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PROBLEM FOR HYPERBOLIC SYSTEM OF EQUATIONS HAVING CONSTANT

COEFFICIENTS WITH INTEGRAL CONDITIONS WITH RESPECT TO THE TIME

VARIABLE

In a domain specified in the form of a Cartesian product of a segment [0, T] and the space R
p,

we study a problem with integral conditions with respect to the time variable for hyperbolic system
with constant coefficients in a class of almost periodic functions in the space variables. A criterion
for the unique solvability of this problem and sufficient conditions for the existence of its solution
are established. To solve the problem of small denominators arising in the construction of solutions
of the posed problem, we use the metric approach.
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INTRODUCTION

Problems with integral conditions with respect to a chosen variable for partial differential
equations (PDE s) have become an important area of investigation in recent years (second half
of the XX century). Their study driven by a need for constructing a general theory of boundary
value problems for such equations, as well as those problems occur in the mathematical sim-
ulation of various physical phenomena in the case when it is impossible to directly determine
some physical quantities, but the mean values of these quantities are known. Such problems,
in general, are ill-posed and their solvability in some cases is related to the problem of small
denominators.

Problems with integral conditions for PDE s are studied by many authors (see [1, 7, 9, 13]
and the references there), however these problems were investigated insufficient for systems
of such equations. Among research works devoted to the study of problems with integral con-
ditions for systems of PDE s are worth noting these [6,10,11]. In particular, in [5] author inves-
tigate the problem with integral conditions with respect to the time variable in p-dimensional
layer for the first order system of PDE s in a class of finite smooth functions with exponential
growth for spatial variables. Correct solvability of the problem with integral conditions with
respect to the chosen variable and 2π-periodical conditions for other variables to the compos-
ite type system of PDE s was established in [6] and [10]. The paper [11] deals with the problem
with integral conditions with respect to the time variable (in the form of consecutive moments
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of the required function) for the linear first order system of evolution PDE s with deviating
argument.

In the present paper we study a correct solvability of the problem with more general condi-
tions with respect to the time variable, including an integral conditions in the form of moments
of arbitrary order of the required functions and the Dirichlet-type conditions as special cases,
for the high order hyperbolic system of PDE s with constant coefficients in a class of almost
periodic functions in spatial variables in p-dimensional layer.

We use the following notations: i =
√
−1, x = (x1, . . . , xp) ∈ Rp, dx = dx1 · · · dxp;

k = (k1, . . . , kp) ∈ Z
p, |k| = |k1| + · · · +

∣∣kp

∣∣; ŝ = (s0, s1, . . . , sp) ∈ Z
p+1
+ , |ŝ| = s0 + s1 +

· · · + sp, |ŝ|∗ = 2s0 + s1 + · · · + sp; µk =
(

µk1
, . . . , µkp

)
∈ Rp, ‖µk‖2 = µ2

k1
+ · · · + µ2

kp
,

|µk| =
∣∣µk1

∣∣ + · · · +
∣∣∣µkp

∣∣∣, (µk, x) = µk1
x1 + · · · + µkp

xp; Sq is the symmetric group of per-
mutations of first q natural numbers; ρω is the number of inversions in the permutation ω =

(i1, . . . , iq) ∈ Sq; Dp = (0, T) × R
p; Im is the m × m identity matrix, Cr

q is the number of all
combinations of q elements by r; Cj, j = 1, 2, . . . , are positive values, independent of k and µk,
[a] is an integer part of a real number a.

1 STATEMENT OF THE PROBLEM

In the domain Dp we consider the problem of finding almost periodic with respect to x

solution of the problem

L

(
∂2

∂t2 ,
∂

∂x

)
[~u] := ∑

|ŝ|∗=2n

Aŝ
∂2n~u(t, x)

∂t2s0 ∂xs1
1 · · · ∂x

sp
p

=~0, (t, x) ∈ Dp, (1)

Uj[~u] := αj
∂2(j−1)~u

∂t2(j−1)

∣∣∣∣∣
t=0

+ βj

T∫

0

trj~u(t, x)dt = ~ϕj(x), x ∈ R
p,

Un+j[~u] := αn+j
∂2(j−1)~u

∂t2(j−1)

∣∣∣∣∣
t=T

+ βn+j

T∫

0

trn+j~u(t, x)dt = ~ϕn+j(x), x ∈ R
p,

(2)

where j ∈ {1, . . . , n}; Aŝ =
∥∥∥aŝ

q,l

∥∥∥
m

l,q=1
, aŝ

q,l ∈ R, A(n,0,...,0) = Im; αl , βl ∈ R, α2
l + β2

l 6= 0,

rl ∈ Z+, l ∈ {1, . . . , 2n}, 0 6 r1 < r2 < . . . < r2n; ~u(t, x) = col
(
u1(t, x), . . . , um(t, x)

)
, vector-

functions ~ϕl(x) = col
(

ϕ1
l (x), . . . , ϕm

l (x)
)
, l ∈ {1, . . . , 2n}, are almost periodic [2] with respect

to x with given spectrum

Mp :=
{

µk ∈ R
p : µ−k = −µk, µ~0 =~0, d1|k|θ1 6 |µk| 6 d2|k|θ2 , k ∈ Z

p
}

,

where 0 < d1 6 d2, 0 < θ1 6 θ2, and are expanded in Fourier series

~ϕl(x) = ∑
k∈Zp

~ϕlk exp (iµk, x) , ~ϕlk = col
(

ϕ1
lk, . . . , ϕm

lk

)
, l ∈ {1, . . . , 2n}, (3)

where ~ϕlk = lim
H→∞

1
Hp

∫

[0,H]p
~ϕl(x) exp (−iµk, x) dx.
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We assume that the system (1) is hyperbolic by Petrovsky in narrow sense, that is, for each
vector η = (η1, . . . , ηp) ∈ Rp \ {~0} the roots γj(η), j ∈ {1, . . . , 2nm}, of the characteristic
equation

det L
(

γ2, η
)

:= det

∥∥∥∥∥∥
∑

|ŝ|∗=2n

Aŝγ
2s0ηs1

1 · · · η
sp
p

∥∥∥∥∥∥
= 0, (4)

which corresponds to the system (1), are real and different, and therefore (driven by the ap-
pearance of the system (1)) are different from zero.

At investigation of the problem (1), (2) we will use the following spaces of almost periodic
functions with respect to x with the spectrum Mp:

H α
Mp

:= H α
(

Mp; Rp
)
, α ∈ R, is the space obtained by closure of space of finite trigono-

metric polynomials of the form v(x) = ∑|k|6N vk exp (iµk, x), µk ∈ Mp, according to the norm
function given by [15]

∥∥∥v; H α
Mp

∥∥∥ =

(

∑
k∈Zp

|vk|2 (1 + |µk|)2α

)1/2

.

H̄ α
Mp,m is the space of vector functions~v(x) = col

(
v1(x), . . . , vm(x)

)
such that vq(x) ∈ H α

Mp
,

q ∈ {1, . . . , m}, with the following norm

∥∥∥~v; H̄ α
Mp,m

∥∥∥ =
m

∑
q=1

∥∥∥vq; H α
Mp

∥∥∥ .

