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PROBLEM WITH TWO-POINT CONDITIONS FOR PARABOLIC EQUATION OF

SECOND ORDER ON TIME

The correctness of the problem with two-point conditions on time variable and Dirichlet-type

conditions on spatial coordinates for the linear parabolic equations are established. The metric

theorem about estimate from below of small denominators of the problem is proved.
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INTRODUCTION

The problems with two-point and multipoint conditions with respect to the time vari-

able for partial differential equations were studied in many scientific papers (see, for exam-

ple [2–5,7–11] and the references there). In particular, the correctnes of multipoint problems for

evolution equations in unbounded domain was investigated in the works [4,5]. The solvability

of multipoint problems for partial differential equations in bounded domains is frequenly re-

lated to the problem of small denominators. In the scientific works [3, 7, 8, 11] metric approach

have used for estimate from below of small denominators and it was proved that the conditions

of solvability of such problems are satisfied for almost all (with respect to the Lebesgue mea-

sure) vectors which coordinates are the coefficients of the equations and interpolation nodes

values.

The results of scientific works [3, 7, 8, 11] were generalized in the papers [2, 9, 10]. The

correctness of problems with multipoint conditions holds for almost all (with respect to the

Lebesgue measure) vectors which components are the interpolation nodes values (see [9, 10]).

The conditions of solvability of the problem with two multiple nodes for factorized equation

for almost all (with respect to the Lebesgue measure) vectors constructed by the coefficients of

the equations (see [2]).

In the present work, we established the conditions of correct solvability of local two-point

problem for factorized, parabolic operator (by Petrovskyi sense) in cylindrical domain which

is a cartesian product of time segment and special multidimentional parallelepiped and we

prove that such conditions are true for almost all (with respect to the Hausdorff measure)

vectors constructed by coefficients of the equation.
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1 STATEMENT OF THE PROBLEM

In the domain Q
p
T = (0, T)× Πp, Πp = (0, π)p, we consider the problem

2

∏
q=1

(

∂

∂t
+

p

∑
j=1

a
q
j Lb

j + Aq

(
L1, . . . , Lp

)

)

u(t, x) = 0, (t, x)∈ Q
p
T, (1)

u(t1, x) = ϕ1(x), u(t2, x) = ϕ2(x), 0 ≤ t1 < t2 ≤ T, x = (x1, . . . , xp) ∈ Πp, (2)

Lm
j u(t, x)

∣
∣
∣
xj=0

= Lm
j u(t, x)

∣
∣
∣

xj=π
= 0, m ∈ {0, 1, . . . , b − 1}, j ∈ {1,. . . ,p}, (3)

where a
q
j > 0, j ∈ {1, . . . , p}, q ∈ {1, 2},

Aq(L1, . . . , Lp) = ∑
|s|<b

A
q
s Ls1

1 . . . L
sp
p , A

q
s ∈ C, q ∈ {1, 2}, b ∈ N,

Lj := − ∂
∂xj

(

pj(xj)
∂

∂xj

)

+ qj(xj); pj ∈ C2b−1[0, π], qj ∈ C2b−2[0, π] are real-valued functions,

pj(xj) ≥ p0,j > 0, qj(xj) ≥ 0, j ∈ {1, . . . , p}.

We denote via Λj = {λk j
, kj ∈ N} and {Xk j

(xj), kj ∈ N}, j ∈ {1, . . . , p}, the set of eigen-

values and the system of responsible eigenfunctions (we suppose that
∫ π

0 |Xk j
(xj)|

2dxj = 1) of

such problem

LjX(xj) = λX(xj), X(0) = X(π) = 0. (4)

It is known [6] that for each j, j ∈ {1, . . . , p}, the eigenfunctions of the problem (4) make the

total orthonormal system in the space L2(0, π). Under the set of conditions for pj(xj) and qj(xj)

the next estimates

C1k2
j ≤ λk j

≤ C2k2
j , (5)

max
0≤xj≤π

∣
∣
∣X

(r)
k j
(xj)

∣
∣
∣ ≤ Njk

r
j , r ∈ {0, 1, . . . , 2b}, kj ∈ N, j ∈ {1, . . . , p},

are true for all kj ∈ N, where C1, C2, N1, . . . , Np are positive constants; in addition to that the

system of functions

{Xk(x) = Xk1
(x1) . . . Xkp

(xp), k = (k1, . . . , kp) ∈ N
p}

is a total orthonormal system in the space L2(Π
p).

