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PROBLEM FOR HYPERBOLIC SYSTEM OF EQUATIONS HAVING CONSTANT
COEFFICIENTS WITH INTEGRAL CONDITIONS WITH RESPECT TO THE TIME
VARIABLE

In a domain specified in the form of a Cartesian product of a segment [0, T] and the space R?,
we study a problem with integral conditions with respect to the time variable for hyperbolic system
with constant coefficients in a class of almost periodic functions in the space variables. A criterion
for the unique solvability of this problem and sufficient conditions for the existence of its solution
are established. To solve the problem of small denominators arising in the construction of solutions
of the posed problem, we use the metric approach.
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INTRODUCTION

Problems with integral conditions with respect to a chosen variable for partial differential
equations (PDE s) have become an important area of investigation in recent years (second half
of the XX century). Their study driven by a need for constructing a general theory of boundary
value problems for such equations, as well as those problems occur in the mathematical sim-
ulation of various physical phenomena in the case when it is impossible to directly determine
some physical quantities, but the mean values of these quantities are known. Such problems,
in general, are ill-posed and their solvability in some cases is related to the problem of small
denominators.

Problems with integral conditions for PDEs are studied by many authors (see [1,7,9, 13]
and the references there), however these problems were investigated insufficient for systems
of such equations. Among research works devoted to the study of problems with integral con-
ditions for systems of PDE s are worth noting these [6,10,11]. In particular, in [5] author inves-
tigate the problem with integral conditions with respect to the time variable in p-dimensional
layer for the first order system of PDEs in a class of finite smooth functions with exponential
growth for spatial variables. Correct solvability of the problem with integral conditions with
respect to the chosen variable and 27t-periodical conditions for other variables to the compos-
ite type system of PDE s was established in [6] and [10]. The paper [11] deals with the problem
with integral conditions with respect to the time variable (in the form of consecutive moments
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of the required function) for the linear first order system of evolution PDEs with deviating
argument.

In the present paper we study a correct solvability of the problem with more general condi-
tions with respect to the time variable, including an integral conditions in the form of moments
of arbitrary order of the required functions and the Dirichlet-type conditions as special cases,
for the high order hyperbolic system of PDE s with constant coefficients in a class of almost
periodic functions in spatial variables in p-dimensional layer.

We use the following notations: i = /=1, x = (x1,...,%p) € RP, dx = dxy---dxy;
k = (ki,....kp) € ZP, |k| = k| +---+ }kp ;8 = (s0,51,...,5) € Ziﬂ, 18] = sp+s1+

‘* = 2SO+51+"'+S;7; Uk = <‘uk1/---/,ukp> € ]RP’ ”ka2 = V%l—{——{_:u%p’

...+sp’ ’§

el = |pey |+ + )ykp), (Mk,x) = pgyx1 + -+ i, Xp; Sq is the symmetric group of per-
mutations of first 4 natural numbers; p,, is the number of inversions in the permutation w =
(i1,...,ig) € Sg; DP = (0,T) x RP; I is the m x m identity matrix, Cj is the number of all
combinations of g elements by r; C;, j = 1,2, ..., are positive values, independent of k and j,
[a] is an integer part of a real number a.

1 STATEMENT OF THE PROBLEM

In the domain D? we consider the problem of finding almost periodic with respect to x
solution of the problem

2 9 02"ii(t, x) ~
L{=—,=—)i]:= Ag ’ =0, (t,x)eD? 1
(at2 ax> g §|*Z_:2n Satzsoaxil---ax;" (£, x) @
. 92G-1; ’ . ~
uj[u] = W +l3]-/tfu(t,x)dt = q)]-(x), x € RP,
ST @)
. 22(-1yzz : B -
Upyj[i] := an SR +,Bn+j/t "i(t, x)dt = @uij(x), x €RP,
t=T 0
where j € {1,...,n}; A; = az,l - af;,l € R, A0 = I a1, B1 € R, oclz—{—ﬁlz # 0,

rneEZy,le{l,....2n},0<r <ry<...<ryii(tx)=col(u(tx),..., u"(tx)), vector-
functions @ (x) = col (¢} (x),...,¢"(x)), 1 € {1,...,2n}, are almost periodic [2] with respect
to x with given spectrum

M, := {Hk ERY: p_y = —pi, pg =0, dilk|™ <[] <dalk|™ k € ZP} :
where 0 < d; < dp, 0 < 01 < 6, and are expanded in Fourier series

P1(x) = Z Pirexp (ipg, x), @i = col <go}k,...,go;2) , led{l,...,2n}, 3)
kezP

where @), = hl{gn ar [ @i(x) exp (—iug, x) dx.
< loHP
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We assume that the system (1) is hyperbolic by Petrovsky in narrow sense, that is, for each
vector 7 = (171,...,1y) € RP\ {0} the roots vi(n), j € {1,...,2nm}, of the characteristic
equation

detL (’yz, 17) .— det —0, 4)

Z AS')’250771 "77
|8]*=2n

which corresponds to the system (1), are real and different, and therefore (driven by the ap-
pearance of the system (1)) are different from zero.

