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TWO-SIDED INEQUALITIES WITH NONMONOTONE SUBLINEAR OPERATORS

Theorems on existence of solutions and their two-sided estimates for one class of nonlinear op-

erator equations x = Fx with nonmonotone operators are proved.
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PROBLEM STATEMENT

While we studying in Banach space E the equation

x = Fx (1)

with the nonlinear operator F : E → E, in general, the following condition is often used

lim
‖x‖→∞

‖Fx‖

‖x‖
= α. (2)

For example, condition (2) for α = 0 satisfies the integral equation

x(t) = f (t) +
∫

D
K(t, s)xγ(s)ds, 0 < γ < 1, (3)

which was studied by M.A. Krasnoselsky [1] (see also references in [1]), B.Z. Vulykh [2],

C.A. Stuart [3] and others. In particular, C.A. Stuart [3] uses the results obtained for equation

(3) while investigating some boundary values problems for equations with partial derivatives.

In the present paper, we apply methods suggested in [4, §8] to the study of equation (1)

with the operator F satisfying condition (2) under the assumption 0 < α 6 1, which makes it

possible to get some specification and generalization of respective results from [4, §8]. It also

allows of applying the obtained results to the equation

x(t) = f (t) +
∫

D
K(t, s)xγ(s)ds +

∫
D

K1(t, s)x(s)ds, 0 < γ 6 1.

1 MAIN RESULTS AND THEIR EXPLANATION

Definition 1. The norm of the pair of elements from E is ‖y, z‖, satisfying the following con-

ditions: a) if y, z ∈ E, the inequalities are ‖y‖ 6 ‖y, z‖, ‖z‖ 6 ‖y, z‖; b) the norm ‖y, z‖

is monotone when introducing into E × E semiorderedness of pairs (y, z) elements from E,

generated in this or that way of semiorderedness in E.
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For example, if the norm ‖y, z‖ is introduced with the help of one of the formulas

‖y, z‖ = max {‖y‖, ‖z‖} , ‖y, z‖ = (‖y‖p + ‖z‖p)
1
p , p > 1, (4)

and the semiorderedness of pairs (y, z) is defined as (y, z) 6 (u, v) for y 6 u, z > v or (y, z) 6

(u, v) for y 6 u, z 6 v, then conditions a), b) are satisfied. With this semiorderedness, the

space E × E is a fully regular space if E has this property.

Theorem 1. Suppose that: 1) there are nondecreasing with respect to y and nonincreasing with

respect to z continuous operators T1(y, z), T2(y, z) : E × E → E, such that

T1(x, x) = T2(x, x) = Fx, x ∈ E; (5)

2) there exists M > 0, and from the inequality ‖y, z‖ > M it follows that

‖T1(y, z), T2(z, y)‖ 6 ‖y, z‖; 3) if y, z ∈ E, then T1(y, z) 6 T2(y, z); 4) there are elements

u, v ∈ E, for which u 6 T1(u, v), v > T2(v, u); 5) simultaneous equations

y = T1(y, z), z = T2(z, y) (6)

have no more than one solution; 6) equation (1) has at least one solution. Then the unique

solution x∗ ∈ E of equation (1) satisfies the estimates

yn 6 yn+1 6 x∗ 6 zn+1 6 zn, n = 0, 1, . . . , (7)

where the sequences {yn}, {zn} are built with the help of

y0 = u, z0 = v, yn+1 = T1(yn, zn), zn+1 = T2(zn, yn), n = 0, 1, . . . (8)

At that the sequences {yn}, {zn} converge in E to x∗ by the norm.

Proof. Let us prove the inequalities

y0 6 y1 6 . . . 6 yn 6 yn+1 6 . . . , z0 > z1 > . . . > zn > zn+1 > . . . (9)

If n = 0 from conditions 4) and (8) we obtain y0 = u 6 T1(y0, z0) = y1, z0 = v > T2(z0, y0) =

z1. Assuming that yn−1 6 yn, zn−1 > zn, based on (8) and 1) we get

yn+1 = T1(yn, zn) > T1(yn−1, zn−1) = yn, zn+1 = T2(zn, yn) 6 T2(zn−1, yn−1) = zn.

By induction, we come to a conclusion that the inequalities (9) are valid for any n ∈ N.