Denote Λ = {~λk = (λk1
, . . . , λkp

), k ∈ Np}, |~λb
k| = λb

k1
+ . . .+λb

kp
, b ∈ N, ~β = (β1, . . . , βp)∈

Rp, (~β,~λb
k) = β1λb

k1
+ . . . + βpλb

kp
; Eb

α,~β
, α ∈ R, ~β ∈ Rp is a space of functions ϕ(x) =

∑ ϕkXk(x), ϕk ∈ C, k ∈ Np, with finite norm

∥
∥
∥ϕ; Eb

α,~β

∥
∥
∥ =

√

∑
k∈Np

|ϕk|2w2
k(α;~β; b), wk(α;~β; b) = |~λb

k |
α exp (~β,~λb

k);

Cn
(

[0, T]; Eb
α,~β

)

is space of functions u(t, x) = ∑ uk(t)Xk(x), uk(t) ∈ Cn[0, T], k ∈ Np, with

norm
∥
∥
∥u; Cn

(

[0, T]; Eb
α,~β

)∥
∥
∥ =

n

∑
j=0

max
t∈[0,T]

∥
∥
∥∂ju(t, ·)/∂tj ; Eb

α,~β

∥
∥
∥ < ∞.
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2 UNIQUENESS OF A SOLUTION OF THE PROBLEM

The solution of the problem (1)–(3) in the space C2
(

[0, T]; Eb
α,~β

)

has the form of series

u(t, x) = ∑
k∈Np

uk(t)Xk(x). (6)

The coefficient uk(t), k ∈ N
p, is a solution of the two-point problem for ordinary differential

equation
2

∏
q=1

(

d

dt
+

p

∑
j=1

a
q
j λb

k j
+ Aq(λk1

, . . . , λkp
)

)

uk(t) = 0, (7)

uk(t1) = ϕ1k, uk(t2) = ϕ2k, (8)

where ϕ1k, ϕ2k, k ∈ N
p are the Fourier coefficients (according to the system Xk(x), k ∈ N

p) of

functions ϕ1(x), ϕ2(x) respectively. Let L by a set {k ∈ Np : µ1(~λk) = µ2(~λk)}, where

µq(~λk) = −
p

∑
j=1

a
q
j λb

k j
− Aq(λk1

, . . . , λkp
), q ∈ {1, 2}, k ∈ N

p. (9)

The solution of the problem (7), (8) is defined by the formulas

uk(t) =

{

D1(~λk)e
µ1(~λk)t + D2(~λk)e

µ2(~λk)t, if k ∈ Np \ L,

D3(~λk)e
µ1(~λk)t + D4(~λk)te

µ1(~λk)t, if k ∈ L,

where Dj(~λk), j ∈ {1, . . . , 4}, is a solution of the following system of linear equations
{

D1(~λk)e
µ1(~λk)t1 + D2(~λk)e

µ2(~λk)t1 = ϕ1k,

D1(~λk)e
µ1(~λk)t2 + D2(~λk)e

µ2(~λk)t2 = ϕ2k,
if k ∈ N

p \ L,

{

D3(~λk)e
µ1(~λk)t1 + D4(~λk)t1eµ1(~λk)t1 = ϕ1k,

D3(~λk)e
µ1(~λk)t2 + D4(~λk)t2eµ1(~λk)t2 = ϕ2k,

if k ∈ L.