C̄ h([0, T], H α
Mp

), h ∈ Z+, is the space of vector functions ~u(t, x) = ∑k∈Zp~uk(t)exp (iµk, x),

µk ∈ Mp, ~uk(t) = col(u1
k(t), . . . , um

k (t)), such, that for any fixed point t ∈ [0, T] all derivatives

∂j~u(t, ·)/∂tj = ∑k∈Zp ~u
(j)
k (t) exp (iµk, x), j ∈ {0, 1, . . . , h}, belong to the space H̄ α

Mp,m and are
continuous with respect to the t according to the norm of this space,

∥∥∥~u; C̄
h
([0, T], H α

Mp
)
∥∥∥ =

h

∑
j=0

max
t∈[0,T]

∥∥∥∥
∂j~u

∂tj
; H̄α

Mp,m

∥∥∥∥

=
h

∑
j=0

m

∑
q=1

max
t∈[0,T]


 ∑

k∈Zp

∣∣∣∣∣
dju

q
k(t)

dtj

∣∣∣∣∣

2

(1 + |µk|)2α




1/2

.

(5)

C̄ h
Mp,m(D̄p) is the space of vector functions ~u(t, x) = col(u1(t, x), . . . , um(t, x)), which are

h-times continuously differentiable in D̄p with respect to all variables and almost periodic for
x with the spectrum Mp uniformly by t ∈ [0, T], with norm given by formula

∥∥∥~u; C̄ h
Mp,m(D̄p)

∥∥∥ =
m

∑
q=1

∑
06|ŝ|6h

max
t∈[0,T]

sup
x∈Rp

∣∣∣∣∣
∂|ŝ|uq(t, x)

∂ts0∂xs1
1 · · · ∂x

sp
p

∣∣∣∣∣ ;

C̄ h
Mp,m (Rp) is the subspace of vector functions from C̄ h

Mp,m(D̄p), independent of t.

If α > p/(2θ1), then such embeddings are valid (see [3] and the references given there):

H̄
q+α
Mp,m ⊂ C̄

q
Mp,m (Rp) , C̄ q([0, T], H

q+α
Mp

) ⊂ C̄
q
Mp,m(D̄p), q ∈ Z+. (6)
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2 UNIQUENESS OF THE SOLUTION

Almost periodic with respect to x with the spectrum Mp solution of the problem (1), (2) we
seek in the form of the vector series

~u(t, x) = ∑
k∈Zp

~uk(t) exp(iµk, x), µk ∈ Mp. (7)

After substituting series (3), (7) into the system (1) and conditions (2), we receive that the each
of functions ~uk(t), k ∈ Zp, is a solution of this problem:

L

(
d 2

dt2 , iµk

)
~uk(t) := ∑

|ŝ|∗=2n

i|s|Aŝµ
s1
k1
· · · µ

sp

kp

d 2s0

dt2s0
~uk(t) =~0, (8)

Uj[~uk] := αj
d 2(j−1)~uk(0)

dt2(j−1)
+ βj

T∫

0

trj~uk(t)dt = ~ϕjk,

Un+j[~u] := αn+j
d 2(j−1)~uk(T)

dt2(j−1)
+ βn+j

T∫

0

trn+j~uk(t)dt = ~ϕn+j,k, j ∈ {1, . . . , n},

(9)

If k =~0 (µ~0 =~0), the system (8) has the form

L

(
d 2

dt2 ,~0
)
~u~0(t) := Im

d 2n

dt2n
~u~0(t) =

~0,

and so, each component u
q
~0
(t), q ∈ {1, . . . , m}, of the solution ~u~0(t) = col

(
u1
~0
(t), . . . , um

~0
(t)
)

of
the problem (8), (9) is a solution of this problem for scalar differential equation:

d 2n

dt2n
u

q
~0
(t) = 0, (10)

Uj[u
q
~0
] := αj

d 2(j−1)u
q
~0
(0)

dt2(j−1)
+ βj

T∫

0

trju
q
~0
(t)dt = ϕ

q

j,~0
,

Un+j[u
q
~0
] := αn+j

d 2(j−1)u
q
~0
(T)

dt2(j−1)
+ βn+j

T∫

0

trn+ju
q
~0
(t)dt = ϕ

q

n+j,~0
, j ∈ {1, . . . , n}.

(11)

The characteristic determinant ∆(~0, T) of the problem (10), (11) for each q ∈ {1, . . . , m} has the
form

∆(~0, T) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α1S 0
1 (0) + β1

Tr1+1

r1 + 1
. . . α1S 0

2n(0) + β1
Tr1+2n

r1 + 2n
... · · · ...

αnS
2(n−1)
1 (0) + βn

Trn+1

rn + 1
. . . αnS

2(n−1)
2n (0) + βn

Trn+2n

rn + 2n

αn+1S 0
1 (T) + βn+1

Trn+1+1

rn+1 + 1
. . . αn+1S 0

n+1(T) + βn+1
Trn+1+2n

rn+1 + 2n
... · · · ...

α2nS
2(n−1)
1 (T) + β2n

Tr2n+1

r2n + 1
. . . α2nS

2(n−1)
2n (T) + β2n

Tr2n+2n

r2n + 2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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where

S
2(l−1)
j (z) =






0, j < 2l − 1,
(j − 1)!

(j − 2l + 1)!
zj−2l+1, j > 2l − 1,

j ∈ {1, . . . , 2n}, l ∈ {1, . . . , n}.

If condition ∆(~0, T) 6= 0 holds true, the unique solution of the problem (10), (11) always
exists for each q ∈ {1, . . . , m}. These solutions are expressed by formulas

u
q
~0
(t) =

2n

∑
l,j=1

∆l j(~0, T)

∆(~0, T)
ϕ

q

l,~0
tj−1, q ∈ {1, . . . , m}, (12)

where by ∆l j(~0, T) we denote the cofactor of the entry in the l-th row and j-th column in the
determinant ∆(~0, T).

Remark 1. If ∆(~0, T) = 0, then the homogeneous problem corresponding to the problem (10),

(11), has nontrivial solution u∗
~0
(t) = col

(
ũ1
~0
(t), . . . , ũm

~0
(t)
)

, where ũ
q
~0
(t) = ∑

2n
j=1 Cjqtj−1, q ∈

{1, . . . , m}, and coefficients Cjq, j ∈ {1, . . . , 2n}, are solutions of system of linear algebraic
equations






2n

∑
j=1

Cjq

(
αlS

2(l−1)
j (0) + βl

Trl+j

rl + j

)
= ϕ

q

l,~0
,

2n

∑
j=1

Cjq

(
αn+lS

2(l−1)
j (T) + βn+l

Trn+l+j

rn+l + j

)
= ϕ

q

n+l,~0
, l ∈ {1, . . . , n}.