Let us make sure that the sequences {yn}, {zn} are limited by the norm. If starting from

some number n = N, all the members of the sequence {(yn , zn)} satisfied the inequality

‖(yn , zn)‖ 6 M, (10)

then the sequence {(yn, zn)} would be limited by the norm, and the sequences {yn}, {zn}

would be limited by the norm. Assuming that for any N > 0 we have n > N so that

‖yn, zn‖ > M, (11)

let us consider two mutually exclusive cases. Let in the first one exist no more than a finite

number of the members of the sequence {(yn, zn)}, for which ‖yn, zn‖ 6 M. Then starting

from some number n = N inequality (11) holds. In virtue of (8) and condition 2) we obtain

‖yN+1, zN+1‖ = ‖T1(yN , zN), T2(zN , yN)‖ 6 ‖yn, zn‖.
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Assuming that ‖yN+k, zN+k‖ 6 ‖yN+k−1, zN+k−1‖, we shall similarly find that

‖yN+k+1, zN+k+1‖ = ‖T1(yN+k, zN+k), T2(zN+k, yN+k)‖ 6 ‖yN+k, zN+k‖.

By induction, we come to a conclusion that the sequence {(yn, zn)} and the sequences {yn},

{zn} are limited by the norm. Suppose that the sequence {(yn, zn)} has an infinite number of

members for which inequality (10) holds as well as an infinite number of members for which

inequality (11) holds. It means that this property pertains to the sequence {yn}, {zn}. Let us

choose arbitrary n1 and n2, n1 < n2, for which, for example, ‖yn1‖ 6 M, ‖yn2‖ 6 M. Let us

have n3 so that n1 < n3 < n2 and ‖yn3‖ > M, from (9) we obtain yn1 6 yn3 6 yn2 . Based

on Lemma 8.1 [4, p. 37] we get ‖yn3‖ 6 ‖yn1‖+ ‖yn2‖ 6 2M. This proves that the sequence

{yn} is limited by the norm. It is similarly proved that the sequence {zn} is also limited by the

norm. For the fully regular ordered space E, the monotonely nondecreasing sequence {yn}

and the monotonely nonincreasing sequence {zn}, which are limited by the norm, have limits

y∗ and z∗, y∗, z∗ ∈ E, which are components of the solution of system (6). The solution x∗ ∈ E

of equation (1) and equality (5) mean that (x∗, x∗) is the solution of system (6). Since system

(6) has a unique solution, then y∗ = z∗ = x∗. The proof of the theorem is complete.

Theorem 2. Suppose that: 1) there are nondecreasing with respect to y, nonincreasing with

respect to z continuous operators T1(y, z), T2(y, z) : E × E → E, such that

T1(x, x) 6 Fx 6 T2(x, x), x ∈ E; (12)

2) conditions 2)–6) of Theorem 1 are satisfied. Then for any solution x∗ ∈ E of equality (1)

we have inequalities (7), where sequences {yn}, {zn} are built with the help of formulae (8).

Besides, the sequences {yn}, {zn} converge to the components y∗, z∗ of the solution (y∗, z∗) of

system (6) and the estimates u 6 y∗ 6 x∗ 6 z∗ 6 v are valid.

Proof. Let us build an iteration process with the help of

ϕ0 = ψ0 = x∗, ϕn+1 = T1(ϕn, ψn), ψn+1 = T2(ψn, ϕn), n = 0, 1, . . . ,

where x∗ is the solution of equation (1). From inequality (12), nondecreasing with respect to y

and nonincreasing with respect to z properties of operators T1(y, z), T2(y, z) are observed by

ϕ0 > ϕ1 > . . . > ϕn > ϕn+1 > . . . , ψ0 6 ψ1 6 . . . 6 ψn 6 ψn+1 6 . . . , n = 0, 1, . . .

As in the proof of Theorem 1, we find that the sequence {ϕn} converges to its limit ϕ∗ without

its monotone increase, and the sequence {ψn} converges to its limit ψ∗ without its monotone

decrease. At that (ϕ∗, ψ∗) is the solution of system (6) and ϕ∗ 6 x∗ 6 ψ∗. Besides, for the

sequences {yn}, {zn}, built with the help of formulae (8), we can fully repeat relevant con-

siderations in the proof of Theorem 1 and reach the same conclusions concerning y∗, z∗ as a

component of the solution (y∗, z∗) of system (6) and about inequalities (9). The solution of

system (6) being unique, it makes us possible to state that ϕ∗ = y∗, ψ∗ = z∗.

The proof of the theorem is complete.

Theorem 3. Suppose that: 1) condition 1) of Theorem 2 is satisfied; 2) there are linear positive

relative to w ∈ E, nondecreasing with respect y, nonincreasing with respect to z operators

A1(y, z)w, A2(y, z)w, for which if x, y, z ∈ E the following inequalities hold

−A1(z, y)(z − y) 6 T1(z, x)− T1(y, x), T2(x, z)− T2(x, y) 6 A2(z, y)(z − y);
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3) there is M > 0, so that from the inequality ‖z, y‖ > M follows

‖T1(y, z)− (A1(z, y) + A2(z, y))(z − y), T2(y, z) + (A1(z, y) + A2(z, y))(z − y)‖ 6 ‖z, y‖;

4) there are u, v ∈ E, such that

u 6 −(A1(v, u) + A2(v, u))(v − u) + T1(u, v), v > (A1(v, u) + A2(v, u))(v − u) + T2(v, u);

5) simultaneous equations

y = −(A1(z, y) + A2(z, y))(z − y) + T1(y, z),

z = (A1(z, y) + A2(z, y))(z − y) + T2(z, y)
(13)

have in E × E no more than one solution. Then if there is a solution of equation (1), it is unique

and the sequences {yn}, {zn} converge to it without increasing and decreasing respectively.

