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ON THE PRIMITIVE REPRESENTATIONS OF FINITELY GENERATED METABELIAN
GROUPS OF FINITE RANK OVER A FIELD OF NON-ZERO CHARACTERISTIC

We consider some conditions for imprimitivity of irreducible representations of a metebelian
group G of finite rank over a field k. We shoved that in the case where chark = p > 0 these
conditions strongly depend on existence of infinite p-sections in G.
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We recall that a group G has finite (Prufer) rank if there is an integer r such that each finitely
generated subgroup of G can be generated by r elements; its rank r(G) is then the least integer
r with this property. A group G is said to have finite torsion-free rank if it has a finite series
in which each factor is either infinite cyclic or locally finite; its torsion-free rank ry(G) is then
defined to be the number of infinite cyclic factors in such a series. The set SpG of all prime
numbers p such that a soluble group G of finite rank has a p-quasicyclic factor is said to be the
spectrum of the group G.

A group G is said to be minimax if it has a finite series each of whose factor is either cyclic
or quasicyclic. It follows from results of [3] that any finitely generated metabelian group of
finite rank is minimax.

Let R be a ring and let G be a group. Let H be a subgroup of the group G and let U be
a right RH-module. Since the group ring RG can be considered as a left RH-module, we can
define the tensor product U ®@ry RG which is a right RG-module named as the RG-module
induced from the RH-module U.

If M is an RG-module and

M = URruRG (1)

for some subgroup H < G and some RH-submodule U of M, then the module M is said to be
induced from the RH-submodule U.

An RG-module M is said to be primitive if for any subgroup H < G and any RH-submodule
U < M the identity (1) does not hold. If the group G has finite torsion-free rank and for any
subgroup H < G such that ro(H) < rp(G) and any RH-submodule the identity (1) does not
hold, then the module M is said to be semi-primitive. A representation of the group G is
said to be primitive (semi-primitive) if the module of the representation is primitive (semi-
primitive). Certainly, primitive irreducible modules are a basic subject for investigations when
we are dealing with induced modules and, naturally, the following question appears: what can
be said on the construction of a group if it has a faithful primitive irreducible representation
over a field?
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In [4] Harper proved that any not abelian-by-finite finitely generated nilpotent group has
an irreducible primitive representation over a not locally finite field. In [11] we proved that if
a minimax nilpotent group of class 2 has a faithful irreducible primitive representation over a
finitely generated field of characteristic zero then the group is finitely generated. In [5] Harper
studied polycyclic groups which have faithful irreducible representations. It is well known
(see [14]) that any polycyclic group is finitely generated soluble of finite rank and meets the
maximal condition for subgroups (in particular, for normal subgroups). In [10] we showed that
in the class of soluble groups of finite rank with the maximal condition for normal subgroups
only polycyclic groups may have faithful irreducible primitive representations over a field of
characteristic zero. In [7-9] we studied irreducible primitive representations of metabelian
groups of finite rank over a field of characteristic zero. In the presented paper we consider the
case of a field of positive characteristic.

Let A be a torsion-free abelian group of finite rank acted by a group I'. Elements of the
group A, which have finite orbits under action of the group I', form a I'-invariant subgroup
Ar(A) of the group A.

Let k be a field and I be an ideal of the group algebra kA. We put IT = (I + 1) A. The
ideal I is said to be locally prime if kB (I is a prime ideal of kB for some finitely generated
dense subgroup B < A. Elements y of the group I' such that I" NkB = I N kB for some
finitely generated dense subgroup B < A form a subgroup Sr(I) < T (see [1]). We also put
Sepr(I) = (v € Sr(I)|Sp(I) N Sp(I7) # @), where Sp(I) is the prime specter of the ideal I.
The subgroup Sepr(I) is said to be the separator of the ideal I in the group T (see [8]).

An R-module is said to be Chernikov if its additive group is Chernikov.

Proposition 1. Let A = @ ;A; be a Chernikov Z[g]-module such that Soc(A;) is a cyclic
Z[g]-module for each i. Let k be a field such that chark ¢ 1t(A) and let M be a kA-module.
Then there is an element a € M\{0} such that kC; N Anng,(x) = P; is a maximal ideal of kC;
for any x € akA and for each 1 < i < n, where C;/H; = Soc(A;/H;) and H; is a maximal
g-invariant subgroup of Ann} ,(x) N A;.