Now we consider the problem (8), (9) for all µk ∈ Mp \ {~0}. The characteristic equation
corresponding to the system of ordinary differential equations (8), may be expressed in the
form

det L
(

γ2, iµk

)
:= ∑

ω∈Sm

(−1)ρω

m

∏
q=1


 ∑

|s|+2s0=2n

i|s|aŝ
iq,qγ2s0 µs1

k1
· · · µ

sp

kp


 = 0. (13)

Obviously, that roots γjk of the equation (13) are defined by formulas

γjk = i γj(µk), j ∈ {1, . . . , 2nm}. (14)

In (14) by γj(µk), j ∈ {1, . . . , 2nm}, we denote roots of the equation (4) at η = µk, µk ∈ Mp \ {~0};
moreover γnm+q,k = −γqk, q ∈ {1, . . . , nm}, and following estimates hold [4]:

|γjk| 6 C1(1 + |µk|), j ∈ {1, . . . , 2nm}, µk ∈ Mp \ {~0}, C1 = (2nm)p max
|ŝ|∗=2n

16q,l6m

{aŝ
q,l}. (15)

The fundamental system of solutions of the system of equations (8) is as follows (see [14, p.
116]): {

~ujk(t) =~hjk exp(γjkt), j ∈ {1, . . . , 2nm}
}

, k ∈ Z
p \ {~0}, (16)

where by
~hjk = col(~h 1

jk, . . . ,~h m
jk ), j ∈ {1, . . . , 2nm}, (17)
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we denote some nonzero column of the matrix L∗(γ2
jk, iµk) which is adjugate matrix of the

matrix L(γ2
jk, iµk). Obviously, that~hnm+j,k =~hjk, j ∈ {1, . . . , nm}.

Solution of the problem (8), (9) may be expressed by the formula

~uk(t) =
2nm

∑
j=1

Cjk
~hjk exp(γjkt), k ∈ Z

p \ {~0},

where constants Cjk, j ∈ {1, . . . , 2nm}, are defined from this system of linear algebraic equa-
tions

2nm

∑
j=1

Cjk

(
αlP

l
j + βl Il(γjk)

)
~hjk = ~ϕlk, l ∈ {1, . . . , 2n}, (18)

where for all l ∈ {1, . . . , 2n}.

P l
j =





γ
2(l−1)
jk , 1 6 l 6 n,

γ
2(l−n−1)
jk exp(γjkT), n + 1 6 l 6 2n,

j ∈ {1, . . . , 2nm}, (19)

Il(z) =

T∫

0

trl exp(zt)dt =
(−1)rl rl !

zrl+1 +
rl+1

∑
q=1

(−1)q+1rl!
(rl − q + 1)!

Trl−q+1

zq exp (zT) . (20)

The determinant of the system of equations (18) matches with the characteristic determi-
nant ∆(µk, T), µk ∈ Mp \ {~0}, of the problem (8), (9) and has the form

∆(µk, T) = det ‖Uq[~hjk exp(γjkt)]‖q=1,...,2n
j=1,...,2nm

=

∣∣∣∣∣∣∣

~h1k

(
α1P1

1 + β1 I1(γ1k)
)

. . . ~h2nm,k
(
α1P1

2nm + β1 I1(γ2nm,k)
)

... . . . ...
~h1k

(
α2nP2n

1 + β2n I2n(γ1k)
)

. . . ~h2nm,k
(
α2nP2n

2nm + β2n I2n(γ2nm,k)
)

∣∣∣∣∣∣∣
.

The problem (8), (9) can not have (see [16]) two different solutions if and only if ∆(µk, T) 6= 0,
µk ∈ Mp \ {~0}.

Theorem 1. For the uniqueness of a solution of the problem (1), (2) in the scale of spaces
C̄2n([0, T], Hα

Mp
) it is necessary and sufficient that the following condition be satisfied

∀µk ∈ Mp ∆(µk, T) 6= 0. (21)

Proof. Necessity. Suppose that for some µk0 ∈ Mp ∆(µk0 , T) = 0 holds. If k0 =~0, then homoge-
neous problem, corresponding to the problem (8), (9) at k =~0, has nontrivial solution u∗

~0
(t) (see

Remark 1). If k0 6= ~0, then exist nontrivial solutions ~uk0(t) = ∑
2nm
j=1 Cj,k0~hj,k0 exp(γj,k0t) of the

homogeneous problem, corresponding to the problem (8), (9), where Cj,k0, j ∈ {1, . . . , 2nm},
are defined from homogeneous system of equation, corresponding to the system (18) at k = k0.
Therefore the homogeneous problem, corresponding to the problem (1), (2), has nontrivial so-
lutions u∗

~0
(t) or ~u(t, x) = ~uk0 exp(iµk0 , x), k0 6= ~0, and if solution to the problem (1), (2) exists,

it won’t be unique.
Sufficiency. Let the condition (21) holds true. Suppose to the contrary that there exist two

different solutions ~u1(t, x), ~u2(t, x) of the problem (1), (2) from the space C̄2n([0, T], Hα
Mp

).
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Then the function ~w(t, x) = ~u2(t, x) − ~u1(t, x), which belongs to the space C̄2n([0, T], Hα
Mp

),
is the solution to the homogeneous problem, corresponding to the problem (1), (2). More-
over, functions ~w(t, x), L[~w], Uj[~w], j ∈ {1, . . . , 2n}, are almost periodic with respect to x with
spectrum Mp and expand into Fourier series of the form (7). The Fourier series of functions
L[~w] and Uj[~w], j ∈ {1, . . . , 2n}, match with the series obtained by applying operators L and
Uj, j ∈ {1, . . . , 2n}, to the Fourier series of the vector function ~w(t, x) respectively. Each of
the Fourier coefficients ~wk(t), k ∈ Zp, of the function ~w(t, x) is the solution of homogeneous
problem, corresponding to the problem (8), (9). Because ∆(µk, T) 6= 0 for all µk ∈ Mp, then
homogeneous problem, corresponding to the problem (8), (9), has only trivial solution for all
µk ∈ Mp and therefore ~wk(t) = 0, t ∈ [0, T], k ∈ Z

p. Hence, on the basis of Parseval equality
we obtain that ~w(t, x) = 0 in the space C̄2n([0, T], Hα

Mp
), i.e. ~u1(t, x) = ~u2(t, x).

3 EXISTENCE OF THE SOLUTION

Let condition (21) holds true. Then for each µk ∈ Mp the unique solution~uk(t) ∈ C2n([0, T])

of the problem (8), (9) exists and the formal solution ~u(t, x) of the problem (1), (2) may be
expressed in the form

~u(t, x) = u~0(t) + ∑
k∈Zp\{~0}

(
2nm

∑
j=1

Cjk
~hjk exp(γjkt)

)
exp(iµk, x), (22)

in which

Cjk =
m

∑
q=1

2n

∑
l=1

∆m(l−1)+q,j(µk, T)

∆(µk, T)
ϕ

q
lk, j ∈ {1, . . . , 2nm}, (23)

where by ∆m(l−1)+q,j(µk, T) we denote the cofactor of the entry in the (m(l − 1)+ q)-th row and
j-th column in determinant ∆(µk, T) and components of vector u~0(t) are defined by formulas
(12).