At investigation of the problem (1), (2) we will use the following spaces of almost periodic
functions with respect to x with the spectrum M:

H ]('jlp = H* (Mp;RP), a € R, is the space obtained by closure of space of finite trigono-
metric polynomials of the form v(x) = Y <n 0k exp (ipik, x), pix € Mp, according to the norm

function given by [15]
1/2
‘ (Z [0k (1 + [pael) ) :

kezp
H]('j[p/m is the space of vector functions 7(x) = col (v!(x),...,v"(x)) such that v7(x) € H]‘\"/Ip,

g € {1,...,m}, with the following norm

C"(Jo, T], HI(';IP), h € Z., is the space of vector functions i(t, x) = Y yczviix(t)exp (ipg, x),

m
=2, LT X _ . 14
7 HMP,MH =y Hzﬂ, HYy,
=1

Hi € My, i (t) = col(uk( ), .-, uf'(t)), such, that for any fixed point ¢ € [0, T] all derivatives

Vil(t,) /ot = Yyeqy il )( t)exp (ipg, x), j € {0,1,...,h}, belong to the space H]('j[p/m and are
continuous with respect to the t according to the norm of this space,

7,C" ([0, T) Hyy) 3 Vil
‘u P‘_Z;Jrr}a} at] Mp,m
1/2 (5)
ho o du () [P
Yy max | 2|2 ]
SoomiteloT] \Ezp | At

C}(Ap,m(ljp) is the space of vector functions ii(t,x) = col(u'(t,x),...,u™(t, x)), which are
h-times continuously differentiable in D with respect to all variables and almost periodic for
x with the spectrum M, uniformly by ¢ € [0, T], with norm given by formula

4

= = u olslua (¢,
‘ﬁ;cz’& m(Dp)H = Z Z max sup u ( x) =
’ g=10<[5]<n €[0T xerr ot09x]! -+ 0x)

C 11\1/1,,,m (RP) is the subspace of vector functions from C ]’\“AP,M(DP ), independent of .
If « > p/(26), then such embeddings are valid (see [3] and the references given there):

Hz@; < Ca,w (RP), - C([0, T],H](Z"‘) C Clym(DP), q€Zs. ©)
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2 UNIQUENESS OF THE SOLUTION

seek in the form of the vector series

After substituting series (3), (7) into the system (1) and conditions (2), we receive that the each

Z i (t) exp(ipg, x),

kezr

of functions iy (t), k € Z?, is a solution of this problem:

un+j [i1] ==

If k = 0 (ug

and so, each component ug(t), ged{l,...,

dZ
L (dtz’ l.”k) Ui(t) :==

T qr(i-1)

f+an
d20-Vii(0) r
0

22D (T)
‘Xn-i-j dtz(] 1
0

= 0), the system (8) has the form

dz 2\ .

m}, of the solution ii5(t) = col <u%(t), .

Z i\SlAgylill

T
 Busj / it ()t = Guyip € (1. m

dZn -
Zptto(t)

d S0 -
Vkp dt2so i (t) =0,

+ By [t = Gy,

=0,

the problem (8), (9) is a solution of this problem for scalar differential equation:

dZn g
gt =0,
42(-1) ‘7(0)
197 - — r . 1q
u][”a] = 10— —I—ﬁ]/t/u = q)j,ﬁ’
d2(-1) q(T) |
Un+j[ug] = “n+jT +5n+]/trn+mg(t)dt = 9”Z+]-,6' jed{1,...,n}.

0

The characteristic determinant A(ﬁ, T) of the problem (10), (11) for each g € {1,...,

form

T71+1
1+1

w157 (0 )+ﬁ1

Tr,ﬁ-l

w0, S2" Y (0) + T
n

T7n+1+1

“n+1510(T) + 5n+1m
n

R Trantl
0(2,1512(” 1)(T) + ﬁZn

r2n+1

TN +2n
r+2n

w155,(0) + B1

T'n +2n

“nSZZrSn—l) (0) + ,Bn n ¥ n

T"n+1 +2n

“n+1519+1 (T) + Bns1 1t 2n
n

T

m} has the
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) 0, j<2l-1,
S; (z) = (G—1)! S+ s o)1 jed{l,....2n}, 1€ {1,...,n}.
(j— 2+ 1) 12 ’

If condition A(ﬁ, T) # 0 holds true, the unique solution of the problem (10), (11) always
exists for each g € {1, ..., m}. These solutions are expressed by formulas

21 A(0,T)

A=y

9 -1
——¢' ¥, gqge{l,...,m}, (12)
Lo A0, T) 10

where by A;; (0, T) we denote the cofactor of the entry in the I-th row and j-th column in the
determinant A (0, T).

Remark 1. If A(G, T) = 0, then the homogeneous problem corresponding to the problem (10),
(11), has nontrivial solution u3(t) = col <ﬁé(t), . .,ﬁ%”(t)) where i’ ( ) = Z 1Cigl ™, q €
{1,...,m}, and coefficients Cj;, j € {1,...,2n}, are solutions of system of 11near algebraic
equations

l 1 Tt
Trn+l+]
nel T

Z (oanS )( )+ﬁn+l ) = ¢Z+l,ﬁ' led{l,...,n}.

Now we consider the problem (8), (9) for all p, € M\ {0}. The characteristic equation
corresponding to the system of ordinary differential equations (8), may be expressed in the
form

detL <’)/2, iplk) = Z (—=1)Fe H ( Z i|s‘afq,q'yzs°yill e y;’;) =0. (13)
q=1

wESy, |s|4+2s9=2n

Obviously, that roots 7, of the equation (13) are defined by formulas

vk =1iv(p), jE{L..., 2nm}. (14)

In (14) by vj(px), j € {1,...,2nm}, we denote roots of the equation (4) at 7 = p, px € M\ {0};
MOTeOVer Vymiqk = — Vg, 9 € {1, ..., nm}, and following estimates hold [4]:

7l < UL+ il € (1 2mm), € My (D), €= @nm)? max (afy). (19

1<q,I<m

The fundamental system of solutions of the system of equations (8) is as follows (see [14, p.
116]):