Proof. We can repeat the argument of the proof of proposition 2.6 of [8] noting out that lemma
2.5 of [8] remains true because the condition chark ¢ m(A) allows us to apply Maschke’s
theorem. O

Theorem 1. Let A be an abelian torsion-free group of finite rank acted by a group of ope-
rators T' of finite torsion-free rank. Let k be a field such that chark ¢ Sp(A), let M be a
kA-module and let x # 0 be an element of M such that Ann} ,(x) is a dense subgroup of
A. Then there is an elementy € M\ {0} such that Ann} ,(y) has a non- trivial subgroup W
such that Sp(Annga(y)) N Sp(Annga(y)?) = @ for any v € I'\Nr(W), where Ny (W) is the
normalizer of the subgroup W inT.

Proof. If chark = 0, then the assertion is proved in theorem 3.5 of [8]. Suppose that chark =
p > 0, then p ¢ Sp(A) and hence the Sylow p-subgroup B/Ann} ,(x) of the quotient group
A/Ann} ,(x) is finite. Then xkB is a finite k-dimensional and hence Artenian kB- module.
Therefore, there is an element z € xkB such that Anngg(z) is a maximal ideal of kB and,
evidently, Anmgg(x) < Anmg(z). As B/Ann!,(x) is a p-group and chark = p, it is well
known that Annyg(z) is the augmentation ideal of kB and hence, as Annyg(z) < Annga(z),
we can conclude that B < Annf,(z). Since Anmga(x) < Anmga(z), B < Annj,(z) and
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B/ Ann,t 4(x) is the Sylow p-subgroup of the quotient group A/ Ann}: 4(x), it is easy to show
that p ¢ m(A/Ann] ,(z)). Thus, changing x by z we can assume that chark ¢ t(A/Ann} ,(x)).
Now, we can repeat the argument of the proof of theorem 3.5 of [8] applying proposition 1 in-
stead of proposition 2.6 of [8]. O

Theorem 2. Let A be an abelian torsion-free group of finite rank acted by a soluble group I
of finite torsion-free rank such that Ar(A) = 1. Let k be a field such that chark ¢ Sp(A) and
let M be a kA-module. Suppose that there is an element x € M\ {0} such that Annj4(x) is a
non-zero locally prime ideal of kA and ro(Sepr(Annga(x))) = ro(T'). Then there is an element
y € M\ {0} such that Ann} ,(y) contains a non-trivial Sepr(Annya(y))-invariant subgroup.

Proof. We can repeat the arguments of the proof of theorem 3.8 of [8] applying theorem 1
instead of theorem 3.5 of [8]. O

Theorem 3. Let G be a soluble group of finite torsion-free rank and let A be an abelian normal
torsion-free subgroup of G such that Ag(A) = 1. Let k be a field such that chark ¢ Sp(A)
and let M be a kG-module. If the module M is not kA-torsion-free then there is an element
a € M\ {0} such that

akG = akH®yykG and  ro(H/Cy(akH)) < ro(G),
where H = Sepg(Annga(a)).

Proof. We can repeat the arguments of the proof of theorem 4.2 of [8] applying theorem 2
instead of theorem 3.8 of [8]. O

Lemma 1. Let A be a torsion-free abelian minimax group acted by a soluble group I', let k be
a field such that chark ¢ SpA and let0 # « € kA. Then there is a maximal ideal L of kA such
that |A : L*} < oanda” ¢ L forany y € T.

Proof. Evidently, there is a finitely generated subring R < k such that « € RA then, by theorem
2.1 of [6], there is a maximal ideal I < RA such that |[RA: I| < oo and a” ¢ I for any v € T.
Then RA/I is a finite field and hence A/I" = (g) is a finite cyclic group such that chark ¢
7t((g)). Let f be the field of fractions of the domain R then, by Maschke’s theorem , f (g) =
fA/(1 —TI")fA is a semi-prime ring. Then there are elements Bi,vi € fA wherel <i<mn,

such that B;f (g) is a maximal ideal of f (g Hﬁz = 0and Z Bivi = 1. Evidently, there is a

finitely generated subring S < f such that R < S and B, i 6 S A. Let | be a maximal ideal of
SA such that JN RA = I. Since a7 € RA\I forany v € T'and ] N RA = I, we can conclude

n
thata” & Jforany v € I'. As H Bi = 0 and the ideal | is maximal, we see that ; € | for some
i=1

Bif (§)NS(g) = BiS(g) <J/(1—1I")SA.

