ISSN 2075-9827 Carpathian Math. Publ. 2015, 7 (1), 108–113 doi:10.15330/cmp.71.108-113

PRYIMAK H.M.

HOMOMORPHISMS AND FUNCTIONAL CALCULUS IN ALGEBRAS OF ENTIRE FUNCTIONS ON BANACH SPACES

In the paper the homomorphisms of algebras of entire functions on Banach spaces to a commutative Banach algebra are studied. In particular, it is proposed a method of constructing of homomorphisms vanishing on homogeneous polynomials of degree less or equal than a fixed number n.

Key words and phrases: Aron-Berner extension, functional calculus, algebras of analytic functions on Banach spaces.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine E-mail: galja_petriv@mail.ru

1 INTRODUCTION AND PRELIMINARIES

In 1951 R. Arens [1] found a way of extending the product of Banach algebra A to its bidual A'' in such a way that this bidual became itself a Banach algebra. There are two canonical ways to extend the product from A to A'' which called the Arens products. We recall definitions [2].

Let *A* be a commutative Banach algebra, *X* be a Banach space over the field of complex numbers \mathbb{C} .

If $x \in X$ and $\lambda \in X'$ then we write $\langle \lambda, x \rangle = \lambda(x)$. For every $a, b \in A, \lambda \in A'$ and $\Phi \in A''$ define $a.\lambda \in A', \lambda.a \in A', \lambda.\Phi \in A'$ and $\Phi.\lambda \in A'$ by:

$$a.\lambda : b \mapsto \langle \lambda, ba \rangle, \lambda.a : b \mapsto \langle \lambda, ab \rangle, \lambda.\Phi : b \mapsto \langle \Phi, b.\lambda \rangle, \Phi.\lambda : b \mapsto \langle \Phi, \lambda.b \rangle;$$

and then define two products \Box and \Diamond on A'' by:

$$\langle \Phi \Box \Psi, \lambda \rangle = \langle \Phi, \Psi.\lambda \rangle, \langle \Phi \Diamond \Psi, \lambda \rangle = \langle \Psi, \lambda.\Phi \rangle (\Phi, \Psi \in A'').$$

Then (A'', \Box) and (A'', \Diamond) are Banach algebras. We say that *A* is *Arens regular* if for all $\Phi, \Psi \in A''$ we have $\Phi \Box \Psi = \Phi \Diamond \Psi$.

For a given complex Banach space X, $\mathcal{P}(^{n}X)$ denotes the Banach space of all continuous *n*-homogeneous complex-valued polynomials on X. The problem of extending every element of $\mathcal{P}(^{n}X)$ to a continuous *n*-homogeneous polynomial \tilde{P} on the bidual X'' of X was first studied by Aron and Berner in 1978, who showed that such extensions always exist.

Let $B : X \times ... \times X \to \mathbb{C}$ be the symmetric *n*-linear mapping associated to *P*. *B* can be extended to an *n*-linear mapping $\widetilde{B} : X'' \times ... \times X'' \to \mathbb{C}$. Let $(z_1, ..., z_n) \in X'' \times ... \times X''$.

Supported by the Grand of the President of Ukraine GP/F56/176, 2014

УДК 517.98

²⁰¹⁰ Mathematics Subject Classification: 46G20, 46E25.

For a net (x_{α_k}) from X which converges to z_k in the weak-star topology of X'' for each fixed $k, 1 \leq k \leq n$, we put

$$\widetilde{B}(z_1,\ldots,z_n) = \lim_{\alpha_1}\ldots\lim_{\alpha_n} B(x_{\alpha_1},\ldots,x_{\alpha_n}).$$

Then *the Aron-Berner extension* P on X'' to X is defined as

$$\widetilde{P}(z)=\widetilde{B}(z,\ldots,z),$$

where *B* is a unique continuous *n*-linear symmetric form for which P(x) = B(x, ..., x) for each $x \in X$.

