Osypchuk M.M.

ON SOME PERTURBATIONS OF A STABLE PROCESS AND SOLUTIONS OF THE CAUCHY PROBLEM FOR A CLASS OF PSEUDO- DIFFERENTIAL EQUATIONS

A fundamental solution of some class of pseudo-differential equations is constructed by a method based on the theory of perturbations. We consider a symmetric α-stable process in multidimensional Euclidean space. Its generator \mathbf{A} is a pseudo-differential operator whose symbol is given by $-c|\lambda|^{\alpha}$, where the constants $\alpha \in(1,2)$ and $c>0$ are fixed. The vector-valued operator \mathbf{B} has the symbol $2 i c|\lambda|^{\alpha-2} \lambda$. We construct a fundamental solution of the equation $u_{t}=(\mathbf{A}+(a(\cdot), \mathbf{B})) u$ with a continuous bounded vector-valued function a.

Key words and phrases: stable process, Cauchy problem, pseudo-differential equation, transition probability density.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine
E-mail: mykhailo.osypchuk@pu.if.ua

INTRODUCTION

Let A denote a pseudo-differential operator that acts on a twice continuously differentiable bounded function $(\varphi(x))_{x \in \mathbb{R}^{d}}$ according to the following rule

$$
\begin{equation*}
(\mathbf{A} \varphi)(x)=\frac{c}{\varkappa} \int_{\mathbb{R}^{d}} \frac{\varphi(x+y)-\varphi(x)-(y, \nabla \varphi(x))}{|y|^{d+\alpha}} d y, \tag{1}
\end{equation*}
$$

where $c>0,1<\alpha<2, d \in \mathbb{N}$ are some constants, $\varkappa=-\frac{2 \pi^{\frac{d-1}{2}} \Gamma(2-\alpha) \Gamma\left(\frac{\alpha+1}{2}\right) \cos \frac{\pi \alpha}{2}}{\alpha(\alpha-1) \Gamma\left(\frac{d+\alpha}{2}\right)}$ and ∇ is the Hamilton operator (gradient). Here (\cdot, \cdot) denotes the scalar product in \mathbb{R}^{d}.

It is known that the function $u(t, x)=\int_{\mathbb{R}^{d}} \varphi(y) g(t, x, y) d y$, where

$$
\begin{equation*}
g(t, x, y)=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} e^{i(y-x, \lambda)-c t|\lambda|^{\alpha}} d \lambda, \tag{2}
\end{equation*}
$$

is a solution of the following Cauchy problem

$$
\begin{align*}
\frac{\partial u(t, x)}{\partial t} & =\mathbf{A}_{x} u(t, x), \quad t>0, x \in \mathbb{R}^{d}, \tag{3}\\
u(0+, x) & =\varphi(x), \quad x \in \mathbb{R}^{d},
\end{align*}
$$

for any bounded continuous function $(\varphi(x))_{x \in \mathbb{R}^{d}}$.

If an operator acts on a function of several arguments, then it will be provided by a corresponding subscript, for example, \mathbf{A}_{x} in (3) means that the operator \mathbf{A} is acting on $u(t, x)$ as the function of the variable x.

Note, that the function $(g(t, x, y))_{t>0, x \in \mathbb{R}^{d}, y \in \mathbb{R}^{d}}$ serves as transition probability density of a Markov process in \mathbb{R}^{d}, called a symmetric stable process. The operator \mathbf{A} is the generator of it.

Let us consider the equation

$$
\begin{equation*}
\frac{\partial u(t, x)}{\partial t}=\mathbf{A}_{x} u(t, x)+\left(a(x), \mathbf{B}_{x} u(t, x)\right), \quad t>0, x \in \mathbb{R}^{d}, \tag{4}
\end{equation*}
$$

with some \mathbb{R}^{d}-valued function $(a(x))_{x \in \mathbb{R}^{d}}$ and d-dimensional pseudo-differential operator \mathbf{B} of the order less than α.