{ﬁjk(t) = E]-k exp(Yjt), j € {1,...,2nm}} , kezr\ {0}, (16)

where by

-

hk—col(h]k, ohi), jed{L..., 2nm}, (17)

]
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we denote some nonzero column of the matrix L* ('Y]zk/ iptx) which is adjugate matrix of the

matrix L('y]?k, ipy). Obviously, that ﬁnmﬂ-,k = ﬁ]-k,j e{1,...,nm}.
Solution of the problem (8), (9) may be expressed by the formula

2nm

Z kh]k exp(vit), ke zP\ {0},

where constants Cj,j € {1,...,2nm}, are defined from this system of linear algebraic equa-

tions
2nm

Y- Cik ((szjl + 5111(7jk)> e = ¢, 1€{1,...,2n}, (18)
s

where foralll € {1,...,2n}.

ﬁk(l_l), 1<I<n,
Pfl - je{1,...,2nm}, (19)
v " Vexp(ypT), n+1<1<2n,

(=1)1rt L (1)t Tt
zh+1 | (rr—qg+1)! =1

I;(z) = [ t"exp(zt)dt = exp (zT) . (20)

O\H

The determinant of the system of equations (18) matches with the characteristic determi-
nant A(pg, T), i € M, \ {0}, of the problem (8), (9) and has the form

A(px, T) = det ||Uy [ exp(vjit)] [ 2nm
m (1 P} + ,3111(71k)) e ﬁan,k (1P}, + Bl (Yonmk))
Elk (“2”1312” =+ ‘an Ipn (’Ylk)) e Ean,k (OCZMPQZ;ZIM + 5211 Iy (’Yan,k))

The problem (8), (9) can not have (see [16]) two different solutions if and only if A(puy, T) # 0,
e € My \ {0}

Theorem 1. For the uniqueness of a solution of the problem (1), (2) in the scale of spaces
C?"([0,T], H ?\C/I,,) it is necessary and sufficient that the following condition be satistied

Ve e Mp  A(u, T) # 0. (21)

Proof. Necessity. Suppose that for some 0 € My A(pigo, T) = 0 holds. If k% = 0, then homoge-
neous problem, corresponding to the problem (8), (9) atk = 0, has nontrivial solution uq( ) (see

Remark 1). If k0 # 0, then exist nontrivial solutions i (t) = 2]2:1 ]-’koh]-,ko exp('y]-,kot) of the
homogeneous problem, corresponding to the problem (8), (9), where C; o, j € {1,...,2nm},
are defined from homogeneous system of equation, corresponding to the system (18) at k = .
Therefore the homogeneous problem, corresponding to the problem (1), (2), has nontrivial so-
lutions ug(t) or i(t, x) = i exp(ipyo, X), k0 # 0, and if solution to the problem (1), (2) exists,
it won't be unique.

Sufficiency. Let the condition (21) holds true. Suppose to the contrary that there exist two
different solutions i1 (t, x), ii2(t, x) of the problem (1), (2) from the space C**([0, T], Hf\‘AP)
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Then the function @(t, x) = iiy(t, x) — i1 (t, x), which belongs to the space C?*([0, T], Hj'(/lp),
is the solution to the homogeneous problem, corresponding to the problem (1), (2). More-
over, functions @(t, x), L[@], U;[@], j € {1,...,2n}, are almost periodic with respect to x with
spectrum M, and expand into Fourier series of the form (7). The Fourier series of functions
L[@w] and U;[@], j € {1,...,2n}, match with the series obtained by applying operators L and
U j € {1,...,2n}, to the Fourier series of the vector function @(t, x) respectively. Each of
the Fourier coefficients Wy (t), k € ZF, of the function @(t, x) is the solution of homogeneous
problem, corresponding to the problem (8), (9). Because A(uy, T) # 0 for all y € M,, then
homogeneous problem, corresponding to the problem (8), (9), has only trivial solution for all
Hx € My and therefore wy(t) = 0, t € [0, T], k € ZP. Hence, on the basis of Parseval equality
we obtain that @(t, x) = 0 in the space C?"([0, T}, HK/I,,)' ie. iy (t,x) = iip(t, x). O

3 EXISTENCE OF THE SOLUTION

Let condition (21) holds true. Then for each j; € M, the unique solution iy (t) € C**([0, T])
of the problem (8), (9) exists and the formal solution i(t, x) of the problem (1), (2) may be
expressed in the form

2nm
i(t,x) = uﬁ(t) + Z (Z kh]k exp 'y]kt)> exp (iug, x), (22)
kezp\{0}
in which
o +q](7/‘k/ ) q .
Z Z Ay, T) P ] E {1,...,2nm}, (23)

where by A, ;_1)4, i(#k, T) we denote the cofactor of the entry in the (m (I — 1) + ¢)-th row and
j-th column in determinant A(p, T) and components of vector u5(t) are defined by formulas
(12).

While proving the existence of a solution of the problem (1), (2) in the scale of spaces
C?([0,T], H j'\‘/[p) we will need following lemmas.

We also denote

Cy = C%Z+p+1cl max {aql} C3 = (m—1){(C)" 1,

|5]*=2n
1<q,I<m
Cs = C3 max. {|Déz|(C1) n- 1),|'31|TV1+1/(1’1~|—1)}, Cs = (2nm — 1)1(Cy)2™.