Consider the complete projective tensor product $A \otimes_{\pi} X$. Every element of $A \otimes_{\pi} X$ can be represented by the form $\overline{a} = \sum_{k} a_k \otimes_{\pi} x_k$, where $a_k \in A$, $x_k \in X$. For every $\overline{a} \in A \otimes_{\pi} X$ and $f \in H_b(X)$ (algebra of entire analytic functions of bounded type on a Banach space X) let us define $\overline{f}(\overline{a})$ in the means of functional calculus for analytic functions on a Banach spaces ([5]). Then \overline{f} is the Aron-Berner extension of \overline{f} .

In [6] using the Aron-Berner extension and approach developed in [4] it was obtained a method to construct nontrivial complex homomorphisms of $H_b(X)$ vanishing on homogeneous polynomials of degree less or equal that a fixed number n. In this paper we extend this result for Banach algebra valued homomorphism.

2 MAIN RESULTS

Recall that *X* is *a left A-module* (*X* is *a left module over A*), if exists a bilinear map $A \times X \to X$, $(a, x) \mapsto a \cdot x$ such that $(a_1 \cdot a_2) \cdot x = a_1 \cdot (a_2 \cdot x)$, where $a_1, a_2 \in A, x \in X$. It is easy to prove that $A \otimes_{\pi} X$ is a left *A*-module. So, using Theorem 2 ([3], p.297) we can easy obtain the following proposition.

Proposition 1. $(A \otimes_{\pi} X)''$ is a left A''-module.

In [7] it is proved a theorem about a homomorphism of algebras $H_b(X)$ and $H_b((A \otimes_{\pi} X''), A)$ in the case when *A* is some finite dimensional algebra with identity. The following theorem extends this result for the case of an infinite dimensional algebra *A*.

Proposition 2. Let A be the Arens regular Banach algebra. For every $f \in H_b(X)$ there exists a function $\tilde{f} \in H_b((A \otimes_{\pi} X)'', A'')$ such that $\tilde{f}(e \otimes x) = ef(x), x \in X$ and the mapping $F : f \mapsto \tilde{f}$ is a homomorphism between algebras $H_b(X)$ and $H_b((A \otimes_{\pi} X)'', A'')$.

The proof it easy follows from the fact that both the Aron-Berner extension and functional calculus are topological homomorphisms ([4], [5]).

Example 1. Let us show that in the case if A is not Arens regular, then the map F is not necessary a homomorphism. Let $A = \ell_1$, $X = \mathbb{C}^2$. We need to prof that

$$F: H_b(\mathbb{C}^2) \to H_b((\ell_1 \otimes_{\pi} \mathbb{C}^2)'', \ell_1'')$$
 the are $f, g \in H_b(\mathbb{C}^2)$ such that $F(fg) \neq F(f)F(g)$.

For each $t = (t_1, t_2) \in \mathbb{C}^2$ put $f(t) = t_1, g(t) = t_2$ and apply the extension operator $\mathbb{C}^2 \ni t \rightsquigarrow x \in \ell_1 \times \ell_1$ and the Aron-Berner extension $\ell_1 \times \ell_1 \ni x \rightsquigarrow u = (u_1, u_2) \in \ell_{\infty} \times \ell_{\infty}$. Then

$$\overline{f}(x) = x_1 \in \ell_1, \quad \overline{g}(x) = x_2 \in \ell_1, \quad \overline{f}(x)\overline{g}(x) = x_1 * x_2,$$

where " * " is the convolution product in ℓ_1 . Suppose that

$$\widetilde{\overline{f}}(u) = u_1 \in \ell_1'', \qquad \widetilde{\overline{g}}(u) = u_2 \in \ell_1''$$

Then we have $\overline{\tilde{f}}(u)\overline{\tilde{g}}(u) = u_1 \Box u_2$ and $\overline{\tilde{g}}(u)\overline{\tilde{f}}(u) = u_1 \Diamond u_2 = u_1 \Box u_2$.

