ISSN 2075-9827 Carpathian Math. Publ. 2014, 6 (2), 389–393 doi:10.15330/cmp.6.2.389-393

TUSHEV A.V.

ON THE PRIMITIVE REPRESENTATIONS OF FINITELY GENERATED METABELIAN GROUPS OF FINITE RANK OVER A FIELD OF NON-ZERO CHARACTERISTIC

We consider some conditions for imprimitivity of irreducible representations of a metebelian group *G* of finite rank over a field *k*. We shoved that in the case where chark = p > 0 these conditions strongly depend on existence of infinite *p*-sections in *G*.

Key words and phrases: primitive representations, metabelian groups, rank of groups.

Oles Honchar Dnipropetrovsk National University, 72 Gagarin avenue, 49010, Dnipropetrovsk, Ukraine E-mail: tushev@member.ams.org

We recall that a group *G* has finite (Prufer) rank if there is an integer *r* such that each finitely generated subgroup of *G* can be generated by *r* elements; its rank r(G) is then the least integer *r* with this property. A group *G* is said to have finite torsion-free rank if it has a finite series in which each factor is either infinite cyclic or locally finite; its torsion-free rank $r_0(G)$ is then defined to be the number of infinite cyclic factors in such a series. The set *SpG* of all prime numbers *p* such that a soluble group *G* of finite rank has a *p*-quasicyclic factor is said to be the spectrum of the group *G*.

A group *G* is said to be minimax if it has a finite series each of whose factor is either cyclic or quasicyclic. It follows from results of [3] that any finitely generated metabelian group of finite rank is minimax.

Let *R* be a ring and let *G* be a group. Let *H* be a subgroup of the group *G* and let *U* be a right *RH*-module. Since the group ring *RG* can be considered as a left *RH*-module, we can define the tensor product $U \otimes_{RH} RG$ which is a right *RG*-module named as the *RG*-module induced from the *RH*-module *U*.

If *M* is an *RG*-module and

$$M = U \otimes_{RH} RG \tag{1}$$

for some subgroup $H \le G$ and some *RH*-submodule *U* of *M*, then the module *M* is said to be induced from the *RH*-submodule *U*.

An *RG*-module *M* is said to be primitive if for any subgroup H < G and any *RH*-submodule U < M the identity (1) does not hold. If the group *G* has finite torsion-free rank and for any subgroup H < G such that $r_0(H) < r_0(G)$ and any *RH*-submodule the identity (1) does not hold, then the module *M* is said to be semi-primitive. A representation of the group *G* is said to be primitive (semi-primitive) if the module of the representation is primitive (semi-primitive). Certainly, primitive irreducible modules are a basic subject for investigations when we are dealing with induced modules and, naturally, the following question appears: what can be said on the construction of a group if it has a faithful primitive irreducible representation over a field?

УДК 512.544

2010 Mathematics Subject Classification: 16S34, 20C07, 11R27.

In [4] Harper proved that any not abelian-by-finite finitely generated nilpotent group has an irreducible primitive representation over a not locally finite field. In [11] we proved that if a minimax nilpotent group of class 2 has a faithful irreducible primitive representation over a finitely generated field of characteristic zero then the group is finitely generated. In [5] Harper studied polycyclic groups which have faithful irreducible representations. It is well known (see [14]) that any polycyclic group is finitely generated soluble of finite rank and meets the maximal condition for subgroups (in particular, for normal subgroups). In [10] we showed that in the class of soluble groups of finite rank with the maximal condition for normal subgroups only polycyclic groups may have faithful irreducible primitive representations over a field of characteristic zero. In [7–9] we studied irreducible primitive representations of metabelian groups of finite rank over a field of characteristic zero. In the presented paper we consider the case of a field of positive characteristic.

Let *A* be a torsion-free abelian group of finite rank acted by a group Γ . Elements of the group *A*, which have finite orbits under action of the group Γ , form a Γ -invariant subgroup $\Delta_{\Gamma}(A)$ of the group *A*.