In this article, we consider the case, where the a is a bounded continuous function and the operator \mathbf{B} is defined on a differentiable bounded function $(\varphi(x))_{x \in \mathbb{R}^{d}}$ by the equality

$$
(\mathbf{B} \varphi)(x)=\frac{2 c}{\alpha \varkappa} \int_{\mathbb{R}^{d}} \frac{\varphi(x+y)-\varphi(x)}{|y|^{d+\alpha}} y d y .
$$

Note, that $\mathbf{A}=\frac{1}{2} \operatorname{div}(\mathbf{B})$.
We construct a fundamental solution of equation (4) by perturbing the transition probability density of a symmetric stable process. The fundamental solution of equation (4) was constructing in [2] under the assumption that the function a satisfied Holder's condition.

Symmetric stable processes were perturbed by terms of the type $(a(x), \nabla)$ under various assumptions on the function $(a(x))_{x \in \mathbb{R}^{d}}$ in many papers (see, for example, $\left.[1,3,5,6]\right)$. The perturbation of stable processes with delta-function in coefficient is constructed in [4].

1 Perturbation of a stable process

We consider a function $(G(t, x, y))_{t>0, x \in \mathbb{R}^{d}, y \in \mathbb{R}^{d}}$ as a result of perturbing the transition probability density $g(t, x, y)$ of a symmetric stable process, if it is a solution of the following equation

$$
\begin{equation*}
G(t, x, y)=g(t, x, y)+\int_{0}^{t} d \tau \int_{\mathbb{R}^{d}} g(t-\tau, x, z)\left(\mathbf{B}_{z} G(\tau, z, y), a(z)\right) d z . \tag{5}
\end{equation*}
$$

Now we define a function $(e(x))_{x \in \mathbb{R}^{d}}$ by the equality $e(x)=\frac{1}{|a(x)|} a(x)$ for $x \in \mathbb{R}^{d}$ such that $|a(x)| \neq 0$ and an arbitrary value (with preservation of the measurability) otherwise. Then the equation (5) takes the form

$$
\begin{equation*}
G(t, x, y)=g(t, x, y)+\int_{0}^{t} d \tau \int_{\mathbb{R}^{d}} g(t-\tau, x, z)\left(\mathbf{B}_{z} G(\tau, z, y), e(z)\right)|a(z)| d z \tag{6}
\end{equation*}
$$

It is easy to establish the following equality using the representation (2) and integration by parts $\mathbf{B}_{x} g(t, x, y)=\frac{2}{\alpha} \frac{y-x}{t} g(t, x, y)$. Denote by $V_{0}(t, x, y)$ a function that is given by the equality

$$
\begin{equation*}
V_{0}(t, x, y)=\left(\mathbf{B}_{x} g(t, x, y), e(x)\right)=\frac{2}{\alpha} \frac{(y-x, e(x))}{t} g(t, x, y) . \tag{7}
\end{equation*}
$$

We will construct the solution of (6) in the form

$$
\begin{equation*}
G(t, x, y)=g(t, x, y)+\int_{0}^{t} d \tau \int_{\mathbb{R}^{d}} g(t-\tau, x, z) V(\tau, z, y)|a(z)| d z, \tag{8}
\end{equation*}
$$

where the function $V(t, x, y)$ satisfies the equation

$$
\begin{equation*}
V(t, x, y)=V_{0}(t, x, y)+\int_{0}^{t} d \tau \int_{\mathbb{R}^{d}} V_{0}(t-\tau, x, z) V(\tau, z, y)|a(z)| d z \tag{9}
\end{equation*}
$$

The equation (9) can be solved by the method of successive approximations, namely its solution will be found in the form

$$
\begin{equation*}
V(t, x, y)=\sum_{k=0}^{\infty} V_{k}(t, x, y), \tag{10}
\end{equation*}
$$

where $V_{0}(t, x, y)$ is defined by the equality (7) and for $k \geq 1$ the following equality

$$
V_{k}(t, x, y)=\int_{0}^{t} d \tau \int_{\mathbb{R}^{d}} V_{0}(t-\tau, x, z) V_{k-1}(\tau, z, y)|a(z)| d z
$$

is valid.
The well-known estimate (see [2]) $\left(t>0, x \in \mathbb{R}^{d}, y \in \mathbb{R}^{d}\right.$, and $N>0$ is a constant)

$$
\begin{equation*}
g(t, x, y) \leq N \frac{t}{\left(t^{1 / \alpha}+|y-x|\right)^{d+\alpha}} \tag{11}
\end{equation*}
$$

allows us to write down

$$
\left|V_{0}(t, x, y)\right| \leq \frac{2}{\alpha} N \frac{|y-x|}{\left(t^{1 / \alpha}+|y-x|\right)^{d+\alpha}} \leq \frac{2}{\alpha} \frac{N}{\left(t^{1 / \alpha}+|y-x|\right)^{d+\alpha-1}} .
$$