Since $u_1 \Diamond u_2 \neq u_1 \Box u_2$ in the general case so, we can conclude that *F* is not a homomorphism.

On the other hand, $fg(t) = t_1 \cdot t_2 = P(t)$ — homogeneous polynomial of second degree vector variable *t*. It is known that P(t) = B(t, t) is bilinear form which is uniquely determined by the polarization formula:

$$B(t,t) = \frac{t_1 t_2 + t_2 t_1}{2}.$$

Then

$$\overline{B}(x,x)=\frac{x_1*x_2+x_2*x_1}{2},$$

and we have

$$\widetilde{\overline{B}}(u) = \frac{u_1 \Box u_2 + u_1 \Diamond u_2}{2} = \frac{u_2 \Box u_1 + u_2 \Diamond u_1}{2}.$$

So, $\widetilde{\overline{B}}(u, u) = \widetilde{\overline{P}}(u) = \widetilde{\overline{fg}}(t) \neq \widetilde{\overline{f}}(t) \widetilde{\overline{g}}(t).$

Next, we consider the case when *A* is a reflexive Banach algebra. Let us denote by $\mathcal{P}(^nX)$ the Banach space of all continuous *n*-homogeneous complex-valued polynomials on *X*. $\mathcal{P}_f(^nX)$ denotes the subspace of *n*-homogeneous polynomials of finite type, that is, the subspace generated by finite sum of finite products of linear continuous functionals. The closure of $\mathcal{P}_f(^nX)$ in the topology of uniform convergence on bounded sets is called the space of approximable polynomials and denoted by $\mathcal{P}_c(^nX)$.

Let us denote by $A_n(X)$ the closure of the algebra, generated by polynomials from $\mathcal{P}({}^{\leq n}X)$ with respect to the uniform topology on bounded subsets of *X*. It is clear that $A_1(X) \cap \mathcal{P}({}^nX) = \mathcal{P}_c({}^nX)$.

Let us denote by $\mathcal{L}(H_b(X), A)$ the space of all continuous *n*-linear operators on $H_b(X)$ to *A* and let $M_A(H_b(X))$ be the set of all homomorphisms on $H_b(X)$ to *A*.

In [4] introduced a concept of radius function $R(\varphi)$ of a given linear functional $\varphi \in H_b(X)'$ as the infimum of all numbers r > 0 such that φ is bounded with respect to the norm of uniform convergence on the ball rB and proved that

$$R(\varphi) = \limsup_{n \to \infty} \|\varphi_n\|^{1/n},$$

where φ_n is the restriction of φ to $\mathcal{P}(^nX)$. In [7] extended this definition to a homomorphism $\Phi \in M_A(H_b(X))$, that is, $R(\Phi)$ is the infimum of all numbers r > 0 such that Φ is bounded with respect to the norm of uniform convergence on the ball rB and proved that

$$R(\Phi) = \limsup_{n \to \infty} \|\Phi_n\|^{1/n},$$
(1)

where Φ_n is the restriction of Φ to space *n*-homogeneous polynomials.

Theorem 1. Suppose that $\Phi_n \in \mathcal{L}(\mathcal{P}(^nX), A)$ for $n \in \mathbb{Z}_+$, and suppose that the norms of Φ_n on $\mathcal{P}(^nX)$ satisfy

$$\|\Phi_n\| \leq cs^n$$

for c, s > 0. Then there is a unique $\Phi \in \mathcal{L}(H_b(X), A)$ whose restriction to $\mathcal{P}(^nX)$ coincides with Φ_n for every $n \in \mathbb{Z}_+$.

