products of the vector e  with each of the 

basis vectors. Vector ),,( ~1 pccc K=  is approximation of e  in the subspace 

generated by the span puu
~1 ,,K . If pww ,,1 K  are corresponding expansions of 

the vectors of the training set in the same basis then the closest to e  will be an 

image whose vector sw  has minimal euclidean distance |||| cws − . 
Regarding to the procedure of image fitting it should be noted the following. 

At first, in order for the method to give correct result, it is required the large 
training set to cover as many different geometric configurations of the target as 
possible. At second, the distance between the object and camera can be estimated 
by introducing additional parameters specifying the scale. This implies the 
procedure of fitting to be modified in the way that the sought-for coefficients 
include these scale parameters. In the similar manner, it is possible to take into 
account the layout of the target image inside the video frame as well as planar 
affine transformations (such as rotations and distortions) within the frame. Finally, 
in the case of noisy images, expansion (1) with the use of usual dot-product can 
cause severe divergence. The thing is in the fact that approximating vector c , 

whose elements were found as the dot-products on iu , corresponds to the 
minimum of quadratic error: 

2

1

~

1
)( ∑ ∑

= =










−=

nm

j

p

i

i
jij ucecE . (3) 

Actually, this means that coefficients ic  are being obtained by the least 
squares method (LSM). However, it is commonly known that the LSM is sensible 
to outliers in input data which include digital noises and occlusions. Hence, instead 
of implicit minimization of (3) by LSM it is proposed to implement minimization 
in robust norm: 

∑ ∑
= =









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nm

j

p

i

i
jij ucecE

1

~

1
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where, e.g., 

2

2
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2
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σ
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x
x

x
xx

+
=

+
 (5) 
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(σ  is a scale parameter). The idea of representation (5) is similar to one for penalty 
functions. It allows to cut off exceeding deviations at each configuration variable 
(see Fig. 1). The image fitting problem is reformulated as nonlinear minimization 
which can be solved explicitly with the use of numerical methods. 

 
Fig. 1: Graphical view of robust norm (5) 

Pose refinement. When dealing with video acquisition, it seems natural to use 
the fact of closeness between neighboring frames. This will presumably allow to 
simplify computations by means of fitting previous result with observable 
configuration. Obvious drawback of this approach is in requirement of rather good 
initial approximation. But invoking initialization stage allows to satisfy this 
restriction. 

Following [5], we represent this idea in the form of the stepwise algorithm: 
1. Given the projection matrix P  [6] of the camera, flat image 

corresponding to the previous step is being reconstructed. Matrix P  is defined as 
the product 

KEP =  (6) 

of calibrating matrix 

















100
0= 0

0
vf
usf

K v

u
, 

where uf  and vf  are the focal lengths in horizontal and vertical directions, s  
specify the value of the pixel skew, 0u  and 0v  correspond to the center of the 
photo and euclidean projection matrix 

),( ξRE = , 

where R , ξ  are an orthogonal matrix and a vector which characterize angular 
orientation and spatial position of the camera with respect to the target. According 
to this, projection matrix is representable in the form: 

),,( ξKKRP =  

where KR  and ξK  specify actually observable attitude and position of the camera 
which are being utilized in rendering of the flat image from the visual 3D model. 
Note that this step does not require reconstruction of entire graphic including 
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texture and lighting. The only requirement consists in building the wireframe of the 
properly oriented and localized object comprised by its vertices and edges. 

2. Along with the visible contours generated on the previous step test 
points are being arranged. Further these points are used for the aims of image 
fitting. The number m  of points depends on the size of the object as well as 
expected accuracy and computational facilities. The typical choice for it belongs to 
the range between 100 and 1000. Operations of the current and the previous steps, 
provided that they are supported, are being carried out by means of internal 
subroutines of the graphic library used. If it is impossible, this procedure is 
implemented manually with the use of the binary partitioning of the space [7]. 

3. Marked in the previously described manner synthetic image is put 
over the snapshot of the current video frame. Next, from each test point outer 
normal is being lined to the closest contour. Along with the normal, the distance (in 
pixels) to the contour is being calculated. Edge recognition is implemented by 
means of contrast analysis within the neighborhood of the test point. Previously, 
original image may be passed through the involutional Sobel transform [8] in order 
to emphasis visible contrasts and smooth the noise. As the result, we will obtain an 
m -dimensional vector d  of signed distances between expected and observed 
contours in each test point. 