Let’s denote

∆(~λk) =

{

eµ1(~λk)t2+µ2(~λk)t1

[

e(µ2(~λk)−µ1(~λk))(t2−t1) − 1
]

, if k ∈ Np \ L,

(t2 − t1)e
µ1(~λk)(t1+t2), if k ∈ L.

(10)

Theorem 1. In order that problem (1)–(3) have at most one solution in the space

C2
(

[0, T]; Eb
α,~β

)

, α ∈ R, ~β ∈ R
p, it is necessary and sufficiently that the following condition be

satisfied

∀k ∈ N
p \ L ∀ ℓ ∈ Z (µ2(~λk)− µ1(~λk))(t2 − t1) 6= 2πiℓ. (11)

Proof. The proof is carried out by the scheme used to prove theorem 5.3 in [7].

We get next result comes from Theorem 1 and formulas (9).

Corollary 1. In order that problem (1)–(3) have the most one solution in the space

C2
(

[0, T]; Eb
α,~β

)

, α ∈ R, ~β ∈ Rp, it is necessary and sufficient that for each (k1, . . . , kp) ∈ Np \ L

and each ℓ ∈ Z at least one of the equations

p

∑
j=1

(a1
j − a2

j )λ
b
k j
+ ∑

|s|<b

Re(A1
s − A2

s )λ
s1
k1

. . . λ
sp

kp
= 0, ∑

|s|<b

Im(A1
s − A2

s )λ
s1
k1

. . . λ
sp

kp
=

2πℓ

(t2 − t1)

doesn’t hold.
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Example 1. For the problem

(
∂

∂t
+ a

∂4

∂x4
+ ia1

∂2

∂x2

)(
∂

∂t
+ a

∂4

∂x4
+ ia2

∂2

∂x2

)

u(t, x) = 0, (t, x) ∈ Q1
T, (12)

u(0, x) = 0, u(T, x) = 0, x ∈ (0, π), (13)

∂2mu(t, x)

∂x2m

∣
∣
∣
x=0

=
∂2mu(t, x)

∂x2m

∣
∣
∣
x=π

= 0, m ∈ {0, 1}, (14)

where a > 0, a1, a2 ∈ R, a1 6= a2, i2 = −1, the determinant ∆(λk), k ∈ N, is calculated by the

formula

∆(λk) =

{

e(−ak4+ia1k2)T(ei(a2−a1)k
2T − 1), if k 6= 0,

T, if k = 0.

So far as |∆(λk)| = 2e−ak4T| sin(a2 − a1)k
2T/2|, k 6= 0, then the problem (12)–(14) has in

space C2
(

[0, T]; Eb
α,~β

)

only trivial solution, if number (a2 − a1)T/π is irrational. If number

(a2 − a1)T/π is rational, then the problem (12)–(14) has in space C2
(

[0, T]; Eb
α,~β

)

countable

number of linear independent solutions

ur(t, x) = e−16ar4n4t
(

e4ia1r2n2t − e4ia2r2n2t
)

sin(2rnx), r ∈ Z \ {0}.

3 EXISTENCE OF A SOLUTION OF THE PROBLEM

In what follows, we consider that the condition (11) is satisfied. Then for every k ∈ Np

there exists the unique solution uk(t) of the problem (7), (8) such that

uk(t) =







1

∆(~λk)

[

(eµ2(~λk)t2+µ1(~λk)t − eµ1(~λk)t2+µ2(~λk)t)ϕ1k

+ (eµ1(~λk)t1+µ2(~λk)t − eµ2(~λk)t1+µ2(~λk)t)ϕ2k

]

, if k ∈ Np \ L,

1

∆(~λk)

[

(t2 − t)eµ1(~λk)(t2+t)ϕ1k + (t − t1)e
µ1(~λk)(t1+t)ϕ2k

]

, if k ∈ L.