Proof. For any character $\theta \in M(A)$, $\|\theta\| = 1$ we construct operator $\Phi_n : \mathcal{P}(^nX) \to A$. Then $\theta \circ \Phi_n \in (\mathcal{P}(^nX))'$ and $\|\theta \circ \Phi_n\| \le \|\Phi_n\|$. Since $\|\Phi_n\| \le cs^n$, then every θ satisfies the inequality $\|\theta \circ \Phi_n\| \le cs^n$. From [4, Proposition 2.4] it follows that for every θ there exists linear functional $\varphi : H_b(X) \to \mathbb{C}, \varphi \in H_b(X)'$, such that $\varphi_n = \theta \circ \Phi_n$. Therefore, we have operator $T : A' \to H_b(X)', \theta \mapsto \varphi$ and T^* is the adjoint operator to T:

$$T^{\star}: H_b(X)'' \to A'' = A.$$

Let us consider the restriction of T^* on $H_b(X) \subset H_b(X)''$ and denoted it by Φ . Clearly $\Phi: H_b(X) \to A$ is a required operator.

In order to prove that the restriction Φ to $\mathcal{P}(^nX)$ coincides with Φ_n it is enough to show that $\Phi_n(P) = \Phi(P)$ for every $P \in \mathcal{P}(^nX)$. Put $\Phi_n(P) = a_1$, $\theta(a_1) = c_1 \in \mathbb{C}$, that is $(\theta \circ \Phi_n)(P) = \varphi_n(P) = c_1$. On the other hand, $\Phi(P) = a_2$, that is $(\theta \circ \Phi)(P) = \varphi(P) = c_2$. Since φ_n is restriction of φ , $\varphi(P) = c_2 = \varphi_n(P) = c_1$, $\Rightarrow c_1 = c_2 = c$. So, the equality $(\theta \circ \Phi)(P) = (\theta \circ \Phi_n)(P) = c$ for every θ implies that $\Phi_n(P) = \Phi(P)$.

In the work [6] it was formulated and proved the Lemma 1 on extension of the linear functional $\varphi \in H_b(X)'$ to character $\psi \in M_b$. The following theorem is a generalization of the known lemma and is related to the study of extension of linear operator to the homomorphism.

Theorem 2. Let $\Phi \in \mathcal{L}(H_b(A \otimes_{\pi} X), A)$ be a linear operator such that $\Phi(P) = 0$ for every $P \in \mathcal{P}(^m(A \otimes_{\pi} X), A) \cap A_{m-1}(A \otimes_{\pi} X)$, where *m* is a fixed positive integer and Φ_m be the nonzero restriction of Φ to $\mathcal{P}(^m(A \otimes_{\pi} X))$.

Then there is a homomorphism $\Psi \in M_A(H_b(A \otimes_{\pi} X))$ such that its restrictions Ψ_k to $\mathcal{P}(^k(A \otimes_{\pi} X))$ satisfy the conditions: $\Psi_k = 0$ for all k < m and $\Psi_m = \Phi_m$. Moreover, the radius functions of Ψ is calculated by the formula

$$\|\Phi_m\|^{1/m} \le R(\Psi) \le e \|\Phi_m\|^{1/m}$$

Proof. For every polynomial $P \in \mathcal{P}(^{mk}(A \otimes_{\pi} X))$ we denote by $P_{(m)}$ the polynomial from $\mathcal{P}(^k \otimes_{s,\pi}^m (A \otimes_{\pi} X))$ such that $P_{(m)}(\overline{a}^{\otimes m}) = P(\overline{a})$.