4. Given the vector of distances d , we construct the matrix M  defining 
the change of attitude and position of the object with respect to the previous frame. 
This matrix is of the following structure: 

,
10

=
31










×

ξR
M  

where symbols R  and ξ  have similar meaning as for the matrix E . One can 
easily see that the set of all such matrices, denoted as (3)SE , forms the Lie group 
with respect to the matrix product operation. Generators of this group are the 
elementary matrices 6,,1, K=iGi  corresponding to unitary translations and 

rotations by o90  about each axis [5]. Each matrix (3)SE∈M  may be expressed in 

terms of generators iG  as follows: 

,exp= 









∑ ii
i

GM α  (7) 

where iα  is a real coefficient. If changes on the adjacent frames are small (which 
is exactly the case of our interest) it should be enough to take only linear terms of 
the matrix exponent series: 

.ii
i

GIM α∑+≈  (8) 

Hence, the major difficulty of the present step consists in discovering 

coefficients iα . Given the vector d  of discrepancy and structure constants k
if  of 
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acting i -th generator over k -th test point, this problem can be solved in terms of 
LSM: 

),(argmin= βα S  (9) 

where 

.)(=)( 2k
ii

k

k
fdS ββ −∑  (10) 

It can be proved [5] that exact solution of (9) is given by the formula: 

,= 1
jij

j
i vC−∑α  (11) 

where 

.=

,=

ξξ

ξ

ξξ

ξ

jiij

ii

ffC

fdv

∑

∑
 

Substituting computed coefficients into (8) we obtain desired matrix M . 
5. Matrix M  allows to update euclidean projection matrix: EME ← . 
6. Putting updated matrix E  into (6), we actualize matrix P . After that, 

we wait for the next camera frame and jump to the beginning of the algorithm. 
Note that approach described here does not require high computatiuonal 

resources owing to the usage of the simple wireframe model. Note also that due to 
the same reasons as in previous section, using pure LSM for iα  estimation may 
cause ill-posed results (especially in the case of noisy images). In order to rise 
reliability of the LSM, it is proposed to use its weighed modification choosing: 

,
||

1=)(
ξ

ξ

dc
ds

+
 (12) 

as the weighting factor ( c  is a numeric parameter). 
Pose tracking. If the equations of relative motion of NSO are available, 

further improvement of the result is possible. For this, the pose tracking problem 
should be formulated. Equations of motion can be derived from the general 
principles of dynamics but their usage requires the knowledge of mechanical 
parameters of the target object. If this is not a problem, the system of equations can 
be processed by means of certain estimation procedure such as Kalman or 
Bayesian filtering [9, 10]. 

Here we will only describe the general scheme of this approach. First of all, 
equation of motion should be established. We will make use of the Newtonian 
equations of the motion in the gravitational field of the Earth [10] in order to 
describe the chaser motion in RF of the target object. Although the attitude 
dynamics is nonlinear, it is possible to linearize it and express the final system in 
the canonical form: 
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,BuAxx +=&  (13) 

where ),,,,,,,,,,,( 321321321321 θθθθθθ &&&&&& xxxxxxx =  is the state vector, 
),,,,,( 321321 NNNFFFu =  is the vector of control action (which includes forces 

and torques along each axis respectively), A  is the matrix of the system, B  is 
control matrix. We recall that the state of the system is specified in terms of the 
phase space which in our case consists of translational and rotational parts. With 
this in mind, matrices from (13) are written in the block form as follows: 
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Here submatrices p
)(

p , BA i  contain internal parameters and control describing 

movement of the mass center, whilst a
)(

a , BA i  correspond to attitude dynamics. 
They can be expressed in terms of dynamical parameters in the following way: 
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where 3
trGM=ω  is the angular rate of the chaser with respect to the target, G  

is universal gravitational constant, M  is the mass of the Earth, tr  is the orbital 
altitude of the target above the Earth; 0ω  is the angular velocity of rotating RF 
associated with the chaser; cm  and J  are respectively its total mass and inertia 
matrix. 

Two principal questions arise here. First is what are the values of the system 
parameters and second is which quantities should be used as measurements for the 
stated model. The first question we assume to be answered according to the 
mission documentation. As for the second one, we will use actual values of 
configuration variables obtained during previous stage. Furthermore, we will 
assume that the additive white noise acts on our model. This allows 
implementation of classical Kalman filtering for estimation of configuration 
variables. 
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One-step time discretization for (13) gives the final computational model: 

,

;1

kkk

kkkk

vCxy

wGuFxx

+=

++=+
 (16) 

where AIF τ+= , BG τ= , )0,,0,(diag 33333333 ××××= IIC , kk vw ,  are 
independent normally distributed random values whose characteristics are 
supposed to be given. Alternatively, it is possible to rewrite (16) according to the 
exact solution of the continuous system (14) in terms of its fundamental 
matrix [10]. 
 
MAIN RESULTS 
 

In order to illustrate workability of proposed algorithms, we have constructed 
a simplified 3D model of an abstract geometric object without surface and texture, 
namely edge skeleton of a tetragonal prism. We suppose that position of the object 
is fixed and known, whereas attitude is mutable and shall be determined during 
estimation. Taking into account that, due to symmetry, for different attitudes of this 
object we may have identical images, we will assume that the set of all possible 
configurations is reduced in the way where there is one-to-one correspondence 
between images and configurations. Assume also that rotations of the object during 
its observation always remain within the set of these configurations. For 
initialization we take 100 training pictures, pose refinement is implemented with 
the use of 100 test points for image fitting. 