While proving the existence of a solution of the problem (1), (2) in the scale of spaces
C̄2n([0, T], Hα

Mp
) we will need following lemmas.

We also denote

C2 := C2n
2n+p+1C1 max

|ŝ|∗=2n
16q,l6m

{aŝ
q,l}, C3 = (m − 1)!(C2)

m−1,

C4 = C3 max
16l62n

{
|αl |(C1)

2(n−1), |βl |Trl+1/(rl + 1)
}

, C5 = (2nm − 1)!(C4)
2nm.

Lemma 1. For components of vectors (17) such estimates hold true

|hq
jk| 6 C3(1 + |µk|)2n(m−1), q ∈ {1, . . . , m}, j ∈ {1, . . . , nm}, µk ∈ Mp \ {~0}.

Proof. By λql(γjk), q, l ∈ {1, . . . , m}, we denote the element in the q-th row and l-th column in

the matrix L(γ2
jk, iµk), j ∈ {1, . . . , nm}. Note that λql(γjk) = ∑|ŝ|∗=2n i|s|aŝ

q,lγ
2s0
jk µs1

k1
· · · µ

sp

kp
and

following estimates hold

∣∣λql(γjk)
∣∣ 6 C2(1 + |µk|)2n, q, l ∈ {1, . . . , m}, j ∈ {1, . . . , nm}. (24)
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Now we fix a column with number l = l∗ in the matrix L(γ2
jk, iµk). Then components h

q
jk of

vector~hjk are cofactors of elements λq,l∗(γjk), q ∈ {1, . . . , m}, in matrix L(γ2
jk, iµk) respectively.

They may be expressed in form

h
q
jk = ∑

ω∈Sm−1

(−1)ρω

m

∏
l=1

l 6=l∗,il 6=q

λil ,l(γjk), q ∈ {1, . . . , m}, j ∈ {1, . . . , nm}. (25)

Based on (24) and (25) we obtain that

|hq
jk| 6 (m − 1)!

m

∏
l=1, l 6=l∗

|λll(γjk)| 6 C3(1 + |µk|)2n(m−1), j ∈ {1, . . . , nm}, q ∈ {1, . . . , m}.

The lemma is proved.

By ψ(α) we denote the function of discrete argument, defined on the set {α1, . . . , α2n} as
follows:

ψ(αj) := 0, αj = 0, j ∈ {1, . . . , 2n}; ψ(αl) = ψ(αn+l) = 2(l − 1), αl 6= 0, l ∈ {1, . . . , n}.

Lemma 2. For cofactors ∆m(l−1)+q,j(µk, T), q ∈ {1, . . . , m}, l ∈ {1, . . . , 2n}, j ∈ {1, . . . , 2nm}, of
the determinant ∆(µk, T), µk ∈ Mp \ {~0}, such estimates hold true

|∆m(l−1)+q,j(µk, T)| 6 C5(1 + |µk|)2n(m−1)(2nm−1)+Ψl , Ψl = m
2n

∑
j=1

ψ(αj)− ψ(αl).

Proof. At first we hold some auxiliary estimates. On basis of formulas (19) and (20) we receive
inequalities

∣∣∣Pn+l
j

∣∣∣ <
∣∣∣Pl

j

∣∣∣ 6 (1 + |µk|)2(l−1), l ∈ {1, . . . , n}, j ∈ {1, . . . , 2nm}, t ∈ [0, T], (26)

∣∣Il(γjk)
∣∣ 6

T∫

0

∣∣trl exp
(
γjkt

)∣∣ dt 6
T rl+1

rl + 1
, l ∈ {1, . . . , 2n}, j ∈ {1, . . . , nm}. (27)

By δrj(µk) := h
q
jk(αl P

l
j + βl Il(γjk)) we denote the element on the entry of r-th row, r = m(l −

1) + q, l ∈ {1, . . . , 2n}, q ∈ {1, . . . , m} and j-th column, j ∈ {1, . . . , 2nm} in the determinant
∆(µk, T). On basis of formulas (26), (27) and Lemma 1 we obtain that

∣∣δrj(µk)
∣∣ < |hq

jk |(|αl|
∣∣∣Pl

j

∣∣∣+ |βl |
∣∣Il(γjk)

∣∣) < C4(1 + |µk|)2n(m−1)+ψ(αl). (28)

Cofactors ∆m(l−1)+q,j(µk, T), l = {1, . . . , 2n}, q ∈ {1, . . . , m}, j ∈ {1, . . . , 2nm}, may be
expressed by formulas

∆m(l−1)+q,j(µk, T) = ∑
ω∈S2nm−1

(−1)ρω

2nm

∏
r=1

r 6=m(l−1)+q
ir 6=j

δr,ir(µk). (29)

On basis of (28), (29) we receive that

|∆m(l−1)+q,j(µk, T)| 6 (2nm − 1)!
2nm

∏
r=1

r 6=m(l−1)+q

|δr,r(µk)| 6 C5(1 + |µk|)2n(m−1)(2nm−1)+Ψl ,

where l = {1, . . . , 2n}, s ∈ {1, . . . , m}, j ∈ {1, . . . , 2nm}. The lemma is proved.
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The series (22), in general, is divergent because of the expression |∆(µk, T)|, being different
from zero, can take arbitrarily small values for an infinite number (for some subsequence) of
vectors µk ∈ Mp.

Theorem 2. Let condition (21) holds true and there exists a constant η > 0 such that for all
(except for finite number of) vectors µk ∈ Mp such inequality holds

|∆(µk, T)| > (1 + |µk|)−η. (30)

If ~ϕl(x) ∈ H̄
ξl
Mp,m, ξl = α + 2n(2nm(m − 1) + 1) + η + Ψl , l ∈ {1, . . . , 2n}, then there exists a

solution of the problem (1), (2) from the space C̄2n
(
[0, T], Hα

Mp

)
which depends continuously

on the functions ~ϕl(x), l ∈ {1, . . . , 2n}. This solution is given by formula (22).