Then, we get that the inequality

$$
\left|V_{k}(t, x, y)\right| \leq\|a\| \frac{2 N}{\alpha} \int_{0}^{t} d \tau \int_{\mathbb{R}^{d}} \frac{1}{\left((t-\tau)^{1 / \alpha}+|z-x|\right)^{d+\alpha-1}}\left|V_{k-1}(\tau, z, y)\right| d z
$$

is true, where $\|a\|=\sup _{x \in \mathbb{R}^{d}}|a(x)|$.
In order to estimate V_{k} we make use of the following inequality (see [2])

$$
\begin{array}{r}
\int_{0}^{t} d \tau \int_{\mathbb{R}^{d}} \frac{1}{\left((t-\tau)^{1 / \alpha}+|z-x|\right)^{d+\alpha-1}} \cdot \frac{\tau^{\delta}}{\left(\tau^{1 / \alpha}+|z-x|\right)^{d+\alpha-1}} d z \\
\leq C \frac{\alpha}{1+\alpha \delta}\left(1+\delta B\left(\frac{1}{\alpha}, \delta\right)\right) \frac{\delta^{\delta+1 / \alpha}}{\left(t^{1 / \alpha}+|y-x|\right)^{d+\alpha-1}}
\end{array}
$$

valid for $\delta>-1 / \alpha$, where $C>0$, and $B(\cdot, \cdot)$ is the Euler beta function. We obtain for $k \geq 1$

$$
\left|V_{k}(t, x, y)\right| \leq \frac{(2 N)^{k+1}(C\|a\|)^{k}}{\alpha} \frac{1}{k!} \frac{t^{k / \alpha}}{\left(t^{1 / \alpha}+|y-x|\right)^{d+\alpha-1}} \prod_{n=1}^{k-1}\left(1+\frac{n}{\alpha} B\left(\frac{1}{\alpha}, \frac{n}{\alpha}\right)\right) .
$$

Note, that $r_{k}=\frac{\left(2 N C\|a\| t^{1 / \alpha}\right)^{k}}{k!} \prod_{n=1}^{k-1}\left(1+\frac{n}{\alpha} B\left(\frac{1}{\alpha}, \frac{n}{\alpha}\right)\right)$ is positive and the relation

$$
\lim _{k \rightarrow \infty} \frac{r_{k+1}}{r_{k}}=\lim _{k \rightarrow \infty} \frac{2 N C\|a\| t^{1 / \alpha}}{k+1}\left(1+\frac{k}{\alpha} B\left(\frac{1}{\alpha}, \frac{k}{\alpha}\right)\right)=0
$$

is true. Therefore, the series on the right hand side of (10) converges uniformly in $x \in \mathbb{R}^{d}$, $y \in \mathbb{R}^{d}$ and locally uniformly in $t>0$. Thus, the function V, given by the equality (10), is a solution of the equation (9). In addition, the following inequality

$$
\begin{equation*}
|V(t, x, y)| \leq C_{T} \frac{1}{\left(t^{1 / \alpha}+|y-x|\right)^{d+\alpha-1}} \tag{12}
\end{equation*}
$$

is proved for $x \in \mathbb{R}^{d}, y \in \mathbb{R}^{d}$ and $0<t \leq T$, where C_{T} is a positive constant that may be depended on $T>0$.

Remark. The constructed function $V(t, x, y)$ is the unique solution of equation (9) in the class of functions that satisfy inequality (12).