Lemma 1. For components of vectors (17) such estimates hold true
] < a1+ "D, qe {1, m},je {1, nm}, € My\ {0},

Proof. By Agi(7vik), 4,1 € {1,...,m}, we denote the element in the g-th row and I-th column in
the matrix L(’)/]Zk, in), j € {1,...,nm}. Note that Ay (yjx) = Yjs|r=2n ‘aql’)/]k yk . yZ and
following estimates hold

‘)\ql('y]k)} C(1+ |m)®, g le{1,...,m},je{1,...,nm}. (24)
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Now we fix a column with number [ = [* in the matrix L(’y}zk, iytx). Then components h?k of

vector ﬁjk are cofactors of elements A ;«(yjx), 9 € {1,...,m}, in matrix L('y]zk, iy ) respectively.
They may be expressed in form

m
h;?k - Z (=1)Pe H Aig(vix), q€{l,...,m}, je{l,...,nm}. (25)
WESy_1 =1
AL i #q
Based on (24) and (25) we obtain that
m
Wl < m =1t TT ()l < GO+ )Y, jefl...,nm}, qe{l,...,m}
1=1,1#1*
The lemma is proved. 0

By i(a) we denote the function of discrete argument, defined on the set {a1,...,az,} as
follows:

P(aj) =0, aj=0,je{l,....2n}; ¢(a) =P(ayy) =2(1-1), a;#0,1€{1,...,n}.
Lemma 2. For cofactors Ay, j_1)qi(#r, T), q € {1,...,m}, 1 €{1,...,2n},j € {1,...,2nm}, of
the determinant A(py, T), px € Mp \ {0}, such estimates hold true

n
|An(i—1)1q, (i T)| < Co(1 4 [ )20V @mm=04% gy = Z ¥(e) — pla)-

Proof. At first we hold some auxiliary estimates. On basis of formulas (19) and (20) we receive
inequalities

P””‘<‘Pl) 1+ 20D, 1ef1,...n},jef{l,...,2um}, t€[0,T],  (26)

T?’H—l )
}Il('y]-k)‘ < / |t exp (virt) | dt < P le{1,...,2n},je{1,...,nm}. (27)
0

By &, (k) := h?k(ocZP]l + Bi11(7vjx)) we denote the element on the entry of r-th row, r = m(l —
1)+g,1€{1,...,2n},q € {1,...,m} and j-th column, j € {1,...,2nm} in the determinant
A(pk, T). On basis of formulas (26), (27) and Lemma 1 we obtain that

107 () | < [l (Jau ’P]l’ + 1Bi] [T (y) ) < Cal + [pag 2= Do), (28)

Cofactors Am(l—1)+q,j(l/‘k/ T),1 ={1,...,2n},q € {1,...,m}, j € {1,...,2nm}, may be
expressed by formulas

2nm
Api—1)1qj(e T) = Y, (=1)P  TT 6 (ue)- (29)
WESyum—1 r=1
r#m(l—1)+q
Z1’7£]
On basis of (28), (29) we receive that
2nm
Bty (1 T < @rm =18 [T 18, (i) | < Cs(1+ [y >0 D=1+,
r;«ém?l:—ll)—kq

wherel = {1,...,2n},s € {1,...,m},j € {1,...,2nm}. The lemma is proved. d
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The series (22), in general, is divergent because of the expression |A(py, T)|, being different
from zero, can take arbitrarily small values for an infinite number (for some subsequence) of
vectors pp € M.

Theorem 2. Let condition (21) holds true and there exists a constant 7 > 0 such that for all
(except for finite number of) vectors y € M, such inequality holds

A T > (1 + ()" (30)
If §)(x) € H]%p,m, &r=a+2n2nm(m—1)+1)+n+Y¥,1 € {1,...,2n}, then there exists a

solution of the problem (1), (2) from the space C*" <[O, T|,H }’\‘AP) which depends continuously
on the functions @;(x),1 € {1,...,2n}. This solution is given by formula (22).

Proof. On basis of formulas (5) and (22) we obtain estimate

2

1/2
m 2n ar uq( ) d’uq(t) 2
|:c(o. 1 Hy) | = X 3 ma | | Y| Al
q=1r= kezr\{0}
1/2
n 2n arul(t) [ arul(t) [
k 1 20 ) 31
SLL (tglg? i +k62§\{6};§g}>;] air | (1 le) (3D)

q 0
in which u2 (t), g € {1,...,m}, are defined by formulas (12), and

2nm

Z whl exp(vt), k€ 2P\ {0}, (32)

where h}’k, s € {1,...,m}, are components of the corresponding vector (17). Constants C]-k,

j€{1,...,2nm}, are defined by formulas (23).
From formulas (12) it follows that

dr
—u

I 5t , sed{l,...,m}, (33)

max
te[0,T]

where constant C depends on T and «;, ﬁl, r,le{l,...,2n}.
On basis of (15), (23), (32) and Lemma 1 we obtain that

di’ui( ' 2nm m_ 2n +q](.uk ’ I 1)
max 1 + , 34
tejo,T) | dt’ & ]X; qX:UX: A, T))| | pi] (1+ [l (34)

wherer € {0,1,...,2n} and C; = Cg(Cl)Z”.
Taking into account (30), (34) and Lemma 2, we obtain following estimates:
d"uj(t) ‘
X
tefo,T] | dt’

m 2n
<2nmCsCr Y Y |of| (1+ \yk\)m”z(’”*l)*ﬂl*’?”m =0,1,...,2n.  (35)
g=11=1

From estimates (31), (33) and (35) follows that

1/2 .
| e diom), 1y, | < QZZ(ZWWOHwﬁv SN

kezp 1=1
where Cg = 2nm max{Cg, 2nmCsCy}. From the obtained inequality follows the proof of the
theorem. O




PROBLEM WITH INTEGRAL CONDITIONS FOR HYPERBOLIC SYSTEM 291

Remark 2. If in Theorem 2 « > 2n + p/(267) then, according to (6), such embedding is valid
C2n <[O, T], Hj'\‘/lp) cC 1\2/1”p m (D?) and the solution of the problem (1), (2), defined by the for-
mula (22), is a solution in the classical sense.

