Pryimak H.M.

HOMOMORPHISMS AND FUNCTIONAL CALCULUS IN ALGEBRAS OF ENTIRE FUNCTIONS ON BANACH SPACES

Abstract

In the paper the homomorphisms of algebras of entire functions on Banach spaces to a commutative Banach algebra are studied. In particular, it is proposed a method of constructing of homomorphisms vanishing on homogeneous polynomials of degree less or equal than a fixed number n.

Key words and phrases: Aron-Berner extension, functional calculus, algebras of analytic functions on Banach spaces.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine
E-mail: galja_petriv@mail.ru

1 Introduction and preliminaries

In 1951 R. Arens [1] found a way of extending the product of Banach algebra A to its bidual $A^{\prime \prime}$ in such a way that this bidual became itself a Banach algebra. There are two canonical ways to extend the product from A to $A^{\prime \prime}$ which called the Arens products. We recall definitions [2].

Let A be a commutative Banach algebra, X be a Banach space over the field of complex numbers C .

If $x \in X$ and $\lambda \in X^{\prime}$ then we write $\langle\lambda, x\rangle=\lambda(x)$. For every $a, b \in A, \lambda \in A^{\prime}$ and $\Phi \in A^{\prime \prime}$ define $a . \lambda \in A^{\prime}, \lambda . a \in A^{\prime}, \lambda . \Phi \in A^{\prime}$ and $\Phi . \lambda \in A^{\prime}$ by:

$$
\begin{aligned}
& a . \lambda: b \mapsto\langle\lambda, b a\rangle, \lambda . a: b \mapsto\langle\lambda, a b\rangle, \\
& \lambda . \Phi: b \mapsto\langle\Phi, b . \lambda\rangle, \Phi \cdot \lambda: b \mapsto\langle\Phi, \lambda . b\rangle ;
\end{aligned}
$$

and then define two productsand \diamond on $A^{\prime \prime}$ by:

$$
\langle\Phi \square \Psi, \lambda\rangle=\langle\Phi, \Psi . \lambda\rangle,\langle\Phi \diamond \Psi, \lambda\rangle=\langle\Psi, \lambda . \Phi\rangle\left(\Phi, \Psi \in A^{\prime \prime}\right) .
$$

Then $\left(A^{\prime \prime}, \square\right)$ and $\left(A^{\prime \prime}, \diamond\right)$ are Banach algebras. We say that A is Arens regular if for all $\Phi, \Psi \in A^{\prime \prime}$ we have $\Phi \square \Psi=\Phi \diamond \Psi$.

For a given complex Banach space $X, \mathcal{P}\left({ }^{n} X\right)$ denotes the Banach space of all continuous n homogeneous complex-valued polynomials on X. The problem of extending every element of $\mathcal{P}\left({ }^{n} X\right)$ to a continuous n-homogeneous polynomial \widetilde{P} on the bidual $X^{\prime \prime}$ of X was first studied by Aron and Berner in 1978, who showed that such extensions always exist.

Let $B: X \times \ldots \times X \rightarrow \mathbb{C}$ be the symmetric n-linear mapping associated to P. B can be extended to an n-linear mapping $\widetilde{B}: X^{\prime \prime} \times \ldots \times X^{\prime \prime} \rightarrow \mathbb{C}$. Let $\left(z_{1}, \ldots, z_{n}\right) \in X^{\prime \prime} \times \ldots \times X^{\prime \prime}$.

[^0]For a net $\left(x_{\alpha_{k}}\right)$ from X which converges to z_{k} in the weak-star topology of $X^{\prime \prime}$ for each fixed $k, 1 \leqslant k \leqslant n$, we put

$$
\widetilde{B}\left(z_{1}, \ldots, z_{n}\right)=\lim _{\alpha_{1}} \ldots \lim _{\alpha_{n}} B\left(x_{\alpha_{1}}, \ldots, x_{\alpha_{n}}\right) .
$$

Then the Aron-Berner extension P on $X^{\prime \prime}$ to X is defined as

$$
\widetilde{P}(z)=\widetilde{B}(z, \ldots, z),
$$

where B is a unique continuous n-linear symmetric form for which $P(x)=B(x, \ldots, x)$ for each $x \in X$.