Let *k* be a field and *I* be an ideal of the group algebra *kA*. We put $I^{\dagger} = (I + 1) \cap A$. The ideal *I* is said to be locally prime if $kB \cap I$ is a prime ideal of *kB* for some finitely generated dense subgroup $B \leq A$. Elements γ of the group Γ such that $I^{\gamma} \cap kB = I \cap kB$ for some finitely generated dense subgroup $B \leq A$ form a subgroup $S_{\Gamma}(I) \leq \Gamma$ (see [1]). We also put $Sep_{\Gamma}(I) = \langle \gamma \in S_{\Gamma}(I) | Sp(I) \cap Sp(I^{\gamma}) \neq \emptyset \rangle$, where Sp(I) is the prime specter of the ideal *I*. The subgroup $Sep_{\Gamma}(I)$ is said to be the separator of the ideal *I* in the group Γ (see [8]).

An *R*-module is said to be Chernikov if its additive group is Chernikov.

Proposition 1. Let $A = \bigoplus_{i=1}^{n} A_i$ be a Chernikov $\mathbb{Z}[g]$ -module such that $Soc(A_i)$ is a cyclic $\mathbb{Z}[g]$ -module for each *i*. Let *k* be a field such that $chark \notin \pi(A)$ and let *M* be a *kA*-module. Then there is an element $a \in M \setminus \{0\}$ such that $kC_i \cap Ann_{kA}(x) = P_i$ is a maximal ideal of kC_i for any $x \in akA$ and for each $1 \le i \le n$, where $C_i/H_i = Soc(A_i/H_i)$ and H_i is a maximal *g*-invariant subgroup of $Ann_{kA}^{\dagger}(x) \cap A_i$.

Proof. We can repeat the argument of the proof of proposition 2.6 of [8] noting out that lemma 2.5 of [8] remains true because the condition *chark* $\notin \pi(A)$ allows us to apply Maschke's theorem.

Theorem 1. Let *A* be an abelian torsion-free group of finite rank acted by a group of operators Γ of finite torsion-free rank. Let *k* be a field such that $chark \notin Sp(A)$, let *M* be a *kA*-module and let $x \neq 0$ be an element of *M* such that $Ann_{kA}^{\dagger}(x)$ is a dense subgroup of *A*. Then there is an element $y \in M \setminus \{0\}$ such that $Ann_{kA}^{\dagger}(y)$ has a non-trivial subgroup *W* such that $Sp(Ann_{kA}(y)) \cap Sp(Ann_{kA}(y)^{\gamma}) = \emptyset$ for any $\gamma \in \Gamma \setminus N_{\Gamma}(W)$, where $N_{\Gamma}(W)$ is the normalizer of the subgroup *W* in Γ .

Proof. If *chark* = 0, then the assertion is proved in theorem 3.5 of [8]. Suppose that *chark* = p > 0, then $p \notin Sp(A)$ and hence the Sylow *p*-subgroup $B/Ann_{kA}^{\dagger}(x)$ of the quotient group $A/Ann_{kA}^{\dagger}(x)$ is finite. Then *xkB* is a finite *k*-dimensional and hence Artenian *kB*- module. Therefore, there is an element $z \in xkB$ such that $Ann_{kB}(z)$ is a maximal ideal of *kB* and, evidently, $Ann_{kB}(x) \leq Ann_{kB}(z)$. As $B/Ann_{kA}^{\dagger}(x)$ is a *p*-group and *chark* = *p*, it is well known that $Ann_{kB}(z)$ is the augmentation ideal of *kB* and hence, as $Ann_{kB}(z) \leq Ann_{kA}(z)$, we can conclude that $B \leq Ann_{kA}^{\dagger}(z)$. Since $Ann_{kA}(x) \leq Ann_{kA}(z)$, $B \leq Ann_{kA}^{\dagger}(z)$ and

 $B/Ann_{kA}^{\dagger}(x)$ is the Sylow *p*-subgroup of the quotient group $A/Ann_{kA}^{\dagger}(x)$, it is easy to show that $p \notin \pi(A/Ann_{kA}^{\dagger}(z))$. Thus, changing *x* by *z* we can assume that *chark* $\notin \pi(A/Ann_{kA}^{\dagger}(x))$. Now, we can repeat the argument of the proof of theorem 3.5 of [8] applying proposition 1 instead of proposition 2.6 of [8].