4 ESTIMATES OF SMALL DENOMINATORS

Let’s find when the inequality (30) holds true. To do this, we show that A(py, T), as function
of variable T, is a quasi-polynomial and apply Theorem 2.1 from [9]. We denote by 7., z € IN,
the set of all vectors of the form | = (j1,...,jz), ji € {0,1},1 € {1,...,z};

A: (0(1,...,061,...,len,...,OCZn), B = (@1,...,ﬁl,...,ﬁzn,...,ﬁzn),

m m m m

R = (rll VIRV IV TR /rZTl)/ Fk = (’Ylkr sy 'Ynm,k/ _’Ylk/ RS _'Ynm,k)/

m m

by Ag, By, Ry, Lok, g € {1,...,2nm}, we denote coordinates of vectors A, B, R and T’y respec-
tively,' Fw,k = (Fil,k, ceey FZ-ZWk), w = (il, ceey ian) € Sonm,

Vi=(P!,...,P},....P",... PP, je{l,... 2nm}

m m

by Hgj, s, j€A{l,...,2nm}, we denote values defined as follows:
Hyliqj=Hyj=hy, qe{l,...m}1e{l,....2n—-1},j€{1,...,2nm},

where h?k are components of vectors (17).
Further, we will need the following proposition which is proved in the paper [7].

Lemma 3. For arbitrary x4,y, € C,q € {1,...,z}, following equality holds true
z 1 1 z j z 1-j
[TGg+yg) =2 Y I1x 11w ™
1=1 im0 f=0g=1  I=1
For each y; € M, \ {0} the determinant A(p, T) can be expressed by the formula [8]
2nm
Alpr, T) = ). (=1)% Hl Hiyq <Aqu + Byl <Rw riM)) ' (36)
q:

WESoum

where Vi qis the element at number g of the vector Vi and

T
I(Ry, Ty ) = / 55 exp (T, kt ) dt = Qr, (Tipp T) exp (TTi x) — Qr, (Tiys0),  (37)
0

Rg+1 (—1)l+1Rq! thflJrl

1“1- y - !
Qr, (Tigjr £) l; (R — 1+ 1) (T )"

ge{l,...,2nm}. (38)
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On basis of formulas (36), (37) we obtain that

2nm

AusT) = Y (=1 TT Hiyg (149Viyq = BoQr, (T, 0]
WESonm q=1 (39)
+ ByQr, (i, T) eXP(Triq,k)) :
Formula (39) on basis of Lemma 3 may be expressed in the form
M T) = Y (~1% ¥ Aulw, |, T)Ax(w, ], T),
WESanm J€Tonm
where
2nm ja
Bk, J,T) = [T (ByQr, (Tipgo T) exp(TTi0) ) = B()Q) (T, T) exp(T(], Tuo)),  (40)
q=1
2nm j 2nm ja
BU) =TT (B)", QT T) =[] (Q,Tipe 1), (41)
9=1 9=1
2nm
(]/ rw,k) = X:quriq,k/ Je Tonm, W € Sopm; (42)
q:
2nm 1—i
Agk(w, ], T) = TT (AiVis = BiQr, (Tipg, 0)) (43)

I=1
The formula (43) by opening brackets, in view of (38), can be expressed in the following

form
2nm

AZk(w/ J, T) = Plk(w/ ]) exp <T Z (1 _jl)ril,k> + sz(CL), ])/ (44)

I=nm+1

where values Py (w, J), Py (w, J) don’t depend on T.
On basis of (39), (40), (44), we obtain the following expression for A(py, T)

Ape, T) = ), (=% 3 QyTwr T)exp(T(J,Tw)), (45)

wesan ]€j2nm

where Q_](F wir 1), @ € Sopm, ] € Jonm, are some polynomials of variable T with complex
coefficients, such that

deg Qj(T i, T) < ]max {deg Qj(Twi T)}

2nm

2nm 2nm (46)
=) degQr,(Ti,p, T) = Y Rg=m(ry + - +r2).
q=1 q=1

Estimates (46) we obtained by using (38) and (41). From (45) follows that A(p, T) is a quasi-
polynomial of variable T.

For each y; € M, \ {0} we consider the function A(jy, T) defined of interval (0, c0) by
formula (45), where T is replaced by t. On basis of formula (45) and inequalities (46) A(py, T)
can be expressed in the form

A(]/lk; T) = Z F](T) eXp(T(], rk))l (47)
]EJZHWI



PROBLEM WITH INTEGRAL CONDITIONS FOR HYPERBOLIC SYSTEM 293

where Fj(7) is the polynomial with constant coefficients of degree Nj, Ny < m(ry + --- +
72n), and the number of terms with different exponents does not exceed 1 + 2mm+1l From the
formula (47) follows that the function A(py, T) is analytic on interval (0, 00). We analytically
continue it on R and obtained function we denote by D := D (uy, 7).