Since $\Phi_m \neq 0$, there is an element $\omega \in (A \otimes_{s,\pi} X)'', \omega \neq 0$ such that for any *m*-homogeneous polynomial *P*,

$$\Phi(P) = \Phi_m(P) = \widetilde{P}_{(m)}(w), \qquad \|w\| = \|\Phi_m\|,$$

where $P_{(m)}$ is the Aron-Berner extension of linear functional $P_{(m)}$ from $\bigotimes_{s,\pi}^{m}(A \otimes_{\pi} X)$ to $\bigotimes_{s,\pi}^{m}(A \otimes_{\pi} X)''$. For an arbitrary *n*-homogeneous polynomial $Q \in \mathcal{P}(^{n}(A \otimes_{\pi} X))$ we set

$$\Psi(Q) = \begin{cases} \widetilde{Q}_{(m)}(w) & \text{if } n = mk \text{ for some } k \ge 0, \\ 0 & \text{otherwise,} \end{cases}$$
(2)

where $\widetilde{Q}_{(m)}$ is the Aron-Berner extension of the *k*-homogeneous polynomial $Q_{(m)}$ from $\otimes_{s,\pi}^{m}(A \otimes_{\pi} X)$ to $\otimes_{s,\pi}^{m}(A \otimes_{\pi} X)''$.

Let (u_{α}) be a net from $\bigotimes_{s,\pi}^{m}(A \otimes_{\pi} X)$ which converges to w in the weak-star topology of $\bigotimes_{s,\pi}^{m}(A \otimes_{\pi} X)''$, where α belongs to an index set \mathfrak{A} . We can assume that every u_{α} has a representation $u_{\alpha} = \sum_{j \in \mathbb{N}} (a_{j,\alpha} \otimes_{\pi} x_{j,\alpha})^{\otimes m} = \sum_{j \in \mathbb{N}} p_{j,\alpha}^{\otimes m}$ for some $a_{j,\alpha} \in A, x_{j,\alpha} \in X$.

Now we will show that $\Psi(PQ) = \Psi(P)\Psi(Q)$ for any homogeneous polynomials *P* and *Q*.

1) Let us suppose first that deg(PQ) = mr + l for some integers $r \ge 0$ and m > l > 0. Then P or Q has degree equal to mk + s, $k \ge 0$, m > s > 0. Thus, by the definition $\Psi(PQ) = 0$ and $\Psi(P)\Psi(Q) = 0$.

2) Suppose now that for some integer $r \ge 0 \deg(PQ) = mr$. If $\deg P = mk$ and $\deg Q = mn$ for $k, n \ge 0$, then $\deg(PQ) = m(k + n)$ and

$$\Psi(PQ) = (\widetilde{PQ})_{(m)}(w) = \widetilde{P}_{(m)}(w)\widetilde{Q}_{(m)}(w) = \Psi(P)\Psi(Q).$$

3)Let at last deg P = mk + l and deg Q = mn + r, l, r > 0, l + r = m. Write

$$\nu = \frac{1}{(\deg P + \deg Q)!} = \frac{1}{(m(k+n+1))!}$$

Denote by F_{PQ} the symmetric multilinear map, associated with PQ. Then

$$F_{PQ}\left(\overline{a}_{1},\ldots,\overline{a}_{m(k+n+1)}\right)$$

= $\nu \sum_{\sigma \in \mathfrak{S}_{m(k+n+1)}} F_{P}\left(\overline{a}_{\sigma(1)},\ldots,\overline{a}_{\sigma(mk+l)}\right) F_{Q}\left(\overline{a}_{\sigma(mk+l+1)},\ldots,\overline{a}_{\sigma(m(k+n+1))}\right),$

where $\mathfrak{S}_{m(k+n+1)}$ is the group of permutations on $\{1, \ldots, m(k+n+1)\}$. Thus, for $\alpha_1, \ldots, \alpha_{k+n+1} \in \mathfrak{A}$ we have