Define the function $G(t, x, y)$ by the equality (8) where the function $V(t, x, y)$ is defined in (10). Then we can perform the following calculations

$$
\begin{aligned}
\left(\mathbf{B}_{x} G(t, x, y), e(x)\right) & =V_{0}(t, x, y)+\int_{0}^{t} d \tau \int_{\mathbb{R}^{d}} V_{0}(t-\tau, x, z) V(\tau, z, y)|a(z)| d z \\
& =V(t, x, y)
\end{aligned}
$$

We here took the possibility of applying of the operator \mathbf{B} under integral, which is proved in the following Lemma.

Lemma. The equality

$$
\mathbf{B}_{x} \int_{0}^{t} d \tau \int_{\mathbb{R}^{d}} g(t-\tau, x, z) V(\tau, z, y)|a(z)| d z=\int_{0}^{t} d \tau \int_{\mathbb{R}^{d}} \mathbf{B}_{x} g(t-\tau, x, z) V(\tau, z, y)|a(z)| d z
$$

is true.
Proof. Let us consider a set of operators $\left\{\mathbf{B}^{\varepsilon}: \varepsilon>0\right\}$ that act on a continuously differentiable bounded function $(\varphi(x))_{x \in \mathbb{R}^{d}}$ according to the following rule

$$
\left(\mathbf{B}^{\varepsilon} \varphi\right)(x)=\frac{2 c}{\alpha \varkappa} \int_{|u| \geq \varepsilon} \frac{\varphi(x+u)-\varphi(x)}{|u|^{d+\alpha}} y d y .
$$

It is clear that $\lim _{\varepsilon \rightarrow 0+}\left(\mathbf{B}^{\varepsilon} \varphi\right)(x)=(\mathbf{B} \varphi)(x)$ for all functions φ, described above, and $x \in \mathbb{R}^{d}$.
The inequalities (11) and (12) allow us to assert that

$$
\begin{aligned}
& \left.\left|\frac{u}{|u|^{d+\alpha}}(g(t-\tau, x+u, z)-g(t-\tau, x, z)) V(\tau, z, y)\right| a(z) \right\rvert\, \\
& \leq \frac{\text { const }}{|u|^{d+\alpha-1}}\left(\frac{t-\tau}{\left((t-\tau)^{1 / \alpha}+|z-x-u|\right)^{d+\alpha}}+\frac{t-\tau}{\left((t-\tau)^{1 / \alpha}+|z-x|\right)^{d+\alpha}}\right) \\
& \times \frac{1}{\left(\tau^{1 / \alpha}+|y-z|\right)^{d+\alpha-1}} .
\end{aligned}
$$

It is easy to see that the right hand side of this inequality is the integrable function with respect to (u, τ, z) on the set $\{|u| \geq \varepsilon\} \times(0 ; t) \times \mathbb{R}^{d}$ for all $t>0$ and $x \in \mathbb{R}^{d}, y \in \mathbb{R}^{d}$. Here we used the results of [2, Lemma 5], where it is proved that

$$
\begin{align*}
& \int_{0}^{t} d \tau \int_{\mathbb{R}^{d}} \frac{(t-\tau)^{\beta / \alpha}}{\left((t-\tau)^{1 / \alpha}+|z-x|\right)^{d+\alpha+k}} \frac{\tau^{\gamma / \alpha}}{\left(\tau^{1 / \alpha}+|y-z|\right)^{d+\alpha+l}} d z \\
& \leq C\left[B\left(\frac{\beta-k}{\alpha}, 1+\frac{\gamma}{\alpha}\right) t^{\frac{\beta+\gamma-k}{\alpha}} \frac{1}{\left(t^{1 / \alpha}+|y-x|\right)^{d+\alpha+l}}\right. \tag{13}\\
& \left.+B\left(1+\frac{\beta}{\alpha}, \frac{\gamma-l}{\alpha}\right) t^{\frac{\beta+\gamma-l}{\alpha}} \frac{1}{\left(t^{1 / \alpha}+|y-x|\right)^{d+\alpha+k}}\right]
\end{align*}
$$

for $-\alpha<k<\beta,-\alpha<l<\gamma$ and $C>0$, which depends only on d, α, k and l.
Therefore, we obtain the following equality