By E(D,¢,[0,b]) we denote a set of T € [0,b], b € Ry, for which the inequality
|D(ug, 7)| < € holds. On basis of Theorem 2.1 from [9], given that Re(],Tx) = 0 (it’s follows
from (14)), for each p € Mp \ {0} following estimate holds

mesgE(D, &, [0,b]) < CoB(1y) (%) T Co = Cy(N,b), (48)
where
N:= ) (1+N)) < (1+2"’"+1) (I+m(ri+---+m)), (49)
]€j2nm
B(ue) =14 max |(J,Ti)l,  px € Mp)\ {0}, (50)
G(ux) = 12%{I(d/df)f‘113(uk, T)|r=o(B(px)) ™/ } me € My \ {0} (51)

Taking into account (15), (42) and (50) we obtain
B(pr) < Cro (1 + |pi|),  Cao = 2nmGCy.
Lemma 4. There exists a number §(&, ) € N, & = (a1,...,&2,), B = (B1,. .., Bon), such that

41

ﬁD(Hkr T)

N
=l Rl

& =)

q < (
q=>9

=0 N { 5(5273)' Cll(&lﬁl?>w(yk)r (

where? = (r1,...,72,) and by W(p) = det Hﬁjk’)/;k_lmjizm we denote the value of Wron-

skian of the system of functions (16) at pointt = 0.

Proof. We denote g;i(p, T) := ocZP]l +BiLi(viK), 1j € {1,...,2n}, where P]l, I;(7yjx) are defined
by formulas (19), (20) respectively. We have following extensions:

2n—1 77k )
exp(yjkT) = ) ?Tq + (), jE{L,...,2nm},
q=0 T
f 2= ’Y?k 1 241
L(vix) = /trl exp(yjet)dt = ) mﬂﬂﬁ + TV (1), (53)
0 =0 T
wherel € {1,...,2n},j € {1,...,2nm};
T, 1<I<n,
P! = { 2n—1 40 t20=n1) je{l,...,2nm},  (54)
/ ) S0 LS TZ”vjk(r), n+1<1<2n,
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where vj (1), Vig(t) = (r,+2n+2)71 I Vjk(t)dt are some analytic in a neighborhood of the
point T = 0 functions. We rewrite the extension (54) in the form

fk(l_l), 1<1<n,
pl = 2n—1 4-2(1-n-1) (55)
q 4n—21+42 -
] 2(1Z 1) (‘J—2(l—n—1))!’yﬂ‘+T" Ui(T), n+1<1<2n,
q=2(1-n—
where

Vi (T), o l=n+1,
5. — 21-3 vi T9—<n .
wlk(T) Z v zé’lf m— +T2(l_”_1)vjk(r), n+2<1<m, je{l,...,2nm}.

g=2n - e :

By substituting extensions (53) and (55) in the expression for g;(y, T) foreachj € {1,...,2nm}
we obtain following extensions:

2n—1 ,),‘?
2(1-1 k
q:() \7l
2n—1 4-2(1-n-1) 2n—1 ')/?k (56)

Trl+q+1

(e, T) =a T+ —
81j(Hr ) lqzz(linil)(q—2(l—n—1))!71k 5lt§q!(rl+q+1)

+ “ZT4n_2[+217jk(T) +,31Trl+2n+1‘/jlk(T)/ n+1<1<2n.
In formulas (56) we group terms on degrees of ;. We obtain that

2n—1
glj(.ukl T) = Z ')’?kglq(“l/ ﬁl/ T) + ‘/jlk(T)/ l e {1/ . '/zn}lj € {1/ .- ,,21’11’”}, (57)
q=0

where
ﬁ Tr,+q+1 7& 2(1 1)
~ Ay 1A
Sig(ar, B1, T) = 7 qrrl+q>+1 (58)
fxl‘i‘ﬁlm, qg=2(1-1),

ifle{l,...,n}and

T?’H-q-i-l (l )
ﬁl ! ’ q < 2 —n)— 3/
- ri+g+1
Sig(ar, B, T) = i ,l[qu(lfnf)l) L (59)
g +ﬁl ’ 2(1_”_1)<q<27’l,
(q—2(I-n—-1))! q'(r+q+1)

ifle{n+1,...,2n},

(60)

- r+2n+1y/.
() = { Bit Vi(7), 1<I<n,

V:
202 (g (T) + BT 2 W), n+1<1< 20,
Due to the definition of the function D (i, T) it can be expressed by the formula

e i=1,...,2
D (px, 7) = det |1 (i, DIy 5y - (61)
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We substitute obtained extensions (57) in the formula (61) and by using elementary prop-
erties of determinants receive that

-1 j=1,....2nm
D(ux, ) = det || hj ( Y Vi 8ig(e, i T) + Wj(“zrﬁz/HkIT))
=0 I=1,...2n 62
-1 j=1,...2nm )
= det h]k Z ,Y;]kglq(al/ﬁl/ T) + Dk(&/ﬁ/ T)/
q=0 1=1,...2n
where by Dy (&, E, T) 1= D(yk, Q, B, T) we denote some analytic at the point T = 0 function,
which have at this point zero of higher order than
-1 j=1,...2nm
det ||7j Y ’Y?k $1q(a1, B, T)
=0 1=1,...2n
It’s follows from formulas (58)—(60).
Let us consider the matrix
-1 j=1,...2nm
F=|hy), ’Y?k $1q(a1, B, T)
=0 1=1,...2n

and split it into m blocks, each is of size 2n x 2nm

F ‘

Fz -1 j=1,...2nm

F = . , FS = ;k Z ’)/;]kg’lq(ﬂél,’gl,l—) P
: =0 1=1,...2n
F

where h;k, s € {1,...,m}, are components of vectors (17). It is easy to see that each of the
blocks Fs, s € {1,...,m}, is a product of two matrices:

s -1

q=1,...2n
|

Fs=G-W;, G= ng,q—l(“zzﬁl/T)HlZZ:y W, = ‘

j=1,...2nm )
Size of the matrix G is 2n x 2n, and of the matrix Wy is 2n x 2nm. Therefore