Put Bif (§) = X/(1 —I")fA then X is a maximal ideal of fA such that XN SA < . As
a” € SA\]J for any ¢y € T', we can conclude that a7 ¢ X for any y € I'. Let L be a maximal ideal
of kA such that X < Lthen LN fA = X and as a7 € fA\X for any ¢ € T, we can conclude
thata” ¢ L forany ¢ € I'. O

i. Therefore,
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Lemma 2. Let G be a finitely generated metabelian group of finite Prufer rank, let k be a field
such that chark ¢ SpG and let M be a simple kG-module. Let A be an abelian torsion-free
normal subgroup of G such that A is contained in the derived subgroup of G and the quotient
group G/ A is polycyclic. Then the module M is not kA-torsion-free.

Proof. By corollary 2.1 of [2], there are a free kA-submodule F of M and a non-zero element
« € kA such that each element of M/F is annihilated by some product a3! ... a8" of conjugates
of « by elements of G. By lemma 1, there is a maximal ideal L of kC such |A : L| < co and
L contains no conjugates of a by elements of G. Since |A : Lt| < oo, it is not difficult to show
that L contains a non-zero G-invariant ideal I. As the ideal I is G-invariant, it is not difficult to
show that MI is a submodule of M and hence, as the module M is simple, either MI = 0 or
MI = M. If MI = 0, then the lemma holds. Thus we may assume that MI = M and hence
ML = M. Then, by lemma 5.2 of [8], each element of F/FL is annihilated by some product
a8t ... a8 of conjugates of a by elements of G. As F is a free kA-module &;(kA/kAL); ~ F/FL
and hence some such a product a81 ... a8 is contained in L. But it is a contradiction, because
the maximal ideal L contains no conjugates of « by elements of G. O

Theorem 4. Let G be a finitely generated metabelian group of finite Prufer rank, letk be a field
such that chark ¢ Sp(A) and let M be an irreducible kG-module such that Co(M) = 1. If
the group G is not nilpotent-by-finite, then there are a subgroup H < G and an irreducible
kH-submodule U < M such that M = U®ypkG and ro(H/Cy(U)) < 1o(G).

Proof. We can repeat the arguments of the proof of theorem 5.5 of [8] applying lemma 2 instead
of lemma 5.4 of [8] and theorem 3 instead of theorem 4.2 of [8]. O

Corollary 1. Let G be finitely generated group of finite Prufer rank which is an extension of
an abelian group A by a cyclic group < ¢ > and such that G is not nilpotent-by-finite. Let k
be a field such that chark ¢ Sp(A), then every faithful irreducible representation of G over k is
induced from an irreducible representation of the group A.

Proof. 1t is not difficult to note that the subgroup H in the proof of theorem 3 contains A. As
ro(H/Cyh(U)) < ro(G), it implies that A = H. O

The corollary generalizes some results of [8] to the case of fields of nonzero characteristic.
As it was proved in [12], an example constructed by Wehrfritz in [13] shows that the restriction
on characteristic p > 0 of the field k (p € SpG) is essential.
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Tymmes A.B. [Tpo npumimusHi 306pasiceHHs CKiHUeHHO HOPOOdCeHUX Memabdeesx epyn CKIHUeHHO20 paHey
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Po3rasiAQIOTBCST AesIKi YMOBM iMIIPMMITMBHOCTI He3BiAHMX 300pakeHb MeTabeaeBoi rpyms G
cKiHueHHOro paHry Haa moaeM k. Ilokasawo, mo y Bumaaxy chark = p > 0 1i yMOBU CyTT€BO
3aAeXaTh BiA iCHYBaHHsI HECKiHUeHHMX p-ceKIiil y rpymi G.

Kntouosi cnosa i ppasu: mpuUMIiTVBHI 306pakeHHsI, MeTabeAeBi [Py, paHT IPYIL

Tymes A.B. O npumumugHoix npedcmasieHuIx KOHeuHO-HOPOHCOEHHBIX MemadeesbIX epynn KOHeUHO20
parea Had nouem Henynesoli xapakmepucmuxu // Kapnarckme matem. my6oa. — 2014. — T.6, N22. — C.
389-393.

PaccMaTpuBaroTcst HEKOTOpPbIE YCAOBUS MMIIPYMUTYBHOCTY HEIIPUMBOAVIMBIX ITPeACTaBAECHIIA Me-
TabeneBoii rpymmbl G KOHEYHOTO paHra Haa noaeM k. [TokasaHo, 9ro B caydae chark = p > 03t
YCAOBUSI CyIIECTBEHHO 3aBUCST OT CyIIeCTBOBAHNS O€CKOHEUHBIX P-CeKIii B rpyme G.

Kntouesvie cnosa u Cf)pa3bl.’ IIPpVIMUTVIBHDbIE IIPEACTABACHNS, MeTabeAeBbI TPYIIIbI, paHT I'PYyIII.