Proof. On basis of formulas (5) and (22) we obtain estimate

∥∥∥~u; C̄2n([0, T], Hα
Mp

)
∥∥∥ =

m

∑
q=1

2n

∑
r=0

max
t∈[0,T]



∣∣∣∣∣
dru

q
~0
(t)

dtr

∣∣∣∣∣

2

+ ∑
k∈Zp\{~0}

∣∣∣∣∣
dru

q
k(t)

dtr

∣∣∣∣∣

2

(1 + |µk|)2α




1/2

6

m

∑
q=1

2n

∑
r=0


max

t∈[0,T]

∣∣∣∣∣
dru

q
~0
(t)

dtr

∣∣∣∣∣

2

+ ∑
k∈Zp\{~0}

max
t∈[0,T]

∣∣∣∣∣
dru

q
k(t)

dtr

∣∣∣∣∣

2

(1 + |µk|)2α




1/2

, (31)

in which u
q
~0
(t), q ∈ {1, . . . , m}, are defined by formulas (12), and

u
q
k(t) =

2nm

∑
j=1

Cjkh
q
jk exp(γjkt), k ∈ Z

p \ {~0}, (32)

where h
q
jk, s ∈ {1, . . . , m}, are components of the corresponding vector (17). Constants Cjk,

j ∈ {1, . . . , 2nm}, are defined by formulas (23).
From formulas (12) it follows that

max
t∈[0,T]

∣∣∣∣
dr

dtr
u

q
~0
(t)

∣∣∣∣
2

6 C6

2n

∑
j=1

∣∣∣ϕ q

j,~0

∣∣∣
2

, s ∈ {1, . . . , m}, (33)

where constant C6 depends on T and αl , βl , rl , l ∈ {1, . . . , 2n}.
On basis of (15), (23), (32) and Lemma 1 we obtain that

max
t∈[0,T]

∣∣∣∣
drus

k(t)

dtr

∣∣∣∣ 6 C7

2nm

∑
j=1

m

∑
q=1

2n

∑
l=1

∣∣∣∆m(l−1)+q,j(µk, T)
∣∣∣

|∆(µk, T)|
∣∣ϕ q

lk

∣∣ (1 + |µk|)2n(m−1)+r , (34)

where r ∈ {0, 1, . . . , 2n} and C7 = C3(C1)
2n.

Taking into account (30), (34) and Lemma 2, we obtain following estimates:

max
t∈[0,T]

∣∣∣∣
drus

k(t)

dtr

∣∣∣∣ 6 2nmC5C7

m

∑
q=1

2n

∑
l=1

∣∣ϕ q
lk

∣∣ (1 + |µk|)4mn2(m−1)+ϑl+η+r, r = 0, 1, . . . , 2n. (35)

From estimates (31), (33) and (35) follows that

∥∥∥~u; C̄2n([0, T], Hα
Mp

)
∥∥∥ 6 C8

2n

∑
l=1

m

∑
q=1

(

∑
k∈Zp

∣∣ϕ q
lk

∣∣2 (1 + |µk|)2ξl

)1/2

= C8

2n

∑
l=1

∥∥∥~ϕl; H̄
ξl
Mp,m

∥∥∥ .

where C8 = 2nm max{C6, 2nmC5C7}. From the obtained inequality follows the proof of the
theorem.
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Remark 2. If in Theorem 2 α > 2n + p/(2θ1) then, according to (6), such embedding is valid

C̄2n
(
[0, T], Hα

Mp

)
⊂ C 2n

Mp,m (D̄p) and the solution of the problem (1), (2), defined by the for-
mula (22), is a solution in the classical sense.

4 ESTIMATES OF SMALL DENOMINATORS

Let’s find when the inequality (30) holds true. To do this, we show that ∆(µk, T), as function
of variable T, is a quasi-polynomial and apply Theorem 2.1 from [9]. We denote by Jz, z ∈ N,
the set of all vectors of the form J = (j1, . . . , jz), jl ∈ {0, 1}, l ∈ {1, . . . , z};

A = (α1, . . . , α1︸ ︷︷ ︸
m

, . . . , α2n, . . . , α2n︸ ︷︷ ︸
m

), B = (β1, . . . , β1︸ ︷︷ ︸
m

, . . . , β2n, . . . , β2n︸ ︷︷ ︸
m

),

R = (r1, . . . , r1︸ ︷︷ ︸
m

, . . . , r2n, . . . , r2n︸ ︷︷ ︸
m

), Γk = (γ1k, . . . , γnm,k,−γ1k, . . . ,−γnm,k),

by Aq, Bq, Rq, Γqk, q ∈ {1, . . . , 2nm}, we denote coordinates of vectors A, B, R and Γk respec-
tively; Γω,k = (Γi1,k, . . . , Γi2nm,k), ω = (i1, . . . , i2nm) ∈ S2nm,

Vj = (P1
j , . . . , P1

j︸ ︷︷ ︸
m

, . . . , P2n
j , . . . , P2n

j︸ ︷︷ ︸
m

), j ∈ {1, . . . , 2nm},

by Hsj, s, j ∈ {1, . . . , 2nm}, we denote values defined as follows:

Hml+q,j = Hqj = h
q
jk, q ∈ {1, . . . , m}, l ∈ {1, . . . , 2n − 1}, j ∈ {1, . . . , 2nm},

where h
q
jk are components of vectors (17).

Further, we will need the following proposition which is proved in the paper [7].

Lemma 3. For arbitrary xq, yq ∈ C, q ∈ {1, . . . , z} , following equality holds true

z

∏
q=1

(xq + yq) =
1

∑
j1=0

. . .
1

∑
jz=0

z

∏
q=1

x
jq
q

z

∏
l=1

y
1−jl
l .

For each µk ∈ Mp \ {~0} the determinant ∆(µk , T) can be expressed by the formula [8]

∆(µk , T) = ∑
ω∈S2nm

(−1)ρω

2nm

∏
q=1

Hiq,q

(
AqViq,q + Bq I

(
Rq, Γiq,k

))
, (36)

where Viq,q is the element at number q of the vector Viq
, and

I(Rq, Γiq,k) =

T∫

0

tRq exp
(

Γiq,kt
)

dt = QRq(Γiq,k, T) exp
(

TΓiq,k

)
− QRq(Γiq,k, 0), (37)

QRq(Γiq,k, t) =
Rq+1

∑
l=1

(−1)l+1Rq!
(Rq − l + 1)!

tRq−l+1

(Γiq,k)n
, q ∈ {1, . . . , 2nm} . (38)
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On basis of formulas (36), (37) we obtain that

∆(µk, T) = ∑
ω∈S2nm

(−1)ρω

2nm

∏
q=1

Hiq,q

(
[AqViq,q − BqQRq(Γiq,k, 0)]

+ BqQRq(Γiq,k, T) exp(TΓiq ,k)
)

.

(39)

Formula (39) on basis of Lemma 3 may be expressed in the form

∆(µk, T) = ∑
ω∈S2nm

(−1)ρω ∑
J∈J2nm

∆1k(ω, J, T)∆2k(ω, J, T),

where

∆1k(ω, J, T) =
2nm

∏
q=1

(
BqQRq(Γiq,k, T) exp(TΓiq,k)

)jq
= B(J)QJ(Γω,k, T) exp(T(J, Γω,k)), (40)

B(J) =
2nm

∏
q=1

(
Bq
)jq , QJ(Γω,k, T) =

2nm

∏
q=1

(
QRq(Γiq,k, T)

)jq
, (41)

(J, Γω,k) =
2nm

∑
q=1

jqΓiq,k, J ∈ J2nm, ω ∈ S2nm; (42)

∆2k(ω, J, T) =
2nm

∏
l=1

(
AlVil ,l − BlQRl

(Γil ,k, 0)
)1−jl . (43)

The formula (43) by opening brackets, in view of (38), can be expressed in the following
form

∆2k(ω, J, T) = P1k(ω, J) exp

(
T

2nm

∑
l=nm+1

(1 − jl)Γil ,k

)
+ P2k(ω, J), (44)

where values P1k(ω, J), P2k(ω, J) don’t depend on T.
On basis of (39), (40), (44), we obtain the following expression for ∆(µk, T)

∆(µk, T) = ∑
ω∈S2nm

(−1)ρω ∑
J∈J2nm

Q̄J(Γω,k, T) exp(T(J, Γω,k)), (45)

where Q̄J(Γω,k, T), ω ∈ S2nm, J ∈ J2nm, are some polynomials of variable T with complex
coefficients, such that

deg Q̄J(Γω,k, T) 6 max
J∈J2nm

{deg QJ(Γω,k, T)}

=
2nm

∑
q=1

deg QRq(Γiq,k, T) =
2nm

∑
q=1

Rq = m(r1 + · · ·+ r2n).
(46)

Estimates (46) we obtained by using (38) and (41). From (45) follows that ∆(µk, T) is a quasi-
polynomial of variable T.