G-W,
G-W,

G-Wy,

Note that the determinant of the matrix col|Wq, Wy, ..., Wy, || is accurate to a sign equal to
W (). We assume that det G # 0. Let us consider the block matrix of size 2nm x 2nm of the

form
G_l OZn OZn

() G! ... O
Gm: .Zn . . .Zn 7

02n OZn Gil
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where by Oy, we denote zero matrix of size 2n x 2n, and Gl is an inverse matrix to G. It's
obviously that detG,, = (detG)~™. Then, according to the rule of multiplication of block
matrices, we obtain that

Gl 0, - Oy G- W, W,
G, F— O.Zn G_*1 o_zn _ G-.Wz || W
0.2,1 o;n G G-wm W,
Wherefrom
det(Gy, - F) = det Gy, - detF = detF(detG) ™" = £ W (). (63)

On the basis of the formula (63) we obtain equality
- 2
detF = £W () (det G)" = W (pi) (det [|31,9-1(ar, By, )|, _)"™ (64)
Taking into account the formula (64), the equality (62) can be written as

D(]’lkr T) = iw(yk)(det Hgl,qfl(‘xl/ ,Blr T) lerif;:l)m + ﬁk(&r EI T)' (65)

From (58), (59) follows, that det H gllq_l(rxl, B, T) Hi’;:l is a polynomial with respect to T (and
therefore is different from zero for all except a finite number of points T) and don’t depends
on yi. From the resulting expansion (65) it follows that the smallest degree of T, in the poly-
nomial (det H S1g-1(er, B1, T H Lo ™ is equal to the number (&, B), and coefficient beside it is

we denote as C11 (&, ﬁ, 7). In other words, equalities (52) hold true. The lemma is proved. [
For some values of parameters @ i f values 6(&, §) and Cy1 (&, B, 7) can be easily calculated.

Example 1. Let in the conditions (2) a; = 0,1 € {1,...,2n}. Then from formulas (58), (59) we
obtain that

0,p1,7) = pr— f1,....2n}
~l,, , b1, T) = b , cL,...,2ny,
St - +aq) 1
18110, 81, DI, o |
det||¢;,-1(0,B;, T _1 =det ||
$1g-1 (0P E) g ﬁ( "0 g
o (66)
— H det 1 Tr+n(2n+1)’
(I— 1 "1+ qile=1
where we denoter = ry + - - - + r2,,. According to [12, p.110] this equality is valid
2n 2n
det || — = TI G=mG-DII@+D" (67)
T qllg=1  2n2jsiz1 j1=1

On basis of (66), (67) we obtain that

60, B) = m(r +n(2n +1)),
2n 2n

en@hn = (P T 6-mo-n Toe0)

P 2nzj>Iz1 j1=1
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Now we estimate the below value of G(j ), defined by the formula (51). Taking into account
formulas (51)—(52) we obtain that

G(e) = | @700 P D, 1) (B) 1 > Col W) (14 ) PP, (68)

where C12 = (5(52, B)' Cll (52, B, ?)(Clo)f‘s(&/g)*l_

Theorem 3. Let there exists a constant 179 > 0 such that for all (except for finite number of)
vectors p € M, the inequality

\W (pg)| > Ciz(1+ [pg])T0 (69)

holds. Then for almost all (with respect to Lebesgue measure on R) numbers T > 0 the in-
equality (30) holds true for all (except for finite number of) vectors y € My, if

n >5(52,B)—;70+1+ <1+2”’”+1) <9—’71+1) (T4+m(ri+---+7rum)).

Proof. Letey = (1+ |ux|)~", k € zP \ {0}. Taking into account (48), (49), (51) and (68) for the
measure of those T € [0, b] for which the inequality |D(p, T)| < & holds we obtain estimate

_ 1/x
4(1+ U
mesgrE(D, g, [0,b]) < CoCio (1 + [p) ( ( ‘yk’)m B+ 1)
C12C1g (1 + [pg|) "7 (70)
_1=0@@p)+np—1 - M_1 9
= Crq (T + ) x i < Crady |K| ( x ) 1,

where x = (1+2""+1) (1+m(ry + - -+ +r2)). Because of <% — 1) 61 > p, the se-
ries )z 15y MeSRE (D, €, [0,b]) is convergent. Then by Borel-Kantelli Lemma [14] the mea-
sure of those T € (0,b], which belongs to an infinite number of sets E(D, g, [0, b]), is equal
to zero. Thus, for almost all (with respect to Lebesgue measure on R) numbers T € (0, 1] the
inequality |D (g, T)| = €k holds for all (except a finite number) of vectors p; € M. Since from
the inequality (70) follows, that the measures of sets E(D, ¢, [0,b]) don’t depend on b (this
fact is the consequence of that the system (1) is of hyperbolic type), then, sending b to infinity,
we obtain that for almost all (with respect to Lebesgue measure on R) numbers T € (0, o)
the inequality |D(p, T)| > &, holds for all (excepting a finite number of) vectors y; € M,.
Since A(pg, T) = D(px, T) for all T € (0,0), then from the above follows the proof of the
theorem. O

Proposition 1. If in the problem (1), (2) p = 1 then the inequality (69) holds true at 19 >
4n’m(m — 1) +nm(2n — 1).