$$
\begin{equation*}
\mathbf{B}_{x}^{\varepsilon} \int_{0}^{t} d \tau \int_{\mathbb{R}^{d}} g(t-\tau, x, z) V(\tau, z, y)|a(z)| d z=\int_{0}^{t} d \tau \int_{\mathbb{R}^{\mathbf{B}}} \mathbf{B}_{x}^{\varepsilon} g(t-\tau, x, z) V(\tau, z, y)|a(z)| d z, \tag{14}
\end{equation*}
$$

using the Fubini theorem.
The inequalities (12), (13) and $\left|\mathbf{B}_{x} g(t, x, y)\right| \leq \frac{\text { const }}{\left(t^{1 / \alpha}+|y-x|\right)^{d+\alpha-1}}$ allow us to assert that the integral $\int_{0}^{t} d \tau \int_{\mathbb{R}^{d}} \mathbf{B}_{x} g(t-\tau, x, z) V(\tau, z, y)|a(z)| d z$ exists. Now we have to pass to the limit with $\varepsilon \rightarrow 0+$ in the equality (14) to complete the proof of Lemma.

We have thus got that the function $G(t, x, y)$ is the perturbation of the transition probability density $g(t, x, y)$ of a symmetric stable process.

Considering estimates (12), (11) and inequality (13), we can write for $t \in(0 ; T], x \in \mathbb{R}^{d}$, $y \in \mathbb{R}^{d}$

$$
\begin{aligned}
|G(t, x, y)| & \leq N \frac{t}{\left(t^{1 / \alpha}+|y-x|\right)^{d+\alpha}} \\
& +N C_{T}\|a\| \int_{0}^{t} d \tau \int_{\mathbb{R}^{d}} \frac{t-\tau}{\left((t-\tau)^{1 / \alpha}+|z-x|\right)^{d+\alpha}} \frac{1}{\left(\tau^{1 / \alpha}+|y-z|\right)^{d+\alpha-1}} d z \\
& \leq \frac{K t}{\left(t^{1 / \alpha}+|y-x|\right)^{d+\alpha-1}}\left(1+\frac{1+t^{1 / \alpha}}{t^{1 / \alpha}+|y-x|}\right)
\end{aligned}
$$

where K is a positive constant, which depends on $T, \alpha, c,\|a\|$ and d. Note that the right hand side of the last inequality can be estimated from above by the following expression

$$
\frac{\hat{K} t^{1-1 / \alpha}}{\left(t^{1 / \alpha}+|y-x|\right)^{d+\alpha-1}} \leq \hat{K} t^{-d / \alpha}
$$

where $\hat{K}=\left(2 T^{1 / \alpha}+1\right) K$.

2 The fundamental solution of the Cauchy problem

It is known (see [2]) that the function $g(t, x, y)$ is the fundamental solution of the Cauchy problem (3) and, in addition, the function

$$
u(t, x)=\int_{\mathbb{R}^{d}} \varphi(y) g(t, x, y) d y+\int_{0}^{t} d \tau \int_{\mathbb{R}^{d}} g(t-\tau, x, y) f(\tau, y) d y
$$

is the solution of the Cauchy problem

$$
\begin{align*}
& \frac{\partial u(t, x)}{\partial t}=\mathbf{A}_{x} u(t, x)+f(t, x), \quad t>0, x \in \mathbb{R}^{d} \tag{15}\\
& u(0+, x)=\varphi(x), \quad x \in \mathbb{R}^{d}
\end{align*}
$$

for any bounded continuous functions $(\varphi(x))_{x \in \mathbb{R}^{d}}$ and $(f(t, x))_{t>0, x \in \mathbb{R}^{d}}$. Moreover, this solution is unique in the class of functions that vanish as $|x| \rightarrow \infty$.

Thus, the function

$$
\begin{aligned}
U(t, x) & =\int_{\mathbb{R}^{d}} \varphi(y) G(t, x, y) d y \\
& =\int_{\mathbb{R}^{d}} \varphi(y) g(t, x, y) d y+\int_{0}^{t} d \tau \int_{\mathbb{R}^{d}} g(t-\tau, x, y) \int_{\mathbb{R}^{d}} V(\tau, y, z) \varphi(z) d z|a(y)| d y
\end{aligned}
$$

is the unique (in the class of functions that tends to zero at infinity) solution of the Cauchy problem (15) with $f(t, x)=\int_{\mathbb{R}^{d}} V(t, x, z) \varphi(z) d z|a(x)|$.