For each µk ∈ Mp \ {~0} we consider the function ∆(µk, τ) defined of interval (0, ∞) by
formula (45), where T is replaced by τ. On basis of formula (45) and inequalities (46) ∆(µk, τ)

can be expressed in the form

∆(µk, τ) = ∑
J∈J2nm

FJ(τ) exp(τ(J, Γk)), (47)
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where FJ(τ) is the polynomial with constant coefficients of degree NJ , NJ 6 m(r1 + · · · +
r2n), and the number of terms with different exponents does not exceed 1 + 2 nm+1. From the
formula (47) follows that the function ∆(µk, τ) is analytic on interval (0, ∞). We analytically
continue it on R and obtained function we denote by D := D(µk, τ).

By E(D, ε, [0, b]) we denote a set of τ ∈ [0, b], b ∈ R+, for which the inequality
|D(µk, τ)| 6 ε holds. On basis of Theorem 2.1 from [9], given that Re(J, Γk) = 0 (it’s follows
from (14)), for each µk ∈ Mp \ {~0} following estimate holds

mesRE(D, ε, [0, b]) 6 C9B(µk)

(
4ε

G(µk)

) 1
N−1

, C9 = C9(N, b), (48)

where

N := ∑
J∈J2nm

(1 + NJ) 6
(

1 + 2 nm+1
)
(1 + m(r1 + · · ·+ r2)) , (49)

B(µk) := 1 + max
J∈J2nm

|(J, Γk)| , µk ∈ Mp \ {~0}, (50)

G(µk) = max
16j6N

{
|(d/dτ)j−1 D(µk, τ)|τ=0(B(µk))

−j
}

, µk ∈ Mp \ {~0}. (51)

Taking into account (15), (42) and (50) we obtain

B(µk) 6 C10 (1 + |µk|) , C10 = 2nmC1.

Lemma 4. There exists a number δ(~α,~β) ∈ N,~α = (α1, . . . , α2n), ~β = (β1, . . . , β2n), such that

d q

dτq D(µk, τ)

∣∣∣∣
τ=0

=

{
0, q < δ(~α,~β),
δ(~α,~β)! C11(~α,~β,~r)W(µk), q = δ(~α,~β),

(52)

where~r = (r1, . . . , r2n) and by W(µk) = det ‖~hjkγl−1
jk ‖j=1,...,2nm

l=1,...,2n we denote the value of Wron-
skian of the system of functions (16) at point t = 0.

Proof. We denote gl j(µk, τ) := αlP
l
j + βl Il(γjk), l, j ∈ {1, . . . , 2n}, where Pl

j , Il(γjk) are defined
by formulas (19), (20) respectively. We have following extensions:

exp(γjkτ) =
2n−1

∑
q=0

γ
q
jk

q!
τq + τ2nνjk(τ), j ∈ {1, . . . , 2nm},

Il(γjk) =

τ∫

0

trl exp(γjkt)dt =
2n−1

∑
q=0

γ
q
jk

q!(rl + q + 1)
τrl+q+1 + τrl+2n+1Vjlk(τ), (53)

where l ∈ {1, . . . , 2n}, j ∈ {1, . . . , 2nm};

P l
j =





γ
2(l−1)
jk , 1 6 l 6 n,

2n−1

∑
q=0

γ
q+2(l−n−1)
jk

q!
τq + τ2nνjk(τ), n + 1 6 l 6 2n,

j ∈ {1, . . . , 2nm}, (54)
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where νjk(τ), Vjlk(τ) = (rl + 2n + 2)−1
∫ τ

0 νjk(t)dt are some analytic in a neighborhood of the
point τ = 0 functions. We rewrite the extension (54) in the form

P l
j =





γ
2(l−1)
jk , 1 6 l 6 n,

2n−1

∑
q=2(l−n−1)

τq−2(l−n−1)

(q − 2(l − n − 1))!
γ

q
jk + τ4n−2l+2ν̄jlk(τ), n + 1 6 l 6 2n,

(55)

where

ν̄jlk(τ) =





νjk(τ), l = n + 1,
2l−3

∑
q=2n

γ
q
jkτq−2n

(q − 2(l − n − 1))!
+ τ2(l−n−1)νjk(τ), n + 2 6 l 6 2n,

j ∈ {1, . . . , 2nm}.

By substituting extensions (53) and (55) in the expression for gl j(µk, τ) for each j ∈ {1, . . . , 2nm}
we obtain following extensions:

gl j(µk, τ) = αlγ
2(l−1)
jk + βl

2n−1

∑
q=0

γ
q
jk

q!(rl + q + 1)
τrl+q+1 + βlτ

rl+2n+1Vjlk(τ), 1 6 l 6 n,

gl j(µk, τ) = αl

2n−1

∑
q=2(l−n−1)

τq−2(l−n−1)

(q − 2(l − n − 1))!
γ

q
jk + βl

2n−1

∑
q=0

γ
q
jk

q!(rl + q + 1)
τrl+q+1

+ αlτ
4n−2l+2ν̄jk(τ) + βlτ

rl+2n+1Vjlk(τ), n + 1 6 l 6 2n.