Proof. Under the condition of the proposition roots of the equation (13) at p = 1 have the form
Yjik = Yibk j € {1,...,2nm}, where by ; we denote roots of the equation

det Z il Agy®0 |l = 0.

|$]*=2n
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Vectors ﬁ]k at p = 1 have the form ﬁ]k = ﬁ] yin(m_l), j€A{1,...,2nm}, respectively, where by ﬁ
we denote some nonzero column of the matrix L*(7?, i i), wh1ch is adjugate matrix of the matrlx
L(v? Vi, i),j€{1,...,2nm}. Hence

j:l,...,an_detHh — 1 2n(m—1)+1— 1H] 1,...2nm

7oAl
W(pi) = det ”hJ‘k'Y' 121 20 iV Pk 1=1,...2n
_dn’m(m—1)+nm(2n—1) 11j=1,....2nm
= Mi det”hﬂ] [
From the above equality follows aforesaid statement. O

Proposition 2. If m = 1, i.e. the system (1) consists of a single equation, then the inequality
(69) holds at 19 = 0.

Proof. Under the condition of the proposition we have that W(ux) = TTi<i<j<on(7jk — 7Tik),
where by Yiks j€{1,...,2n}, we denote roots of the equation (13) at m = 1. Hence, at m = 1
the equation (1) is strictly hyperbolic, then from inequalities 2.21 in [14, p. 100], follows that
[Yik — ikl = C15 > 0, where 1 < I < j < 2n. From these inequalities follows that [W ()| >
(Cys)"2nt), O

5 COROLLARY

In the present paper we investigated the correctness of the problem with integral conditions
with respect to the time for hyperbolic in the narrow sense system of PDE’s with constant
coefficients in a class of almost periodic by spatial variables functions. We established the
criterion of unique solvability of this problem and the sufficient conditions for the existence
of its solutions. To solve the problem, small denominators (which are the quasi-polynomials
with respect to the upper limit of integration) arising in the construction of solutions of the
posed problem, we used the metric approach.

Our results can be extended to the Garding hyperbolic systems of equations of the form

? 9 92ii(t, x) ~
- 7l -— A 4 p
L <8t2’8x> @)= Y As 0, (tx)eDP

2 51 Sp
|§|*<27’l at Soaxl A axP
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Ky3sb AM., [Traummk B.1. 3adaua 3 inmezpanoHumu yMosamu 3a 4acoeoio 3MiHHow0 019 cucmemu 2inep-
6boniuHux pieHgHb 3i cmanumu koegiyienmamu // Kapmarcobki marem. my6a. — 2014. — T.6, Ne2. — C.
282-299.

B obaacTi, 110 € AekapToBUM A06yTKOM Biapiska [0, T] i mpoctopy R, AocAiaXXeHO 3apady 3 iH-
TerpaAbHMMM YMOBAMM 33 9aCOBOIO KOOPAMHATOIO AAS CYICTEMI Tillep 60AIUHMX PiBHSHD 3i CTaAMMM
KoedpillieHTaMM y KAaci Mali>ke IIepioAMYHIX 3a IPOCTOPOBMMY 3MIHHMMI (pYHKIIIN. 3HAIACHO KpU-
Tepilt eAVIHOCTI Ta AOCTaTHi YMOBM iCHyBaHHsI PO3B’sI3Ky 3apadi. AAsl pO3B’sI3aHHS TPOOAEMIU MAAVIX
3HaAMEHHVIKIB, SIKi BUHVKAU IpY TOGYAOBi pO3B’sI3KY 3aAadi, BUKOPMCTAHO METPWYHIIA IiAXiA

Kntouosi cnosa i ppasi: iHTerparbHi yMOBM, MaAi 3HAMeHHMKH, Mipa Aebera, MaiiXe IepioANyHi
dyHKIl, rinepboAivHa crcTeMa.

Kysp AM., Itamsux B.M. 3a0aua ¢ unmeepanoHviMu Ycaosuamu no spemeru 015 cucmemuvl eunepbo-
JUMECKUX YpasHeHuil ¢ nocmogHHoiMmu Koappuyuenmamy // Kapnarckue Marem. my6a. — 2014. —T.6,
Ne2. — C. 282-299.

B obaacty, sIBASIFOILIENCST AeKapTOBBIM Ipon3BeaeHmeM oTpeska [0, T] u mpocrparcTa RP, nc-
CAeAOBaHa 3ahayda C MHTETPaAbHBIMM YCAOBUSIMM IO BpEMEHHOM KOOPAVHATE AASI CICTEMBbI ruIep-
HOAMIeCKIIX YpaBHEHMI C IOCTOSIHHBIMU KO3(PPUIIMEHTaMI B KAacce TIOUTU IEPUOANIECKIIX TI0
IIPOCTPaHCTBEHHBIM IlepeMeHHBIM (PyHKIVIL. HaliaeHbI KpUTepmit e AMHICTBEHHOCTY I AOCTaTOYHBIE
YCAOBUSI CyIIIECTBOBAHNSI PELIeHNST 3apauit. AAsT pellleHnst IIpOOAeMBI MaABIX 3HAMeHaTeAel, KOTO-
Ppble BOHMKAM IpY IOCTPOEHUM pellleHns 3aAaUl, ICITOAb30BaHO METPUYECKIIA IIOAXOA,

Kntouesvie cnoea u ¢ppasei: MHTeTpaAbHbBIE YCAOBMSI, MaAble 3HaMeHaTeAl, Mepa Aebera, mouTu
meproAndecKye PYHKIVM, TUIIEpOOAMUIecKast CUCTeMA.