Now we note that $V(t, x, y)=\left(\mathbf{B}_{x} G(t, x, y), e(x)\right)$. Then

$$
f(t, x)=\int_{\mathbb{R}^{d}}\left(\mathbf{B}_{x} G(t, x, z), a(x)\right) \varphi(z) d z=\left(a(x), \mathbf{B}_{x} U(t, x)\right),
$$

and the function $U(t, x)$ is a solution of the Cauchy problem for the equation (4) with bounded continuous function $a(x)$ and operators A and B defined by equalities (1) and (5) respectively.

Let us prove that the function $G(t, x, y)$ satisfies the equation of Kolmogorov-Chapman

$$
\begin{equation*}
G(t+s, x, y)=\int_{\mathbb{R}^{d}} G(s, x, z) G(t, z, y) d z \tag{16}
\end{equation*}
$$

for all $s>0, t>0, x \in \mathbb{R}^{d}, y \in \mathbb{R}^{d}$. Note, the function $g(t, x, y)$ satisfies the equation (16).
Let $(\varphi(x))_{x \in \mathbb{R}^{d}}$ be a continuous bounded function. Put $U(s, x, \varphi)=\int_{\mathbb{R}^{d}} G(s, x, y) \varphi(y) d y$, $u(s, x, \varphi)=\int_{\mathbb{R}^{d}} g(s, x, y) \varphi(y) d y$ and $W(s, x, \varphi)=\int_{\mathbb{R}^{d}} V(s, x, y) \varphi(y) d y$.

Note, that the function $W(t, x, \varphi)$ is the unique solution of the following equation

$$
\begin{equation*}
W(t, x, \varphi)=W_{0}(t, x, \varphi)+\int_{0}^{t} d \tau \int_{\mathbb{R}^{d}} V_{0}(t-\tau, x, z) W(\tau, z, \varphi)|a(z)| d z \tag{17}
\end{equation*}
$$

where $W_{0}(s, x, \varphi)=\int_{\mathbb{R}^{d}} V_{0}(s, x, y) \varphi(y) d y$.
Then the function $U(s, x, \varphi)$ can be given by the equality (see (5))

$$
U(t, x, \varphi)=u(t, x, \varphi)+\int_{0}^{t} d \tau \int_{\mathbb{R}^{d}} g(t-\tau, x, z) W(\tau, z, \varphi)|a(z)| d z
$$

Now, let us find the function $U(t+s, x, \varphi)$. We have

$$
\begin{aligned}
U(t+s, x, \varphi) & =u(t+s, x, \varphi)+\int_{0}^{t+s} d \tau \int_{\mathbb{R}^{d}} g(t+s-\tau, x, z) W(\tau, z, \varphi)|a(z)| d z \\
& =\int_{\mathbb{R}^{d}} g(s, x, y) u(t, y, \varphi) d y \\
& +\int_{\mathbb{R}^{d}} g(s, x, y) d y \int_{0}^{t} d \tau \int_{\mathbb{R}^{d}} g(t-\tau, y, z) W(\tau, z, \varphi)|a(z)| d z \\
& +\int_{t}^{s+t} d \tau \int_{\mathbb{R}^{d}} g(t+s-\tau, x, z) W(\tau, z, \varphi)|a(z)| d z \\
& =\int_{\mathbb{R}^{d}} g(s, x, y) U(t, y, \varphi) d y \\
& +\int_{0}^{s} d \tau \int_{\mathbb{R}^{d}} g(s-\tau, x, z) W(t+\tau, z, \varphi)|a(z)| d z
\end{aligned}
$$