Consider the complete projective tensor product $A \otimes_{\pi} X$. Every element of $A \otimes_{\pi} X$ can be represented by the form $\bar{a}=\sum_{k} a_{k} \otimes_{\pi} x_{k}$, where $a_{k} \in A, x_{k} \in X$. For every $\bar{a} \in A \otimes_{\pi} X$ and $f \in H_{b}(X)$ (algebra of entire analytic functions of bounded type on a Banach space X) let us define $\bar{f}(\bar{a})$ in the means of functional calculus for analytic functions on a Banach spaces ([5]). Then \bar{f} is the Aron-Berner extension of \bar{f}.

In [6] using the Aron-Berner extension and approach developed in [4] it was obtained a method to construct nontrivial complex homomorphisms of $H_{b}(X)$ vanishing on homogeneous polynomials of degree less or equal that a fixed number n. In this paper we extend this result for Banach algebra valued homomorphism.

2 MAIN RESULTS

Recall that X is a left A-module (X is a left module over A), if exists a bilinear map $A \times X \rightarrow X$, $(a, x) \mapsto a \cdot x$ such that $\left(a_{1} \cdot a_{2}\right) \cdot x=a_{1} \cdot\left(a_{2} \cdot x\right)$, where $a_{1}, a_{2} \in A, x \in X$. It is easy to prove that $A \otimes_{\pi} X$ is a left A-module. So, using Theorem 2 ([3], p.297) we can easy obtain the following proposition.

Proposition 1. $\left(A \otimes_{\pi} X\right)^{\prime \prime}$ is a left $A^{\prime \prime}$-module.
In [7] it is proved a theorem about a homomorphism of algebras $H_{b}(X)$ and $H_{b}\left(\left(A \otimes_{\pi} X^{\prime \prime}\right), A\right)$ in the case when A is some finite dimensional algebra with identity. The following theorem extends this result for the case of an infinite dimensional algebra A.

Proposition 2. Let A be the Arens regular Banach algebra. For every $f \in H_{b}(X)$ there exists a function $\widetilde{\bar{f}} \in H_{b}\left(\left(A \otimes_{\pi} X\right)^{\prime \prime}, A^{\prime \prime}\right)$ such that $\widetilde{\bar{f}}(e \otimes x)=e f(x), x \in X$ and the mapping $F: f \mapsto \widetilde{\bar{f}}$ is a homomorphism between algebras $H_{b}(X)$ and $H_{b}\left(\left(A \otimes_{\pi} X\right)^{\prime \prime}, A^{\prime \prime}\right)$.

The proof it easy follows from the fact that both the Aron-Berner extension and functional calculus are topological homomorphisms ([4], [5]).

Example 1. Let us show that in the case if A is not Arens regular, then the map F is not necessary a homomorphism. Let $A=\ell_{1}, X=\mathbb{C}^{2}$. We need to prof that

$$
F: H_{b}\left(\mathbb{C}^{2}\right) \rightarrow H_{b}\left(\left(\ell_{1} \otimes_{\pi} \mathbb{C}^{2}\right)^{\prime \prime}, \ell_{1}^{\prime \prime}\right) \text { the are } f, g \in H_{b}\left(\mathbb{C}^{2}\right) \text { such that } F(f g) \neq F(f) F(g)
$$

For each $t=\left(t_{1}, t_{2}\right) \in \mathbb{C}^{2}$ put $f(t)=t_{1}, g(t)=t_{2}$ and apply the extension operator $\mathbb{C}^{2} \ni t \rightsquigarrow x \in \ell_{1} \times \ell_{1}$ and the Aron-Berner extension $\ell_{1} \times \ell_{1} \ni x \rightsquigarrow u=\left(u_{1}, u_{2}\right) \in \ell_{\infty} \times \ell_{\infty}$. Then

$$
\bar{f}(x)=x_{1} \in \ell_{1}, \quad \bar{g}(x)=x_{2} \in \ell_{1}, \quad \bar{f}(x) \bar{g}(x)=x_{1} * x_{2}
$$

where" $*$ " is the convolution product in ℓ_{1}. Suppose that

$$
\tilde{\bar{f}}(u)=u_{1} \in \ell_{1}^{\prime \prime}, \quad \tilde{\bar{g}}(u)=u_{2} \in \ell_{1}^{\prime \prime} .
$$

Then we have $\widetilde{\bar{f}}(u) \widetilde{\bar{g}}(u)=u_{1} \square u_{2}$ and $\widetilde{\bar{g}}(u) \widetilde{\bar{f}}(u)=u_{1} \diamond u_{2}=u_{1} \square u_{2}$.
Since $u_{1} \diamond u_{2} \neq u_{1} \square u_{2}$ in the general case so, we can conclude that F is not a homomorphism.