(56)

In formulas (56) we group terms on degrees of γjk. We obtain that

gl j(µk, τ) =
2n−1

∑
q=0

γ
q
jk g̃lq(αl , βl , τ) + Ṽjlk(τ), l ∈ {1, . . . , 2n}, j ∈ {1, . . . , 2nm}, (57)

where

g̃lq(αl , βl , τ) =






βl
τrl+q+1

q!(rl + q + 1)
, q 6= 2(l − 1),

αl + βl
τrl+q+1

q!(rl + q + 1)
, q = 2(l − 1),

(58)

if l ∈ {1, . . . , n} and

g̃lq(αl , βl , τ) =





βl
τrl+q+1

q!(rl + q + 1)
, q 6 2(l − n)− 3,

αl
τq−2(l−n−1)

(q − 2(l − n − 1))!
+ βl

τrl+q+1

q!(rl + q + 1)
, 2(l − n − 1) 6 q 6 2n,

(59)

if l ∈ {n + 1, . . . , 2n},

Ṽjlk(τ) =

{
βlτ

rl+2n+1Vjlk(τ), 1 6 l 6 n,
τ4n−2l+2(αl ν̄jk(τ) + βlτ

rl−2n+2l−1Vjlk(τ)), n + 1 6 l 6 2n.
(60)

Due to the definition of the function D(µk, τ) it can be expressed by the formula

D(µk, τ) = det ‖~hjkgl j(µk, τ)‖j=1,...,2nm
l=1,...,2n . (61)
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We substitute obtained extensions (57) in the formula (61) and by using elementary prop-
erties of determinants receive that

D(µk, τ) = det

∥∥∥∥∥
~hjk

(
2n−1

∑
q=0

γ
q
jk g̃lq(αl , βl, τ) + Vl j(αl , βl , µk, τ)

)∥∥∥∥∥

j=1,...,2nm

l=1,...,2n

= det

∥∥∥∥∥
~hjk

2n−1

∑
q=0

γ
q
jk g̃lq(αl , βl , τ)

∥∥∥∥∥

j=1,...,2nm

l=1,...,2n

+ D̃k(~α,~β, τ),

(62)

where by D̃k(~α,~β, τ) := D̃(µk,~α,~β, τ) we denote some analytic at the point τ = 0 function,
which have at this point zero of higher order than

det

∥∥∥∥∥
~hjk

2n−1

∑
q=0

γ
q
jk g̃lq(αl , βl , τ)

∥∥∥∥∥

j=1,...,2nm

l=1,...,2n

.

It’s follows from formulas (58)–(60).
Let us consider the matrix

F =

∥∥∥∥∥
~hjk

2n−1

∑
q=0

γ
q
jk g̃lq(αl , βl , τ)

∥∥∥∥∥

j=1,...,2nm

l=1,...,2n

and split it into m blocks, each is of size 2n × 2nm

F =

∥∥∥∥∥∥∥∥∥

F1

F2
...

Fm

∥∥∥∥∥∥∥∥∥

, Fs =

∥∥∥∥∥hs
jk

2n−1

∑
q=0

γ
q
jk g̃lq(αl , βl , τ)

∥∥∥∥∥

j=1,...,2nm

l=1,...,2n

,

where hs
jk, s ∈ {1, . . . , m}, are components of vectors (17). It is easy to see that each of the

blocks Fs, s ∈ {1, . . . , m}, is a product of two matrices:

Fs = G · Ws, G =
∥∥g̃l,q−1(αl , βl , τ)

∥∥2n

l,q=1
, Ws =

∥∥∥hs
jkγ

q−1
jk

∥∥∥
q=1,...,2n

j=1,...,2nm
.

Size of the matrix G is 2n × 2n, and of the matrix Ws is 2n × 2nm. Therefore

F =

∥∥∥∥∥∥∥∥∥

G · W1

G · W2
...

G · Wm

∥∥∥∥∥∥∥∥∥

.

Note that the determinant of the matrix col‖W1, W2, . . . , Wm‖ is accurate to a sign equal to
W(µk). We assume that det G 6= 0. Let us consider the block matrix of size 2nm × 2nm of the
form

Gm =

∥∥∥∥∥∥∥∥∥

G−1 O2n · · · O2n

O2n G−1 · · · O2n
...

... . . . ...
O2n O2n · · · G−1

∥∥∥∥∥∥∥∥∥

,
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where by O2n we denote zero matrix of size 2n × 2n, and G−1 is an inverse matrix to G. It’s
obviously that det Gm = (det G)−m. Then, according to the rule of multiplication of block
matrices, we obtain that

Gm · F =

∥∥∥∥∥∥∥∥∥

G−1 O2n · · · O2n

O2n G−1 · · · O2n
...

... . . . ...
O2n O2n · · · G−1

∥∥∥∥∥∥∥∥∥

·

∥∥∥∥∥∥∥∥∥

G · W1

G · W2
...

G · Wm

∥∥∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥∥∥

W1

W2
...

Wm

∥∥∥∥∥∥∥∥∥

.

Wherefrom
det(Gm · F) = det Gm · det F = det F(det G)−m = ±W(µk). (63)

On the basis of the formula (63) we obtain equality

det F = ±W(µk)(det G)m = ±W(µk)(det
∥∥g̃l,q−1(αl , βl , τ)

∥∥2n

l,q=1
)m. (64)

Taking into account the formula (64), the equality (62) can be written as

D(µk, τ) = ±W(µk)(det
∥∥g̃l,q−1(αl , βl , τ)

∥∥2n

l,q=1
)m + D̃k(~α,~β, τ). (65)

From (58), (59) follows, that det
∥∥g̃l,q−1(αl , βl , τ)

∥∥2n

l,q=1
is a polynomial with respect to τ (and

therefore is different from zero for all except a finite number of points τ) and don’t depends
on µk. From the resulting expansion (65) it follows that the smallest degree of τ, in the poly-
nomial (det

∥∥g̃l,q−1(αl , βl , τ)
∥∥2n

l,q=1
)m is equal to the number δ(~α,~β), and coefficient beside it is

we denote as C11(~α,~β,~r). In other words, equalities (52) hold true. The lemma is proved.

For some values of parameters~α i ~β values δ(~α,~β) and C11(~α,~β,~r) can be easily calculated.

Example 1. Let in the conditions (2) αl = 0, l ∈ {1, . . . , 2n}. Then from formulas (58), (59) we
obtain that

g̃l,q−1(0, βl , τ) = βl
τrl+q

(q − 1)!(rl + q)
, q ∈ {1, . . . , 2n},

det ‖g̃l,q−1(0, βl , τ)‖2n
l,q=1 = det

∥∥∥∥βl
τrl+q

(q − 1)!(rl + q)

∥∥∥∥
2n

l,q=1

=
2n

∏
l=1

βl

(l − 1)!
det

∥∥∥∥
1

rl + q

∥∥∥∥
2n

l,q=1
τr+n(2n+1),

(66)

where we denote r = r1 + · · ·+ r2n. According to [12, p.110] this equality is valid

det
∥∥∥∥

1
rl + q

∥∥∥∥
2n

l,q=1
= ∏

2n>j>l>1

(rj − rl)(j − l)
2n

∏
j, l=1

(rj + l)−1. (67)

On basis of (66), (67) we obtain that

δ(~0,~β) = m(r + n(2n + 1)),

C11(~0,~β,~r) =

(
2n

∏
j=1

βl

(l − 1)! ∏
2n>j>l>1

(rj − rl)(j − l)
2n

∏
j, l=1

(rj + l)−1

)m

.
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Now we estimate the below value of G(µk), defined by the formula (51). Taking into account
formulas (51)–(52) we obtain that

G(µk) =
∣∣∣(∂/∂τ)δ(~α,~β)D(µk, τ)

∣∣∣
τ=0

(B(µk))
−δ(~α,~β)−1

> C12|W(µk)| (1 + |µk|)−δ(~α,~β)−1 , (68)

where C12 = δ(~α,~β)! C11(~α,~β,~r)(C10)
−δ(~α,~β)−1.