Therefore, the function $W_{t}(s, x, \varphi)=W(t+s, x, \varphi)$ satisfies the equation (17), where the function φ is replaced by $U(t, \cdot, \varphi)$. Then $W(t+s, x, \varphi)=W(s, x, U(t, \cdot, \varphi))$ and we arrive at the equality $U(t+s, x, \varphi)=U(s, x, U(t, \cdot, \varphi))$ or, what is the same,

$$
\begin{aligned}
\int_{\mathbb{R}^{d}} G(t+s, x, y) \varphi(y) d y & =\int_{\mathbb{R}^{d}} G(s, x, z) \int_{\mathbb{R}^{d}} G(t, z, y) \varphi(y) d y d z \\
& =\int_{\mathbb{R}^{d}} \varphi(y) d y \int_{\mathbb{R}^{d}} G(s, x, z) G(t, z, y) d z .
\end{aligned}
$$

Then the relation (16) is proved because the function φ is an arbitrary bounded continuous one.

Next, we get $\int_{\mathbb{R}^{d}} G(t, x, y) d y=1$ from (8) and (9), because there are obvious equalities

$$
\int_{\mathbb{R}^{d}} g(t, x, y) d y=1 \quad \text { and } \quad \int_{\mathbb{R}^{d}} V_{0}(t, x, y) d y=\left(\mathbf{B}_{x} \int_{\mathbb{R}^{d}} g(t, x, y) d y, e(x)\right)=0
$$

for all $t>0, x \in \mathbb{R}^{d}$, and the uniqueness of the solution of equation (9) leads us to the identity $\int_{\mathbb{R}^{d}} V(t, x, y) d y \equiv 0$.

Unfortunately, we can not guarantee non-negativity of the function $G(t, x, y)$ and the existence of a Markov process with the generating operator $\mathbf{A}+(a(\cdot), \mathbf{B})$.

Acknowledgement. The author is grateful to Professor M. Portenko for comments and discussions which led to the improvement of the quality of this article.

References

[1] Bogdan K., Jakubowski T. Estimates of heat kernel of fractional Laplacian perturbed by gradient operators. Comm. Math. Phys. 2007, 271 (1), 179-198. doi:10.1007/s00220-006-0178-y
[2] Kochubei A.N. Parabolic pseudodifferential equations, hypersingular integrals, and Markov processes. Math. USSRIzv. 1989, 33 (2), 233-259. doi:10.1070/IM1989v033n02ABEH000825 (tranaslation of Izv. Akad. Nauk SSSR Ser. Mat. 1988, 52 (5), 909-934. (in Russian))
[3] Kurenok V.P. A note on L2-estimates for stable integrals with drift. Trans. Amer. Math. Soc. 2008, 300 (2), 925-938.
[4] Loebus J.V., Portenko M.I. On one class of perturbations of the generators of a stable process. Theory Probab. Math. Statist. 1995, 52, 102-111.
[5] Podolynny S.I., Portenko N.I. On multidimensional stable processes with locally unbounded drift. Random Oper. Stochastic Equations 1995, 3 (2), 113-124.
[6] Portenko N.I. Some perturbations of drift-type for symmetric stable processes. Random Oper. Stochastic Equations 1994, 2 (3), 211-224.

Received 04.02.2015
Revised 08.04.2015

Осипчук М.М. Про деяке збурення стійкого процесу та розв'язки задачі Коші для одного класу псевдодиферениіальних рівнянь. // Карпатські матем. публ. — 2015. - Т.7, №1. - С. 101-107.

3 допомогою методу теорії збурень знайдено фундаментальний розв'язок деякого класу псевдо-диференціальних рівнянь. Розглянуто симетричний α-стійкий процес в багатовимірному евклідовому просторі. Його генератор $\mathbf{A} \in$ псевдо-диференціальним оператором чий символ задається функцією $-c|\lambda|^{\alpha}$, де $\alpha \in(1,2)$ і $c>0$ задані сталі. Векторнозначний оператор В має символ $2 i c|\lambda|^{\alpha-2} \lambda$. Побудовано фундаментальний розв'язок рівняння $u_{t}=$ $(\mathbf{A}+(a(\cdot), \mathbf{B})) и$ з неперервною обмеженою векторнозначною функцією a.

Ключові слова і фрази: стійкий процес, задача Коші, псевдо-диференціальне рівняння, щільність ймовірності переходу.