On the other hand, $f g(t)=t_{1} \cdot t_{2}=P(t)$ - homogeneous polynomial of second degree vector variable t. It is known that $P(t)=B(t, t)$ is bilinear form which is uniquely determined by the polarization formula:

$$
B(t, t)=\frac{t_{1} t_{2}+t_{2} t_{1}}{2} .
$$

Then

$$
\bar{B}(x, x)=\frac{x_{1} * x_{2}+x_{2} * x_{1}}{2}
$$

and we have

$$
\widetilde{\bar{B}}(u)_{\sim}=\frac{u_{1} \square u_{2}+u_{1} \diamond u_{2}}{2}=\frac{u_{2} \square u_{1}+u_{2} \diamond u_{1}}{2} .
$$

So, $\widetilde{\bar{B}}(u, u)=\widetilde{\bar{P}}(u)=\widetilde{\overline{f g}}(t) \neq \widetilde{\bar{f}}(t) \widetilde{\bar{g}}(t)$.
Next, we consider the case when A is a reflexive Banach algebra. Let us denote by $\mathcal{P}\left({ }^{n} X\right)$ the Banach space of all continuous n-homogeneous complex-valued polynomials on X. $\mathcal{P}_{f}\left({ }^{n} X\right)$ denotes the subspace of n-homogeneous polynomials of finite type, that is, the subspace generated by finite sum of finite products of linear continuous functionals. The closure of $\mathcal{P}_{f}\left({ }^{n} X\right)$ in the topology of uniform convergence on bounded sets is called the space of approximable polynomials and denoted by $\mathcal{P}_{c}\left({ }^{n} X\right)$.

Let us denote by $A_{n}(X)$ the closure of the algebra, generated by polynomials from $\mathcal{P}(\leqslant n X)$ with respect to the uniform topology on bounded subsets of X. It is clear that $A_{1}(X) \cap \mathcal{P}\left({ }^{n} X\right)=\mathcal{P}_{c}\left({ }^{n} X\right)$.

Let us denote by $\mathcal{L}\left(H_{b}(X), A\right)$ the space of all continuous n-linear operators on $H_{b}(X)$ to A and let $M_{A}\left(H_{b}(X)\right)$ be the set of all homomorphisms on $H_{b}(X)$ to A.

In [4] introduced a concept of radius function $R(\varphi)$ of a given linear functional $\varphi \in H_{b}(X)^{\prime}$ as the infimum of all numbers $r>0$ such that φ is bounded with respect to the norm of uniform convergence on the ball $r B$ and proved that

$$
R(\varphi)=\limsup _{n \rightarrow \infty}\left\|\varphi_{n}\right\|^{1 / n}
$$

where φ_{n} is the restriction of φ to $\mathcal{P}\left({ }^{n} X\right)$. In [7] extended this definition to a homomorphism $\Phi \in M_{A}\left(H_{b}(X)\right)$, that is, $R(\Phi)$ is the infimum of all numbers $r>0$ such that Φ is bounded with respect to the norm of uniform convergence on the ball $r B$ and proved that

$$
\begin{equation*}
R(\Phi)=\limsup _{n \rightarrow \infty}\left\|\Phi_{n}\right\|^{1 / n}, \tag{1}
\end{equation*}
$$

where Φ_{n} is the restriction of Φ to space n-homogeneous polynomials.
Theorem 1. Suppose that $\Phi_{n} \in \mathcal{L}\left(\mathcal{P}\left({ }^{n} X\right), A\right)$ for $n \in \mathbb{Z}_{+}$, and suppose that the norms of Φ_{n} on $\mathcal{P}\left({ }^{n} X\right)$ satisfy

$$
\left\|\Phi_{n}\right\| \leq c s^{n}
$$

for $c, s>0$. Then there is a unique $\Phi \in \mathcal{L}\left(H_{b}(X), A\right)$ whose restriction to $\mathcal{P}\left({ }^{n} X\right)$ coincides with Φ_{n} for every $n \in \mathbb{Z}_{+}$.