These sequences are built with the help of formulae

yn+1 = −(A1(zn, yn) + A2(zn, yn))(zn − yn) + T1(yn, zn),

zn+1 = (A1(zn, yn) + A2(zn, yn))(zn − yn) + T2(zn, yn), n = 0, 1, . . .

if y0 = u, z0 = v. Besides, there are estimates (7).

Proof of the sequences {yn}, {zn} being monotone and limited by the norm in fact follows

along the lines of respective considerations from the proof of Theorem 1. That’s why yn ↑ y∗,

zn ↓ z∗ (y∗, z∗ ∈ E), and (y∗, z∗) is solution of system (13). If x∗ is the solution of equation (1),

then (x∗, x∗) is the solution of system (13), and this system can have no more than one solution.

The proof of the theorem is complete. �

2 APPLYING LIMITED ELEMENTS TO EQUATIONS IN KN-SPACES

Theorem 4. Suppose that: 1) E is KN-space of limited elements and in E × E the norm is

defined with the help of the first formula from (4); 2) condition 2) of Theorem 1 and condition

1) of Theorem 2 are satisfied; 3) if y 6 z (y, z ∈ E), then T1(y, z) 6 T2(z, y). Then there is

extreme (see, e.g., [4, p. 22]) in E × E solution (y∗, z∗) of system (6), the components of which

belong to some segment [−a, a] ⊂ E, and for any solution x∗ ∈ E of equation (1) we have

−a 6 x∗ 6 a, y∗ 6 x∗ 6 z∗. (14)

Proof. If we replace condition 2) of Theorem 1 by the condition: if ‖y, z‖ > M we have

‖T1(y, z), T2(z, y)‖ < ‖y, z‖, (15)

then any solution (y, z), y, z ∈ E of system (6) is within D = {(y, z)|‖y, z‖ < M, y, z ∈ E} .

If for some solution (y, z) (y, z ∈ E) of system (6) we have ‖y, z‖ > M, then from (6) and (15)

we obtain ‖y, z‖ = ‖T1(y, z), T2(z, y)‖ < ‖y, z‖, which is impossible. It allows us to draw a

conclusion that any solution of system (6) belongs to the segment [−a; a]. If e is a unit of the

space E of limited elements, it follows from what has been said that

|y| 6 ‖y‖e 6 ‖y, z‖e 6 Me, |z| 6 ‖z‖e 6 ‖y, z‖e 6 Me.

Let us denote Me = a. Considering obvious inequality −a 6 a, inequality (15) and determina-

tion of domain D, we shall have

|T1(−a, a)| 6 ‖T1(−a, a), T2(a,−a)‖e 6 ‖ − a, a‖e = Me = a,
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|T2(a,−a)| 6 ‖T1(−a, a), T2(a,−a)‖e 6 ‖ − a, a‖e = Me = a.

This implies that −a 6 T1(−a, a), a > T2(a,−a). To prove existence of extreme solution (y∗, z∗)

of system (6) on the segment [−a, a], it is enough to use iterations (8) setting u = −a, v = a

in them. As any solution of system (6) has components belonging to the segment [−a, a], we

draw a conclusion that (y∗, z∗) is extreme in E × E solution of system (6). The proof of the

theorem is complete.

Theorem 5. Suppose that condition 1) of Theorem 4, condition 1) of Theorem 2 and condition

2) of Theorem 3 are satisfied. Then there is an extreme in E × E solution (y∗, z∗) of system (13),

the components of which belong to some segment [−a, a] ⊂ E, and for any solution x∗ ∈ E of

equation (1), there are estimates (14).

The proof differs from the proof of Theorem 4 unessentially.

REMARK

If T1(y, z), T2(y, z) are fully continuous operators, then for the solution of equation (1) to

exist, it is enough to satisfy condition 2) of Theorem 1. In this case, the operator generated by

the right member of (6) will turn some sphere S of the radius M from E × E into compact in

E × E set D1. Let us choose the number M1 > M so high that the sphere S1 ⊂ E × E contains

the sphere S, as well as the compact, and therefore limited, set D1. Thus, it turns out that the

operator generated by the right member of (6), turns the sphere S into itself. Therefore, let us

apply the Schauder principle.

Obtaining results supplement and specify results [5, §21] (see also references in [5]).
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