Theorem 3. Let there exists a constant η0 > 0 such that for all (except for finite number of)
vectors µk ∈ Mp the inequality

|W(µk)| > C13(1 + |µk|)η0 (69)

holds. Then for almost all (with respect to Lebesgue measure on R) numbers T > 0 the in-
equality (30) holds true for all (except for finite number of) vectors µk ∈ Mp, if

η > δ(~α,~β)− η0 + 1 +
(

1 + 2 nm+1
)( p

θ1
+ 1
)
(1 + m(r1 + · · ·+ r2n)) .

Proof. Let εk = (1 + |µk|)−η, k ∈ Zp \ {~0}. Taking into account (48), (49), (51) and (68) for the
measure of those τ ∈ [0, b] for which the inequality |D(µk, τ)| 6 εk holds we obtain estimate

mesRE(D, εk, [0, b]) 6 C9C10 (1 + |µk|)
(

4 (1 + |µk|)−η

C12C13 (1 + |µk|)−δ(~α,~β)+η0−1

)1/χ

= C14 (1 + |µk|)−
η−δ(~α,~β)+η0−1

χ +1
6 C14d1 |k|

−
(

η−δ(~α,~β)+η0−1
χ −1

)
θ1

,

(70)

where χ =
(
1 + 2 nm+1

)
(1 + m(r1 + · · ·+ r2)). Because of

(
η−δ(~α,~β)+η0−1

χ − 1
)

θ1 > p, the se-

ries ∑k∈Zp\{~0} mesRE(D, εk, [0, b]) is convergent. Then by Borel-Kantelli Lemma [14] the mea-
sure of those τ ∈ (0, b], which belongs to an infinite number of sets E(D, εk, [0, b]), is equal
to zero. Thus, for almost all (with respect to Lebesgue measure on R) numbers τ ∈ (0, b] the
inequality |D(µk, τ)| > εk holds for all (except a finite number) of vectors µk ∈ Mp. Since from
the inequality (70) follows, that the measures of sets E(D, εk, [0, b]) don’t depend on b (this
fact is the consequence of that the system (1) is of hyperbolic type), then, sending b to infinity,
we obtain that for almost all (with respect to Lebesgue measure on R) numbers τ ∈ (0, ∞)

the inequality |D(µk, τ)| > εk holds for all (excepting a finite number of) vectors µk ∈ Mp.
Since ∆(µk, T) ≡ D(µk, T) for all T ∈ (0, ∞), then from the above follows the proof of the
theorem.

Proposition 1. If in the problem (1), (2) p = 1 then the inequality (69) holds true at η0 >

4n2m(m − 1) + nm(2n − 1).

Proof. Under the condition of the proposition roots of the equation (13) at p = 1 have the form
γjk = γjµk, j ∈ {1, . . . , 2nm}, where by γj we denote roots of the equation

det

∥∥∥∥∥∥
∑

|ŝ|∗=2n

i|s|Aŝγ
2s0

∥∥∥∥∥∥
= 0.
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Vectors~hjk at p = 1 have the form~hjk =~hjµ
2n(m−1)
k , j ∈ {1, . . . , 2nm}, respectively, where by~hj

we denote some nonzero column of the matrix L∗(γ2
j , i), which is adjugate matrix of the matrix

L(γ2
j , i), j ∈ {1, . . . , 2nm}. Hence

W(µk) = det ‖~hjkγl−1
jk ‖j=1,...,2nm

l=1,...,2n = det ‖~hjγ
l−1
j µ

2n(m−1)+l−1
k ‖j=1,...,2nm

l=1,...,2n

= µ
4n2m(m−1)+nm(2n−1)
k det ‖~hjγ

l−1
j ‖j=1,...,2nm

l=1,...,2n .

From the above equality follows aforesaid statement.

Proposition 2. If m = 1, i.e. the system (1) consists of a single equation, then the inequality
(69) holds at η0 = 0.

Proof. Under the condition of the proposition we have that W(µk) = ∏16l<j62n(γjk − γlk),
where by γjk, j ∈ {1, . . . , 2n}, we denote roots of the equation (13) at m = 1. Hence, at m = 1
the equation (1) is strictly hyperbolic, then from inequalities 2.21 in [14, p. 100], follows that
|γjk − γlk| > C15 > 0, where 1 6 l < j 6 2n. From these inequalities follows that |W(µk)| >
(C15)

n(2n+1).

5 COROLLARY

In the present paper we investigated the correctness of the problem with integral conditions
with respect to the time for hyperbolic in the narrow sense system of PDE’s with constant
coefficients in a class of almost periodic by spatial variables functions. We established the
criterion of unique solvability of this problem and the sufficient conditions for the existence
of its solutions. To solve the problem, small denominators (which are the quasi-polynomials
with respect to the upper limit of integration) arising in the construction of solutions of the
posed problem, we used the metric approach.

Our results can be extended to the Gårding hyperbolic systems of equations of the form

L

(
∂2

∂t2 ,
∂

∂x

)
[~u] := ∑

|ŝ|∗62n

Aŝ
∂2n~u(t, x)

∂t2s0 ∂xs1
1 · · · ∂x

sp
p

=~0, (t, x) ∈ Dp.
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Кузь А.М., Пташник Б.Й. Задача з iнтегральними умовами за часовою змiнною для системи гiпер-

болiчних рiвнянь зi сталими коефiцiєнтами // Карпатськi матем. публ. — 2014. — Т.6, №2. — C.
282–299.

В областi, що є декартовим добутком вiдрiзка [0, T] i простору R
p, дослiджено задачу з iн-

тегральними умовами за часовою координатою для системи гiперболiчних рiвнянь зi сталими
коефiцiєнтами у класi майже перiодичних за просторовими змiнними функцiй. Знайдено кри-
терiй єдиностi та достатнi умови iснування розв’язку задачi. Для розв’язання проблеми малих
знаменникiв, якi виникли при побудовi розв’язку задачi, використано метричний пiдхiд

Ключовi слова i фрази: iнтегральнi умови, малi знаменники, мiра Лебега, майже перiодичнi
функцiї, гiперболiчна система.

Кузь А.М., Пташник Б.И. Задача с интегральными условиями по времени для системы гипербо-

лических уравнений с постоянными коэффициентами // Карпатские матем. публ. — 2014. — Т.6,
№2. — C. 282–299.

В области, являющейся декартовым произведением отрезка [0, T] и пространства R
p, ис-

следована задача с интегральными условиями по временной координате для системы гипер-
болических уравнений с постоянными коэффициентами в классе почти периодических по
пространственным переменным функций. Найдены критерий единственности и достаточные
условия существования решения задачи. Для решения проблемы малых знаменателей, кото-
рые возникли при построении решения задачи, использовано метрический подход.

Ключевые слова и фразы: интегральные условия, малые знаменатели, мера Лебега, почти
периодические функции, гиперболическая система.