Proof. For any character $\theta \in M(A),\|\theta\|=1$ we construct operator $\Phi_{n}: \mathcal{P}\left({ }^{n} X\right) \rightarrow A$. Then $\theta \circ$ $\Phi_{n} \in\left(\mathcal{P}\left({ }^{n} X\right)\right)^{\prime}$ and $\left\|\theta \circ \Phi_{n}\right\| \leq\left\|\Phi_{n}\right\|$. Since $\left\|\Phi_{n}\right\| \leq c s^{n}$, then every θ satisfies the inequality $\left\|\theta \circ \Phi_{n}\right\| \leq c s^{n}$. From [4, Proposition 2.4] it follows that for every θ there exists linear functional $\varphi: H_{b}(X) \rightarrow \mathbb{C}, \varphi \in H_{b}(X)^{\prime}$, such that $\varphi_{n}=\theta \circ \Phi_{n}$. Therefore, we have operator $T: A^{\prime} \rightarrow$ $H_{b}(X)^{\prime}, \theta \mapsto \varphi$ and T^{\star} is the adjoint operator to T :

$$
T^{\star}: H_{b}(X)^{\prime \prime} \rightarrow A^{\prime \prime}=A
$$

Let us consider the restriction of T^{\star} on $H_{b}(X) \subset H_{b}(X)^{\prime \prime}$ and denoted it by Φ. Clearly $\Phi: H_{b}(X) \rightarrow A$ is a required operator.

In order to prove that the restriction Φ to $\mathcal{P}\left({ }^{n} X\right)$ coincides with Φ_{n} it is enough to show that $\Phi_{n}(P)=\Phi(P)$ for every $P \in \mathcal{P}\left({ }^{n} X\right)$. Put $\Phi_{n}(P)=a_{1}, \theta\left(a_{1}\right)=c_{1} \in \mathbb{C}$, that is $\left(\theta \circ \Phi_{n}\right)(P)=\varphi_{n}(P)=c_{1}$. On the other hand, $\Phi(P)=a_{2}$, that is $(\theta \circ \Phi)(P)=\varphi(P)=c_{2}$. Since φ_{n} is restriction of $\varphi, \varphi(P)=c_{2}=\varphi_{n}(P)=c_{1} \Rightarrow c_{1}=c_{2}=c$. So, the equality $(\theta \circ \Phi)(P)=\left(\theta \circ \Phi_{n}\right)(P)=c$ for every θ implies that $\Phi_{n}(P)=\Phi(P)$.

In the work [6] it was formulated and proved the Lemma 1 on extension of the linear functional $\varphi \in H_{b}(X)^{\prime}$ to character $\psi \in M_{b}$. The following theorem is a generalization of the known lemma and is related to the study of extension of linear operator to the homomorphism.

Theorem 2. Let $\Phi \in \mathcal{L}\left(H_{b}\left(A \otimes_{\pi} X\right)\right.$, A) be a linear operator such that $\Phi(P)=0$ for every $P \in \mathcal{P}\left({ }^{m}\left(A \otimes_{\pi} X\right), A\right) \cap A_{m-1}\left(A \otimes_{\pi} X\right)$, where m is a fixed positive integer and Φ_{m} be the nonzero restriction of Φ to $\mathcal{P}\left({ }^{m}\left(A \otimes_{\pi} X\right)\right.$).

Then there is a homomorphism $\Psi \in M_{A}\left(H_{b}\left(A \otimes_{\pi} X\right)\right)$ such that its restrictions Ψ_{k} to $\mathcal{P}\left({ }^{k}\left(A \otimes_{\pi} X\right)\right)$ satisfy the conditions: $\Psi_{k}=0$ for all $k<m$ and $\Psi_{m}=\Phi_{m}$. Moreover, the radius functions of Ψ is calculated by the formula

$$
\left\|\Phi_{m}\right\|^{1 / m} \leq R(\Psi) \leq e\left\|\Phi_{m}\right\|^{1 / m}
$$

Proof. For every polynomial $P \in \mathcal{P}\left({ }^{m k}\left(A \otimes_{\pi} X\right)\right)$ we denote by $P_{(m)}$ the polynomial from $\mathcal{P}\left({ }^{k} \otimes_{s, \pi}^{m}\left(A \otimes_{\pi} X\right)\right)$ such that $P_{(m)}\left(\bar{a}^{\otimes m}\right)=P(\bar{a})$.