$$\begin{split} \psi(PQ) &= (\widetilde{PQ})_{(m)}(w) = \lim_{\alpha_1,\dots,\alpha_{k+n+1}} \widetilde{F}_{PQ_{(m)}} \left(u_{\alpha_1},\dots,u_{\alpha_{k+n+1}} \right) \\ &= \lim_{\alpha_1,\dots,\alpha_{k+n+1}} \widetilde{F}_{PQ_{(m)}} \left(\sum_{j \in \mathbb{N}} p_{j,\alpha_1}^{\otimes m},\dots,\sum_{j \in \mathbb{N}} p_{j,\alpha_{k+n+1}}^{\otimes m} \right) \\ &= \nu \sum_{\sigma \in \mathfrak{S}_{m(k+n+1)}} \lim_{\alpha_{\sigma(1)},\dots,\alpha_{\sigma(k+n+1)}} \\ &\sum_{j_1,\dots,j_{k+n+1} \in \mathbb{N}} F_P \left(\overline{a}_{j_{\sigma(1)},\alpha_{\sigma(1)}}^m,\dots,\overline{a}_{j_{\sigma(k)},\alpha_{\sigma(k)}}^m,\overline{a}_{j_{\sigma(k+1)},\alpha_{\sigma(k+1)}}^l \right) \\ &\times F_Q \left(\overline{a}_{j_{\sigma(k+1)},\alpha_{\sigma(k+1)}}^r,\overline{a}_{j_{\sigma(k+2)},\alpha_{\sigma(k+2)}}^m,\dots,\overline{a}_{j_{\sigma(k+n+1)},\alpha_{\sigma(k+n+1)}}^m \right) \end{split}$$

Fix some $\sigma \in \mathfrak{S}_{m(k+n+1)}$ and fix all $\overline{a}_{j_{\sigma(i)},\alpha_{\sigma(i)}}$ for $i \leq k$ and for i > k+1. Then

$$\sum_{j_1,\dots,j_{k+n+1}\in\mathbb{N}}\lim_{\alpha_{\sigma(k+1)}}F_P\left(\overline{a}_{j_{\sigma(1)},\alpha_{\sigma(1)}}^m,\dots,\overline{a}_{j_{\sigma(k)},\alpha_{\sigma(k)}}^m,\overline{a}_{j_{\sigma(k+1)},\alpha_{\sigma(k+1)}}^l\right)$$
$$\times F_Q\left(\overline{a}_{j_{\sigma(k+1)},\alpha_{\sigma(k+1)}}^r,\overline{a}_{j_{\sigma(k+2)},\alpha_{\sigma(n+2)}}^m,\dots,\overline{a}_{j_{\sigma(k+n+1)},\alpha_{\sigma(k+n+1)}}^m\right)=0,$$

because for a fixed $\overline{a}_{k_{\sigma(i)},\alpha_{\sigma(i)}}$, $i \leq k$,

$$P_{\sigma}(y) := \sum_{j_1,\dots,j_k,j_{k+2},\dots,j_{k+n+1} \in \mathbb{N}} F_P\left(\overline{a}_{j_{\sigma(1)},\alpha_{\sigma(1)}}^m,\dots,\overline{a}_{j_{\sigma(k)},\alpha_{\sigma(k)}}^m,y^l\right)$$

is an *l*-homogeneous polynomial and for fixed $\overline{a}_{k_{\sigma(i)},\alpha_{\sigma(i)}}$, i > k + 1,

$$Q_{\sigma}(y) := \sum_{j_1,\dots,j_k,j_{k+2},\dots,j_{k+n+1} \in \mathbb{N}} F_Q\left(y^r, \overline{a}_{j_{\sigma(k+2)},\alpha_{\sigma(n+2)}}^m,\dots,\overline{a}_{j_{\sigma(k+n+1)},\alpha_{\sigma(k+n+1)}}^m\right)$$

is an *r*-homogeneous polynomial. Thus, $P_{\sigma}Q_{\sigma} \in \mathcal{A}_{m-1}(A \otimes_{\pi} X)$. Hence,

$$\lim_{\alpha} (P_{\sigma}Q_{\sigma})_{(m)}(u_{\alpha}) = \Psi(P_{\sigma}Q_{\sigma}) = 0$$

for every fixed σ . Therefore, $\Psi(PQ) = 0$. On the other hand, $\Psi(P)\Psi(Q) = 0$ by the definition of Ψ . So, $\Psi(PQ) = \Psi(P)\Psi(Q)$.