Theorem 2. Let *A* be an abelian torsion-free group of finite rank acted by a soluble group Γ of finite torsion-free rank such that $\Delta_{\Gamma}(A) = 1$. Let *k* be a field such that chark $\notin Sp(A)$ and let *M* be a *kA*-module. Suppose that there is an element $x \in M \setminus \{0\}$ such that $Ann_{kA}(x)$ is a non-zero locally prime ideal of *kA* and $r_0(Sep_{\Gamma}(Ann_{kA}(x))) = r_0(\Gamma)$. Then there is an element $y \in M \setminus \{0\}$ such that $Ann_{kA}^{\dagger}(y)$ contains a non-trivial $Sep_{\Gamma}(Ann_{kA}(y))$ -invariant subgroup.

Proof. We can repeat the arguments of the proof of theorem 3.8 of [8] applying theorem 1 instead of theorem 3.5 of [8]. \Box

Theorem 3. Let *G* be a soluble group of finite torsion-free rank and let *A* be an abelian normal torsion-free subgroup of *G* such that $\Delta_G(A) = 1$. Let *k* be a field such that chark \notin *Sp*(*A*) and let *M* be a *kG*-module. If the module *M* is not *kA*-torsion-free then there is an element $a \in M \setminus \{0\}$ such that

 $akG = akH \otimes_{kH} kG$ and $r_0(H/C_H(akH)) < r_0(G)$,

where $H = Sep_G(Ann_{kA}(a))$.

Proof. We can repeat the arguments of the proof of theorem 4.2 of [8] applying theorem 2 instead of theorem 3.8 of [8]. \Box

Lemma 1. Let *A* be a torsion-free abelian minimax group acted by a soluble group Γ , let *k* be a field such that chark \notin SpA and let $0 \neq \alpha \in kA$. Then there is a maximal ideal *L* of *kA* such that $|A: L^{\dagger}| < \infty$ and $\alpha^{\gamma} \notin L$ for any $\gamma \in \Gamma$.

Proof. Evidently, there is a finitely generated subring $R \leq k$ such that $\alpha \in RA$ then, by theorem 2.1 of [6], there is a maximal ideal $I \leq RA$ such that $|RA : I| < \infty$ and $\alpha^{\gamma} \notin I$ for any $\gamma \in \Gamma$. Then RA/I is a finite field and hence $A/I^{\dagger} = \langle g \rangle$ is a finite cyclic group such that *chark* $\notin \pi(\langle g \rangle)$. Let f be the field of fractions of the domain R then, by Maschke's theorem , $f \langle g \rangle \cong fA/(1 - I^{\dagger})fA$ is a semi-prime ring. Then there are elements $\beta_i, \gamma_i \in fA$, where $1 \leq i \leq n$, such that $\beta_i f \langle g \rangle$ is a maximal ideal of $f \langle g \rangle$, $\prod_{i=1}^n \beta_i = 0$ and $\sum_{i=1}^n \beta_i \gamma_i = 1$. Evidently, there is a finitely generated subring $S \leq f$ such that $R \leq S$ and $\beta_i, \gamma_i \in SA$. Let J be a maximal ideal of SA such that $J \cap RA = I$. Since $\alpha^{\gamma} \in RA \setminus I$ for any $\gamma \in \Gamma$ and $J \cap RA = I$, we can conclude that $\alpha^{\gamma} \notin J$ for any $\gamma \in \Gamma$. As $\prod_{i=1}^n \beta_i = 0$ and the ideal J is maximal, we see that $\beta_i \in J$ for some i. Therefore,

$$\beta_i f \langle g \rangle \cap S \langle g \rangle = \beta_i S \langle g \rangle \leq J/(1 - I^{\dagger}) SA$$