Since $\Phi_{m} \neq 0$, there is an element $\omega \in\left(A \otimes_{s, \pi} X\right)^{\prime \prime}, \omega \neq 0$ such that for any m-homogeneous polynomial P,

$$
\Phi(P)=\Phi_{m}(P)=\widetilde{P}_{(m)}(w), \quad\|w\|=\left\|\Phi_{m}\right\|,
$$

where $\widetilde{P}_{(m)}$ is the Aron-Berner extension of linear functional $P_{(m)}$ from $\otimes_{s, \pi}^{m}\left(A \otimes_{\pi} X\right)$ to $\otimes_{s, \pi}^{m}\left(A \otimes_{\pi} X\right)^{\prime \prime}$. For an arbitrary n-homogeneous polynomial $Q \in \mathcal{P}\left({ }^{n}\left(A \otimes_{\pi} X\right)\right)$ we set

$$
\Psi(Q)= \begin{cases}\widetilde{Q}_{(m)}(w) & \text { if } n=m k \text { for some } k \geq 0 \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

where $\widetilde{Q}_{(m)}$ is the Aron-Berner extension of the k-homogeneous polynomial $Q_{(m)}$ from $\otimes_{s, \pi}^{m}\left(A \otimes_{\pi} X\right)$ to $\otimes_{s, \pi}^{m}\left(A \otimes_{\pi} X\right)^{\prime \prime}$.

Let $\left(u_{\alpha}\right)$ be a net from $\otimes_{s, \pi}^{m}\left(A \otimes_{\pi} X\right)$ which converges to w in the weak-star topology of $\otimes_{s, \pi}^{m}\left(A \otimes_{\pi} X\right)^{\prime \prime}$, where α belongs to an index set \mathfrak{A}. We can assume that every u_{α} has a representation $u_{\alpha}=\sum_{j \in \mathbb{N}}\left(a_{j, \alpha} \otimes_{\pi} x_{j, \alpha}\right)^{\otimes m}=\sum_{j \in \mathbb{N}} p_{j, \alpha}^{\otimes m} \quad$ for some $\quad a_{j, \alpha} \in A, x_{j, \alpha} \in X$.

Now we will show that $\Psi(P Q)=\Psi(P) \Psi(Q)$ for any homogeneous polynomials P and Q.

1) Let us suppose first that $\operatorname{deg}(P Q)=m r+l$ for some integers $r \geq 0$ and $m>l>0$. Then P or Q has degree equal to $m k+s, k \geq 0, m>s>0$. Thus, by the definition $\Psi(P Q)=0$ and $\Psi(P) \Psi(Q)=0$.
2) Suppose now that for some integer $r \geq 0 \operatorname{deg}(P Q)=m r$. If $\operatorname{deg} P=m k$ and $\operatorname{deg} Q=m n$ for $k, n \geq 0$, then $\operatorname{deg}(P Q)=m(k+n)$ and

$$
\Psi(P Q)=(\widetilde{P Q})_{(m)}(w)=\widetilde{P}_{(m)}(w) \widetilde{Q}_{(m)}(w)=\Psi(P) \Psi(Q)
$$

3)Let at last $\operatorname{deg} P=m k+l$ and $\operatorname{deg} Q=m n+r, l, r>0, l+r=m$. Write

$$
v=\frac{1}{(\operatorname{deg} P+\operatorname{deg} Q)!}=\frac{1}{(m(k+n+1))!} .
$$

Denote by $F_{P Q}$ the symmetric multilinear map, associated with $P Q$. Then

$$
\begin{aligned}
& F_{P Q}\left(\bar{a}_{1}, \ldots, \bar{a}_{m(k+n+1)}\right) \\
& =v \sum_{\sigma \in \mathfrak{S}_{m(k+n+1)}} F_{P}\left(\bar{a}_{\sigma(1)}, \ldots, \bar{a}_{\sigma(m k+l)}\right) F_{Q}\left(\bar{a}_{\sigma(m k+l+1)}, \ldots, \bar{a}_{\sigma(m(k+n+1))}\right),
\end{aligned}
$$

where $\mathfrak{S}_{m(k+n+1)}$ is the group of permutations on $\{1, \ldots, m(k+n+1)\}$. Thus, for $\alpha_{1}, \ldots, \alpha_{k+n+1} \in \mathfrak{A}$ we have