(15)

We get from equations (6), (15) that the solution of the problem (1)–(3) can be represented by

the Fourier series

u(t, x) = ∑
k∈L

uk(t)Xk(x) + ∑
k∈Np\L

uk(t)Xk(x). (16)

The series (16) is, generally speaking, divergent, since the nonzero quantity ∆(~λk) can take

very small for the infinite number of vectors~λk ∈ Λ. The following statement is true.

Theorem 2. Suppose that condition (11) is satisfied and there exist ω ∈ R and ~ν ∈ Rp such

that for all (except a finite number) vectors~λk ∈ Λ the following inequality holds

|∆(~λk)| ≥ wk(−ω;−~ν; b). (17)

If ϕ1, ϕ2 ∈ Eb
α0,~β0

, where α0 = α + ω + 2, ~β0 = ~β + ~ν − ~δt1, ~δ = (δ1, . . . , δp), 0 < δj <

min{a1
j , a2

j }, j ∈ {1, . . . , p}, then there exists the unique solution of the problem (1)–(3) from

the space C2
(

[0, T]; Eb
α,~β

)

, which depends continuously on the functions ϕ1, ϕ2.
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Proof. It follows from equations (9) that estimates

−(~ξ,~λb
k) ≤ Reµq(~λk) ≤ −(~δ,~λb

k), q ∈ {1, 2}, (18)

where~ξ = (ξ1, . . . , ξp), ξ j > max{a1
j , a2

j }, j ∈ {1, . . . , p}, are true for all (except a finite number)

vectors k ∈ N
p. So far as

|µq(~λk)| ≤ C3|~λ
b
k |, q ∈ {1, 2}, C3 > max{a1

j , a2
j : j ∈ {1, . . . , p}}, (19)

then we’ll get from estimates (18), (19) that

∀t ≥ 0 |(tjeµq(~λk)t)(r)| ≤ C4wk(r;−~δt; b), j ∈ {0, 1}, q ∈ {1, 2}, r ∈ {0, 1, 2}. (20)

Based on estimates (17), (20) we get from the formulas (10), (15) that

max
t∈[0,T]

∣
∣
∣u

(r)
k (t)

∣
∣
∣ ≤ C5

2

∑
q=1

|ϕqk|wk(2 + ω;~ν −~δt1; b), k ∈ N
p.

So

∥
∥
∥u; C2

(

[0, T]; Eb
α,~β

)∥
∥
∥ ≤

2

∑
r=0

(

∑
k∈Np

max
t∈[0,T]

|u
(r)
k (t)|2w2

k(α;~β; b)

)1/2

≤ C6

2

∑
q=1

(

∑
k∈Np

|ϕqk|
2w2

k(α + ω + 2;~β +~ν −~δt1; b)

)1/2

= C6

2

∑
q=1

∥
∥
∥ϕq; E2b

α0,~β0

∥
∥
∥ .

(21)

The proof of the theorem implies from the inequality (21).

Remark 1. If the conditions of Theorem 2 are satisfied then for each fixed t0 ∈ [0, T] the func-

tion u(t0, x) belongs to the space Eb
α,~β+~δt0

.

The next statement describes the equations (1), for which estimate (17) is true with properly

chosen indices ω ∈ R and~ν = (ν1, . . . , νp) ∈ Rp.

Theorem 3. Suppose that for each j ∈ {1, . . . , p} the following inequality holds

a1
j > a2

j . (22)

If ω = 0, ~ν = ~ξ(t1 + t2) +~η(t1 − t2), where ~η = (η1, . . . , ηp), 0 < ηj < a1
j − a2

j , j ∈ {1, . . . , p},

then the estimate (17) holds for all (except for a finite number) vectors~λk ∈ Λ.