Put $\beta_i f \langle g \rangle = X/(1 - I^{\dagger}) f A$ then *X* is a maximal ideal of *f A* such that $X \cap SA \leq J$. As $\alpha^{\gamma} \in SA \setminus J$ for any $\gamma \in \Gamma$, we can conclude that $\alpha^{\gamma} \notin X$ for any $\gamma \in \Gamma$. Let *L* be a maximal ideal of *k A* such that $X \leq L$ then $L \cap fA = X$ and as $\alpha^{\gamma} \in fA \setminus X$ for any $\gamma \in \Gamma$, we can conclude that $\alpha^{\gamma} \notin L$ for any $\gamma \in \Gamma$.

Lemma 2. Let *G* be a finitely generated metabelian group of finite Prufer rank, let *k* be a field such that $chark \notin SpG$ and let *M* be a simple *k*G-module. Let *A* be an abelian torsion-free normal subgroup of *G* such that *A* is contained in the derived subgroup of *G* and the quotient group *G*/*A* is polycyclic. Then the module *M* is not *kA*-torsion-free.

Proof. By corollary 2.1 of [2], there are a free kA-submodule F of M and a non-zero element $\alpha \in kA$ such that each element of M/F is annihilated by some product $\alpha^{g_1} \dots \alpha^{g_m}$ of conjugates of α by elements of G. By lemma 1, there is a maximal ideal L of kC such $|A : L^+| < \infty$ and L contains no conjugates of α by elements of G. Since $|A : L^+| < \infty$, it is not difficult to show that L contains a non-zero G-invariant ideal I. As the ideal I is G-invariant, it is not difficult to show that MI is a submodule of M and hence, as the module M is simple, either MI = 0 or MI = M. If MI = 0, then the lemma holds. Thus we may assume that MI = M and hence ML = M. Then, by lemma 5.2 of [8], each element of F/FL is annihilated by some product $\alpha^{g_1} \dots \alpha^{g_m}$ of conjugates of α by elements of G. As F is a free kA-module $\bigoplus_i (kA/kAL)_i \simeq F/FL$ and hence some such a product $\alpha^{g_1} \dots \alpha^{g_m}$ is contained in L. But it is a contradiction, because the maximal ideal L contains no conjugates of α by elements of G.

Theorem 4. Let *G* be a finitely generated metabelian group of finite Prufer rank, let *k* be a field such that *chark* \notin *Sp*(*A*) and let *M* be an irreducible *kG*-module such that $C_G(M) = 1$. If the group *G* is not nilpotent-by-finite, then there are a subgroup $H \leq G$ and an irreducible *kH*-submodule $U \leq M$ such that $M = U \otimes_{kH} kG$ and $r_0(H/C_H(U)) < r_0(G)$.

Proof. We can repeat the arguments of the proof of theorem 5.5 of [8] applying lemma 2 instead of lemma 5.4 of [8] and theorem 3 instead of theorem 4.2 of [8].

Corollary 1. Let *G* be finitely generated group of finite Prufer rank which is an extension of an abelian group *A* by a cyclic group $\langle g \rangle$ and such that *G* is not nilpotent-by-finite. Let *k* be a field such that chark \notin Sp(*A*), then every faithful irreducible representation of *G* over *k* is induced from an irreducible representation of the group *A*.

Proof. It is not difficult to note that the subgroup *H* in the proof of theorem 3 contains *A*. As $r_0(H/C_H(U)) < r_0(G)$, it implies that A = H.

The corollary generalizes some results of [8] to the case of fields of nonzero characteristic. As it was proved in [12], an example constructed by Wehrfritz in [13] shows that the restriction on characteristic p > 0 of the field k ($p \notin SpG$) is essential.