For the aims of modeling, we have utilized results of the previous section. 
Note that this is the case where the inertia matrix is diagonal. For a fixed initial 
attitude we have obtained solution of problem (13) and formed associated input 
images with the step of 5.0  time units. 

Subject to specified assumptions, we try to reconstruct configuration variables 
using the stages explained in previous sections. For this, proposed algorithm has 
been programmed and executed on a typical desktop PC. After substitution of 
initial data, the following results were obtained. Initialization stage for the objects 
of given structure gives acceptable recognition with the error within the range of 

o10  in the neighborhood of true attitude by each angle. Fig. 2 contains illustration 
of image fitting for initialization stage. This operation is being executed during 
about 100 ms. On the other hand, pose refinement restores exact attitude provided 
that the image flow arrives without interruption. Maximal time for each step was 

about 10 ms with maximal error of about 410− . Note that the pose tracking stage 
for our case did not lead to significant improvements (see Fig. 3). However, if the 
input flow has discontinuities, it provides validation at good level of accuracy 

(about 210− ). 
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Fig. 2: Initial image fitting Fig. 3: Observed error of iterative 
estimation 

 
CONCLUSION 
 

Our researching has covered crucial stages of the problem of determining 
space configuration of the target spacecraft with respect to the chaser. Each stage is 
characterized by its requirements and implementation details. Technically, the most 
important is initial stage as it does not require a priori information about position 
and attitude of the moving target and is able to work with static images. Thereafter, 
initialization, although it gives rather rough estimation of configuration variables, 
is the most numerically expensive. That’s why it is supplemented with two 
additional stages whose execution is much cheaper and that allow drastically 
improving the quality of the result. The latter is mainly related to the fact of usage 
dynamically updated video information. According to this, pose refinement 
operates with the video stream and is based on the mutual closeness of neighboring 
scenes. The stage of pose tracking is optional. It requires the equations of relative 
motion to be known and provides additional validity control in the case of signal 
loss. 

Computational results have confirmed preliminary assumptions about 
accuracy and complexity of each stage. For the simple example considered in this 
work we could obtain very high accuracy at moderate performance. 

It should also be noted that the content of considered stages may differ 
depending on mission requirements. Therefore, its program implementation should 
be replaceable. This, in turn, makes it critical to think over communications 
protocols and interfaces between the units of onboard computer and implement 
final subroutines in accordance with these conventions. This will provide 
independence of the hardware on the software. The present paper has not touched 
this question. 
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USING VIDEO IMAGES FOR DETERMINING 
RELATIVE DISPOSITION OF TWO SPACECRAFTS 
V.A. Simakov, V.F. Gubarev, N.N. Salnikov, S.V. Melnichuk 
Space Research Institute of the National Academy of Science of Ukraine and State 
Space Agency of Ukraine, Kyiv, Ukraine 

Introduction. Automatic orbital berthing systems require permanent 
availability of relative position and attitude of a target spacecraft. In the most 
general case the only source of information is video filming. Extracting mutual 
disposition parameters from a video frame is based upon special techniques which 
can be divided into two large groups: feature-based and model-based. Major 
difference between them is defined by data structure used for the target description 
(individual points for feature-based approach vs. rigorous visual model for model-
based one). This article is devoted to the research of mathematical problem that 
appears in considering pose estimation for two orbital spacecraft in the presence of 
wireframe model of the target when only video filming is available. 

The purpose of the article is to construct a model-based method that provides 
fast and accurate estimation of relative position and attitude of the target 
spacecraft. We discuss possible drawbacks of direct procedures based on 
straightforward (pixel-wise) image fitting and propose a subtle algorithm which 
satisfies formulated conditions. 

Results. The algorithm composed of three independent parts (initialization, 
pose refinement and pose tracking) has been developed and tested on simple initial 
datum. Initialization stage, responding for rough estimation in the absence of 
preliminary information, has given relatively poor but quite enough accuracy for 
the aims of initial approximation. Pose refinement stage which is implemented as 
iterative procedure based on closeness of neighboring frames demonstrated almost 
total matching with actual values. Pose tracking (state estimation based on 
equations of motion) was redundant for our simple example as it could not improve 
the result provided by pose refinement. 

Conclusions. Constructed algorithm has been tested on simplified situation 
and demonstrated very high precision. More realistic conditions including noises 
and occlusions can bring to corrupted result that should be recovered. This requires 
introducing additional steps into the algorithm which are reflected in the text. The 
notable feature of the algorithm is its high modularity which allows each stage to 
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be implemented and configured independently according to available resources and 
mission requirements. 

Keywords: orbital rendezvous, pose estimation, orbital video filming, 
computer vision. 
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