Proof. We get from inequalities (22) that for all (except for a finite number) vectors~λk ∈ Λ the

inequality

Re
(

µ2(~λk)− µ1(~λk)
)

≥ (~η,~λb
k) (23)

is true. It follows from the estimates (23) that the set L is not over finite. Let

N =

{

max
k∈L

|~λ1
k |, ifL 6= ∅,

0, ifL = ∅.
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Then, for all k ∈ Np such that |~λ1
k | > N, the determinant of ∆(~λk) is calculated by the formula

∆(~λk) = eµ1(~λk)t2+µ2(~λk)t1

(

e(µ2(~λk)−µ1(~λk))(t2−t1) − 1
)

. (24)

Since for any z ∈ C such that Re z ≥ ζ > 0, the inequality |ez − 1| ≥ eζ − 1 is true, then based

on estimates (23) we obtain from equation (24) that

|∆(~λk)| ≥ eRe(µ1(~λk)t2+µ2(~λk)t1)
∣
∣
∣e(~η,~λb

k)(t2−t1) − 1
∣
∣
∣ ,

for |~λ1
k | > N. Considering that eζ − 1 ≥ 1

2eζ for all ζ ≥ 1, and the fact that for all (except for a

finite number) the inequalities (18) are satisfied, we obtain that the inequality

|∆(~λk)| ≥ e−(~ξ(t1+t2)+~η(t1−t2),~λ
b
k)

holds for all (except for a finite number of) vectors K ∈ Np. Theorem is proved.

4 METRIC ESTIMATES OF SMALL DENOMINATORS

Let’s study the question of possibility for inequality (17). Let us provide some concepts

related to ρ-Hausdorff measure and Hausdorff dimension of the set M ⊂ Rp, for the ease of

presentation.

Definition 1. A limit (finite or infinite)

dimρ M = lim
δ→0

inf
∞

∑
j=1

(diam Sj)
ρ,

where the infimum is taken over all coverings of the set M by the balls Sj, j = 1, 2, . . ., such that

M ⊂
∞⋃

j=1
Sj and diameter of each ball Sj is not greater than δ, diam Sj ≤ δ, is called ρ-Hausdorff

measure of the set M ⊂ Rp (this limit we denote by dimρ M).

Definition 2. A real number β such that

1) ∀ρ β ≤ ρ ≤ p dimρ M = 0,

2) ∀ρ 0 < ρ < β dimρ M = ∞,

is called the Hausdorff dimension of the set M ⊂ Rp.

We will use statements, proof of which is contained in [1].

Theorem 4. The set M ⊂ Rp has zero ρ-Hausdorff measure if and only if when there exists a

covering by balls {Sj}
∞
j=1 of the set M such that

∞

∑
j=1

(diamSj)
ρ < ∞, and that every point of the

set M belongs to an infinite number of balls Sj.

We denote sj,q = (0, . . . , 0, q
︸ ︷︷ ︸

j

, 0, . . . , 0), j ∈ {1, . . . , p}, q ∈ {1, . . . , b − 1}, the multiindex of

the length p which j-th place is q and the rest places are zero;

y
q
j = Im(A1

sj,q
− A2

sj,q
), q ∈ {1, . . . , b − 1}, j ∈ {1, . . . , p},

~yq = (y
q
1, . . . , y

q
p), q ∈ {1, . . . , b − 1};

G = [c1, d1]× . . . × [cp, dp], cj, dj ∈ R, cj < dj, j ∈ {1, . . . , p}.
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Theorem 5. Let ρ ∈ (p − 1; p] and q ∈ {1, . . . , b − 1}. The inequality (17) holds for almost

all (respectively ρ-Hausdorff measure) vectors ~yq ∈ G and for all (except for a finite number)

vectors k ∈ Np if ω > ω1(q), ~ν = ~ξ(t1 + t2), where ~ξ = (ξ1, . . . , ξp), ξ j > max{a1
j , a2

j },

j ∈ {1, . . . , p},

ω1(q) =
p/(2b) + 1 − 1/b

ρ − p + 1
−

q

2b
, q ∈ {1, . . . , b − 1}.