Thus, we have defined the multiplicative operator Ψ on homogeneous polynomials. We can extend it by linearity and distributivity to a homomorphism on the algebra of all continuous polynomials $\mathcal{P}(A \otimes_{\pi} X)$.

If Ψ_n is the restriction of Ψ to $\mathcal{P}({}^n(A \otimes_{\pi} X))$, then $\|\Psi_n\| = \|w\|^{n/m}$ if n/m is a positive integer and $\|\Psi_n\| = 0$ otherwise. Hence, the series

$$\Psi = \sum_{n \in \mathbb{N}} \Psi_n$$

is a continuous homomorphism on $H_b(A \otimes_{\pi} X)$ by Theorem 1 and the radius function of Ψ can be computed by $R(\Psi) = \limsup_{n \to \infty} \|\Psi_n\|^{1/n} \ge \limsup_{n \to \infty} \|w\|^{n/mn} = \|w\|^{1/m} = \|\Phi_m\|^{1/m}$. On the other hand, $\|\Psi_n\| = \sup_{\|P\|=1} |\Psi_n(P)| = \sup_{\|P\|=1} |P_{(m)}(w)|$. Since

$$P_{(m)}(w)| \le ||w||^{n/m} ||P_{(m)}|| \le c(n, A \otimes_{\pi} X) ||w||^{n/m} ||P||,$$

we have

$$\|\Psi_n\| \le c(n, A \otimes_{\pi} X) \|w\|^{n/m} \le \frac{n^n}{n!} \|w\|^{n/m} = \frac{n^n}{n!} \|\Phi_m\|^{n/m}$$

So $R(\Psi) \leq e \|\Phi_m\|^{1/m}$. The theorem is proved.

References

- Arens R. The adjoint of a bilinear operation. Proc. Amer. Math. Soc. 1951, 2, 839–848. doi:10.1090/S0002-9939-1951-0045941-1
- [2] Daws M. Arens regularity of the algebra of operators on a Banach space. Bull. London. Math. Soc. 2004, **36** (4), 493–503. doi:10.1112/S0024609303003072
- [3] Cabello S.F., Garcia R., Villanueva I. Extension of multilinear operators on Banach spaces. Extracta Math. 2000, 15 (2), 291–334.
- [4] Aron R.M., Cole B.J., Gamelin T.W. Spectra of algebras of analytic functions on a Banach space. J. Reine Angew. Math. 1991, **415**, 51–93.
- [5] Dineen S., Hart R.E., Taylor C. Spectra of tensor product elements III : holomorphic properties. Math. Proc. R. Ir. Acad. 2003, 103 (1), 61–92.
- [6] Zagorodnyuk A.V. Spectra of algebras of entire functions on Banach spaces. Proc. Amer. Math. Soc.2006, 134, 2559–2569. doi:10.1090/S0002-9939-06-08260-8.
- [7] Zagorodnyuk A.V., Petriv H.M. *Homomorphisms of algebras of entire functions of bounded type on a Banach space*. Appl. Probl. Mech. Math. 2013, **11**, 7–11. (in Ukrainian)

Received 25.03.2015

Приймак Г.М. Гомоморфізми і функціональне числення в алгебрах цілих функцій на банахових просторах // Карпатські матем. публ. — 2015. — Т.7, №1. — С. 108–113.

Досліджено гомоморфізми алгебри цілих функцій обмеженого типу на банахових просторах в комутативну банахову алгебру. Зокрема, запропоновано метод побудови гомоморфізмів, які є нулем на однорідних поліномах степеня, що не перевищує деяке фіксоване число *n*.

Ключові слова і фрази: Продовження Арона-Бернера, функціональне числення, алгебри аналітичних функцій в банахових просторах.