REFERENCES

- Brookes C. J. B. *Ideals in group rings of soluble groups of finite rank*. Math. Proc. Cambridge Philos. Soc. 1985, 97 (1), 27–49. doi:10.1017/S0305004100062551
- [2] Brown K. A. The Nullstellensatz for certain group rings. J. London Math. Soc. 1982, 26 (3), 425–434. doi: 10.1112/jlms/s2-26.3.425
- [3] Hall P. On the finiteness of certain soluble groups. Proc. London Math. Soc. 1959, 9 (4), 595–622. doi: 10.1112/plms/s3-9.4.595
- [4] Harper D.L. Primitive irreducible representations of nilpotent groups. Math. Proc. Cambridge Philos. Soc. 1977, 82 (2), 241–247. doi:10.1017/S0305004100053846

- [5] Harper D.L. Primitivity in representations of polycyclic groups. Math. Proc. Cambridge Philos. Soc. 1980, 88 (1), 15–31. doi:10.1017/S0305004100057327
- [6] Segal D. On the group rings of abelian minimax groups, II: The singular case. J. Algebra. 2006, 306 (2), 378–396. doi:10.1016/j.jalgebra.2006.08.017
- [7] Tushev A.V. On the primitivity of group algebras of certain classes of soluble groups of finite rank. Sb. Math. 1995, 186 (3), 447–463. doi:10.1070/SM1995v186n03ABEH000026
- [8] Tushev A.V. Spectra of conjugated ideals in group algebras of abelian groups of finite rank and control theorems. Glasgow Math.J. 1996, 38 (3), 309–320. doi:10.1017/S0017089500031736
- [9] Tushev A.V. Induced modules over group algebras of metabelian groups of finite rank. Comm. Algebra. 1999, 27 (12), 5921–5938. doi:10.1080/00927879908826798
- [10] Tushev A.V. On the primitive representations of soluble groups of finite rank. Sb. Math. 2000, 191 (11), 1707–1749. doi:10.1070/SM2000v191n11ABEH000524
- Tushev A.V. On primitive representations of minimax nilpotent groups. Math. Notes. 2002, 72 (1–2), 117–128. doi:10.1023/A:1019877307181
- [12] Tushev A.V. On semi-primitive representations of finitely generated metabelian groups. Proc. Dnipropertovsk Univ.: Math. 2001, 6, 128–130. (in Russian)
- [13] Wehrfritz B.A.F. Groups whose irreducible representations have finite degree. Math. Proc. Cambridge Philos. Soc. 1981, 90 (3), 411–421. doi:10.1017/S0305004100058898
- [14] Wehrfritz B.A.F. Group and ring theoretic properties of polycyclic groups. In: Algebra and Applications 10, Springer-Verlag, London, 2009.

Received 12.09.2014

Тушев А.В. Про примітивні зображення скінченно породжених метабелевих груп скінченного рангу над полем ненульової характеристики // Карпатські матем. публ. — 2014. — Т.6, №2. — С. 389– 393.

Розглядаються деякі умови імпримітивності незвідних зображень метабелевої групи G скінченного рангу над полем k. Показано, що у випадку chark = p > 0 ці умови суттєво залежать від існування нескінченних p-секцій у групі G.

Ключові слова і фрази: примітивні зображення, метабелеві групи, ранг груп.

Тушев А.В. О примитивных представлениях конечно-порожденных метабелевых групп конечного ранга над полем ненулевой характеристики // Карпатские матем. публ. — 2014. — Т.6, №2. — С. 389–393.

Рассматриваются некоторые условия импримитивности неприводимых представлений метабелевой группы G конечного ранга над полем k. Показано, что в случае *chark* = p > 0 эти условия существенно зависят от существования бесконечных p-секций в группе G.

Ключевые слова и фразы: примитивные представления, метабелевы группы, ранг групп.