Proof. Fix q ∈ {1, . . . , b − 1}. Let

Fq(~λk) = ∑
|s|<b

Im(A1
s − A2

s )λ
s1
k1

. . . λ
sp

kp
−

p

∑
j=1

y
q
j λ

q
k j

.

Let’s denote by Vω(~λk, m) a set of vectors ~yq ∈ G for which the inequality

∣
∣
∣
∣

p

∑
j=1

y
q
j τλ

q
k j
+ Fq(~λk)τ − m

∣
∣
∣
∣
< |~λb

k |
−ω, τ = (t2 − t1)/π,

is true for a fixed~λk ∈ Λ and m ∈ Z and by Vω the set of vectors ~yq ∈ G, which belong to an

infinite number of sets Vω
q (~λk, m), ~λk ∈ Λ, m ∈ Z. Obviously there exists the number C7 =

C7(p, b, c1, . . . , cp, d1, . . . , dp) > 0 such that for all m ∈ Z, |m| > C7|~λ
b−1
k |, the set Vω(~λk, m) is

empty.

We now consider the case when |m| ≤ C7|~λ
b−1
k | = M(λk). Let λk j0

= max
j∈{1,...,p}

{λk j
}, and

Vω(~λk, m, y
q
1, . . . , y

q
j0−1, y

q
j0+1, . . . , y

q
p) = {y

q
j0
∈ R : (y

q
1, . . . , y

q
p) ∈ Vω(~λk, m)}. If Vω(~λk, m) 6=

∅, then there exist y
q
1, . . . , y

q
j0−1, y

q
j0+1, . . . , y

q
p such that Vω(~λk, m, y

q
1, . . . , y

q
j0−1, y

q
j0+1, . . . , y

q
p) is

not empty interval
(

τ|~λb
k |

ωλ
q
k j0

)−1
. Then the set Vω(~λk,m) can be covered by the balls Sr(~λk, m),

r ∈ {1, . . . , J(~λk)}, of the radius
(

τ|~λb
k |

ωλ
q
k j0

)−1
, amount J(~λk) of which does not exceed

C8

(

|~λb
k |

ωλ
q
k j0

)p−1
. Note that for ω > ω1(q) the inclusion

Vω =
∞⋂

K=0

⋃

|~λk|≥K

⋃

0≤|m|≤M(~λk)

Vω(~λk, m) ⊂
∞⋂

K=0

⋃

|~λk|≥K

⋃

0≤|m|≤M(λk)

J(~λk)⋃

r=1

Sr(~λk, m) (25)

is correct. Therefore, each point of the set Vω belongs to an infinite number of the balls

Sr(~λk, m), r ∈ {1, . . . , J(~λk)}, 0 ≤ |m| ≤ M(~λk), ~λk ∈ Λ. On the basis of estimates (5) we

obtain from (25) that

∑
k∈Np

∑
0≤|m|≤M(~λk)

J(~λk)

∑
r=1

(

diam Sr(~λk, m)
)ρ

= ∑
k∈Np

∑
0≤|m|≤M(~λk)

J(~λk)

∑
r=1

(
1

τ|~λb
k |

ωλ
q
k j0

)ρ

≤ C9 ∑
k∈Np

1

|~λ1
k |
(ωb+q)(ρ−p+1)−b+1

≤ C10 ∑
k∈Np

1

|k|2((ωb+q)(ρ−p+1)−b+1)
.

(26)

For ω >
p/(2b)+1−1/b

ρ−p+1 − q
b the series (26) is converges, then by Theorem 4 the ρ-Hausdorff

measure of the set Vω is equal to zero. To complete the proof of the theorem it is given that

|∆(~λk)| ≥ eRe µ1(~λk)t2+Re µ2(~λk)t1

∣
∣
∣sin

(

Im(µ2(~λk)− µ1(~λk))(t2 − t1)
)∣
∣
∣ , k ∈ N

p \ L, (27)
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and that
∣
∣
∣sin