$$
\begin{aligned}
\psi(P Q) & =(\widetilde{P Q})_{(m)}(w)=\lim _{\alpha_{1}, \ldots, \alpha_{k+n+1}} \widetilde{F}_{P Q_{(m)}}\left(u_{\alpha_{1}}, \ldots, u_{\alpha_{k+n+1}}\right) \\
& =\lim _{\alpha_{1}, \ldots, \alpha_{k+n+1}} \widetilde{F}_{P Q_{(m)}}\left(\sum_{j \in \mathbb{N}} p_{j, \alpha_{1}}^{\otimes m}, \ldots, \sum_{j \in \mathbb{N}} p_{j, \alpha_{k+n+1}}^{\otimes m}\right) \\
& =v \sum_{\sigma \in \mathfrak{S}_{m(k+n+1)}} \sum_{\sigma(1), \ldots, \alpha_{\sigma(k+n+1)}} \\
& \sum_{j_{1}, \ldots, j_{k+n+1} \in \mathbb{N}} F_{P}\left(\bar{a}_{j_{\sigma(1),}, \alpha_{\sigma(1)}}^{m} \ldots, \bar{a}_{j_{\sigma(k)}, \alpha_{\sigma(k)}}^{m} \bar{a}_{j_{\sigma(k+1)}, \alpha_{\sigma(k+1)}}^{l}\right) \\
& \times F_{Q}\left(\bar{a}_{j_{\sigma(k+1)}, \alpha_{\sigma(k+1)}}, \bar{a}_{j_{\sigma(k+2)}, \alpha_{\sigma(k+2)}}^{m}, \ldots, \bar{a}_{j_{\sigma(k+n+1)}, \alpha_{\sigma(k+n+1)}}^{m}\right) .
\end{aligned}
$$

Fix some $\sigma \in \mathfrak{S}_{m(k+n+1)}$ and fix all $\bar{a}_{j_{\sigma(i)}, \alpha_{\sigma(i)}}$ for $i \leq k$ and for $i>k+1$. Then

$$
\begin{aligned}
& \quad \sum_{j_{1}, \ldots, j_{k+n+1} \in \mathbb{N}} \lim _{\alpha_{\sigma(k+1)}} F_{P}\left(\bar{a}_{j_{\sigma(1)}, \alpha_{\sigma(1)}}^{m} \ldots, \bar{a}_{j_{\sigma(k)}, \alpha_{\sigma(k)}}^{m}, \bar{a}_{j_{\sigma(k+1)}, \alpha_{\sigma(k+1)}}^{l}\right) \\
& \quad \times F_{Q}\left(\bar{a}_{j_{\sigma(k+1)}, \alpha_{\sigma(k+1)}}^{r}, \bar{a}_{j_{\sigma(k+2)}, \alpha_{\sigma(n+2)}}^{m}, \ldots, \bar{a}_{j_{\sigma(k+n+1)}, \alpha_{\sigma(k+n+1)}}^{m}\right)=0
\end{aligned}
$$

because for a fixed $\bar{a}_{k_{\sigma(i)}, \alpha_{\sigma(i)}}, i \leq k$,

$$
P_{\sigma}(y):=\sum_{j_{1}, \ldots, j_{k}, j_{k+2}, \ldots, j_{k+n+1} \in \mathbb{N}} F_{P}\left(\bar{a}_{j_{\sigma(1)}, \alpha_{\sigma(1)}}^{m}, \ldots, \bar{a}_{j_{\sigma(k)}, \alpha_{\sigma(k)}}^{m}, y^{l}\right)
$$

is an l-homogeneous polynomial and for fixed $\bar{a}_{k_{\sigma(i)}, \alpha_{\sigma(i)}}, i>k+1$,

$$
Q_{\sigma}(y):=\sum_{j_{1}, \ldots, j_{k}, j_{k+2}, \ldots, j_{k+n+1} \in \mathbb{N}} F_{Q}\left(y^{r}, \bar{a}_{j_{\sigma(k+2)}, \alpha_{\sigma(n+2)}}^{m} \ldots, \bar{a}_{j_{\sigma(k+n+1)}, \alpha_{\sigma(k+n+1)}}^{m}\right)
$$

is an r-homogeneous polynomial. Thus, $P_{\sigma} Q_{\sigma} \in \mathcal{A}_{m-1}\left(A \otimes_{\pi} X\right)$. Hence,

$$
\lim _{\alpha}\left(P_{\sigma} Q_{\sigma}\right)_{(m)}\left(u_{\alpha}\right)=\Psi\left(P_{\sigma} Q_{\sigma}\right)=0
$$

for every fixed σ. Therefore, $\Psi(P Q)=0$. On the other hand, $\Psi(P) \Psi(Q)=0$ by the definition of Ψ. So, $\Psi(P Q)=\Psi(P) \Psi(Q)$.