(

Im(µ2(~λk)− µ1(~λk))(t2 − t1)
)∣
∣
∣ ≥

2

π

∣
∣
∣Im(µ2(~λk)− µ1(~λk))(t2 − t1)− m π

∣
∣
∣

= 2

∣
∣
∣
∣
∣
∣
∑
|s|<b

Im(A1
s − A2

s )τλs1
k1

. . . λ
sp

kp
− m

∣
∣
∣
∣
∣
∣

,
(28)

where τ = (t2 − t1)/π and an integer m is such that

−1/2 ≤ ∑
|s|<b

Im(A1
s − A2

s )τλs1
k1

. . . λ
sp

kp
− m < 1/2.

Based on the estimates (18), (27) and (28) we get that for almost all (respectively to the

ρ-Hausdorff measure) vectors ~yq ∈ G the inequality

|∆(~λk)| ≥ |~λb
k |
−(p/(2b)+1−1/b)/(ρ−p+1)+q/be−(~ξ(t1+t2),~λ

b
k)

is true for all (except of a finite number) vectors~λk ∈ Λ. Theorem is proved.

Let Hω,~ν
q , ω ∈ R, ~ν ∈ Rp, be a set of vectors ~yq ∈ G, for which the estimate (17) is true.

From Theorem 5 the next corollary about the Hausdorff dimension of the set G\Hω,~ν
q follows.

Corollary 2. For each q ∈ {1, . . . , b − 1} and arbitrary ω >
p

2b + 1 − q+1
b the Hausdorff dimen-

sion of the set G\Hω,~ν
q is less than p − 1 + p/(2b)+1−1/b

ω+q/b , if~ν = ~ξ(t1 + t2).

Remark 2. Theorem 5 complements the results of [11].

5 CONCLUSIONS

The theorems of existence and uniqueness of the solution of the problem (1)–(3) in the

space of exponential type are established. The lower bound estimates of small denominators

for almost all (respectively to ρ-Hausdorff measure) vectors ~yq ∈ G are established. A class

of problems with conditions (2), (3) for equations (1) for which there is no problem of small

denominators, is subscribed.

The results can be extended to the next problem

n

∏
q=1

(

∂

∂t
+

p

∑
j=1

a
q
j Lb

j + Aq(L1, . . . , Lp)

)

u(t, x) = 0,

u(tj, x) = ϕj(x), tj = (j − 1)t0, j ∈ {1, . . . , n}, t0 = T/(n − 1),

where a
q
j > 0, Aq(L1, . . . , Lp) = ∑

|s|<b
As

qLs1
1 . . . L

sp
p , A

q
s ∈ C, q ∈ {1, . . . , n}.
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Симотюк М.М., Тимкiв I.Р. Задача з двоточковими умовами для параболiчного рiвняння другого

порядку за часом // Карпатськi матем. публ. — 2014. — Т.6, №2. — C. 351–359.

Встановлено умови коректної розв’язностi задачi з двоточковими умовами за часовою змiн-

ною та умовами типу Дiрiхле за просторовими координатами для лiнiйного параболiчного

рiвняння. Для доведення оцiнок знизу малих знаменникiв, якi виникли при побудовi розв’язку

задачi, використано метричний.

Ключовi слова i фрази: параболiчне рiвняння, двоточкова задача, ряд Фур’є, малi знаменни-

ки, мiра Гаусдорфа.

Сымотюк M.M., Тымкив И.Р. Задача с двухточечными условиями для параболического уравнения

второго порядка по времени // Карпатские матем. публ. — 2014. — Т.6, №2. — C. 351–359.

Найдены условия корректности задачи с двухточечными условиями по временной пере-

менной и условиями типа Дирихле по пространственным координатам для линейного пара-

болического уравнения. Для доказательства оценок снизу малых знаменателей, возникших

при построении решения задачи, использован метрический подход.

Ключевые слова и фразы: параболическое уравнения, двухточечная задача, ряд Фурье, ма-

лые знаменатели, мера Хаусдорфа.