Thus, we have defined the multiplicative operator Ψ on homogeneous polynomials. We can extend it by linearity and distributivity to a homomorphism on the algebra of all continuous polynomials $\mathcal{P}\left(A \otimes_{\pi} X\right)$.

If Ψ_{n} is the restriction of Ψ to $\mathcal{P}\left({ }^{n}\left(A \otimes_{\pi} X\right)\right)$, then $\left\|\Psi_{n}\right\|=\|w\|^{n / m}$ if n / m is a positive integer and $\left\|\Psi_{n}\right\|=0$ otherwise. Hence, the series

$$
\Psi=\sum_{n \in \mathbb{N}} \Psi_{n}
$$

is a continuous homomorphism on $H_{b}\left(A \otimes_{\pi} X\right)$ by Theorem 1 and the radius function of Ψ can be computed by $R(\Psi)=\underset{n \rightarrow \infty}{\limsup }\left\|\Psi_{n}\right\|^{1 / n} \geq \limsup _{n \rightarrow \infty}\|w\|^{n / m n}=\|w\|^{1 / m}=\left\|\Phi_{m}\right\|^{1 / m}$. On the other hand, $\left\|\Psi_{n}\right\|=\sup _{\|P\|=1}\left|\Psi_{n}(P)\right|=\sup _{\|P\|=1}^{n \rightarrow \infty}\left|P_{(m)}(w)\right|$. Since

$$
\left|P_{(m)}(w)\right| \leq\|w\|^{n / m}\left\|P_{(m)}\right\| \leq c\left(n, A \otimes_{\pi} X\right)\|w\|^{n / m}\|P\|,
$$

we have

$$
\left\|\Psi_{n}\right\| \leq c\left(n, A \otimes_{\pi} X\right)\|w\|^{n / m} \leq \frac{n^{n}}{n!}\|w\|^{n / m}=\frac{n^{n}}{n!}\left\|\Phi_{m}\right\|^{n / m} .
$$

So $R(\Psi) \leq e\left\|\Phi_{m}\right\|^{1 / m}$. The theorem is proved.

References

[1] Arens R. The adjoint of a bilinear operation. Proc. Amer. Math. Soc. 1951, 2, 839-848. doi:10.1090/S0002-9939-1951-0045941-1
[2] Daws M. Arens regularity of the algebra of operators on a Banach space. Bull. London. Math. Soc. 2004, 36 (4), 493-503. doi:10.1112/S0024609303003072
[3] Cabello S.F., Garcia R., Villanueva I. Extension of multilinear operators on Banach spaces. Extracta Math. 2000, 15 (2), 291-334.
[4] Aron R.M., Cole B.J., Gamelin T.W. Spectra of algebras of analytic functions on a Banach space. J. Reine Angew. Math. 1991, 415, 51-93.
[5] Dineen S., Hart R.E., Taylor C. Spectra of tensor product elements III : holomorphic properties. Math. Proc. R. Ir. Acad. 2003, 103 (1), 61-92.
[6] Zagorodnyuk A.V. Spectra of algebras of entire functions on Banach spaces. Proc. Amer. Math. Soc.2006, 134, 2559-2569. doi:10.1090/S0002-9939-06-08260-8.
[7] Zagorodnyuk A.V., Petriv H.M. Homomorphisms of algebras of entire functions of bounded type on a Banach space. Appl. Probl. Mech. Math. 2013, 11, 7-11. (in Ukrainian)

Received 25.03.2015

Приймак Г.М. Гомоморфізми і функиіональне числення в алгебрах цілих функиій на банахових просторах // Карпатські матем. публ. — 2015. — Т.7, №1. — С. 108-113.

досліджено гомоморфізми алгебри цілих функцій обмеженого типу на банахових просторах в комутативну банахову алгебру. Зокрема, запропоновано метод побудови гомоморфізмів, які є нулем на однорідних поліномах степеня, що не перевищує деяке фіксоване число n.

Ключові слова і фрази: Продовження Арона-Бернера, функціональне числення, алгебри аналітичних функцій в банахових просторах.

[^0]: У $\Delta \mathrm{K} 517.98$
 2010 Mathematics Subject Classification: 46G20, 46E25.
 Supported by the Grand of the President of Ukraine GP/F56/176, 2014

