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ON THE STRUCTURE OF SOME MINIMAX-ANTIFINITARY MODULES

Let R be a ring and G be a group. An R-module A is said to be minimax if A includes a noetherian

submodule B such that A/B is artinian. It is studied a Zp∞ G-module A such that A/CA(H) is

minimax as a Zp∞ -module for every proper not finitely generated subgroup H.

Key words and phrases: minimax module, cocentralizer, module over group ring, minimax-antifi-
nitary RG-module, generalized radical group.

Oles Honchar Dnipropetrovsk National University, 72 Gagarin avenue, 49010, Dnipropetrovsk, Ukraine

E-mail: vchupordya@mail.ru

INTRODUCTION

The modules over group rings RG are classical objects of study with well established links

to various areas of algebra. The case when G is a finite group has been studying in sufficient

details for a long time. For the case when G is an infinite group, the situation is different. The

investigation of modules over polycyclic-by-finite groups was initiated in the classical works

of P. Hall [3, 4]. Nowadays, the theory of modules over polycyclic-by-finite groups is highly

developed and rich on interesting results. This was largely due to the fact that a group ring

RG of a polycyclic-by-finite group G over a noetherian ring R is also noetherian. This allowed

developing an advanced theory of such rings and obtain deep results about their structure.

For group rings over some other groups (even over well-studied groups, as for instance, the

Chernikov groups) the situation is not so good since these rings have quite a sophisticated

structure. In particular, they are neither Noetherian nor Artinian. In such cases, it is not always

possible to conduct the study of modules based only on the ring properties. So naturally

there is a need for other approaches. Application of the finiteness conditions, particularly

the use of the minimal and maximal conditions, proved to be very effective in the classical

theory of rings and modules. Noetherian and artinian modules over group rings are also very

well investigated. Many aspects of the theory of artinian modules over group rings are well

reflected in the book [9]. Lately the so-called finitary approach is under intensive development.

This is mainly due to the progress which its applications have found in the theory of infinite

dimensional linear groups.

Let R be a ring, G a group and A an RG-module. For a subgroup H of G we consider the

R- submodule CA(H). Then H acts on A/CA(H). The R-factor-module A/CA(H) is called

the cocentralizer of H in A. The factor-group H/CH(A/CA(H)) is isomorphic to a subgroup

of automorphisms group of an R-module A/CA(H). If x is an element of CH(A/CA(H)),

then x acts trivially on factors of the series 〈0〉 ≤ CA(H) ≤ A. It follows that CH(A/CA(H))
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is abelian. This shows that the structure of H to a greater extent is defined by the structure

of CH(A/CA(H)), and hence by the structure of the automorphisms group of the R-module

A/CA(H).

Let M be a class of R-modules. We say that A is an M-finitary module over RG if A/CA(x) ∈

M for each element x ∈ G. If R is a field, CG(A) = 〈1〉, and M is the class of all finite dimen-

sional vector spaces over R, then we come to the finitary linear groups. The theory of finitary

linear groups is quite well developed (see, for example, the survey [11]). B.A.F. Wehrfritz be-

gan considering the cases when M is the class of finite R-modules [13, 15, 16, 18], when M is

the class of noetherian R-modules [14], when M is the class of artinian R- modules [16–20].

The artinian-finitary modules have been considered also in the paper [10]. The artinian and

noetherian modules can be united into the following type of modules. An R-module A is

said to be minimax if A has a finite series of submodules, whose factors are either noetherian

or artinian. It is not hard to show that if R is an integral domain, then every minimax R-

module A includes a noetherian submodule B such that A/B is artinian. The first natural case

here is the case when R = Z is the ring of all integers. B.A.F. Wehrfritz has began the study

of noetherian-finitary and artinian-finitary modules with separate consideration of this case.

This case is of particular importance in applications, for instance, it is very important in the

theory of generalized soluble groups.

Let G be a group, A an RG-module, and M a class of R-modules. Put

CM(G) = {H | H is a subgroup of G such that A/CA(H) ∈ M}.

If A is an M-finitary module, then CM(G) contains every cyclic subgroup (moreover, every

finitely generated subgroup whenever M satisfies some natural restrictions). It is clear that the

structure of G depends significantly on which important subfamilies of the family Λ(G) of all

proper subgroups of G include CM(G). Therefore it is interesting to consider the cases when

the family CM(G) is large. In almost all groups (with exception of noetherian groups), the

family of subgroups which is not finitely generated is much larger than the family of finitely

generated subgroups. It is therefore interesting to consider the case, which is dual to the case

of an M-finitary module.

Let R be a ring, G be a group and A be an RG-module. We say that A is minimax-antifinitary

RG-module if the factor-module A/CA(H) is minimax as an R-module for each not finitely

generated proper subgroup H and the R-module A/CA(G) is not minimax.

This current work is devoted to the study of the minimax-antifinitary Zp∞ G-modules. Here

Zp∞ denotes a ring of p-adic number. The ring Zp∞ play a very specific role in the theory of

modules over group rings. It is principal ideal domain and, in the other hand, it is a valuation

ring. The study breaks down naturally into the following cases. Put

CocZp∞−mmx(G) = {x | A/CA(x) is a minimax Zp∞ − module}.

The first case is the case when G = CocZp∞−mmx(G). In this case, every proper subgroup of

G has a minimax cocentralizer. This case was considered separately in another paper. The

second case is the case when G 6= CocZp∞−mmx(G) and the group G is not finitely generated.

The third case is the case when G 6= CocZp∞−mmx(G) and the group G is finitely generated.

The current article is dedicated to the second case. Here we consider the modules over groups,

which belong to the following very large class of groups.
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A group G is called generalized radical, if G has an ascending series whose factors are lo-

cally nilpotent or locally finite. Hence a generalized radical group G either has an ascendant

locally nilpotent subgroup or an ascendant locally finite subgroup. In the first case, the locally

nilpotent radical Lnr(G) of G is non–identity. In the second case, it is not hard to see that G

includes a non–identity normal locally finite subgroup. Clearly in every group G the subgroup

Lfr(G) generated by all normal locally finite subgroups is the largest normal locally finite sub-

group (the locally finite radical). Thus every generalized radical group has an ascending series

of normal subgroups with locally nilpotent or locally finite factors. A group G is called locally

generalized radical group, if every finitely generated subgroup is generalized radical. The class

of locally radical group is very large, in particular, it includes all locally finite groups and all

locally soluble groups.

The main result is a following.

Theorem 1. Let G be a locally generalized radical group, A a minimax-antifinitary Zp∞ G-

module, and D = CocZp∞−mmx(G). Suppose that G is not finitely generated, G 6= D and

CG(A) = 〈1〉. Then G is a group of one of the following types.

1. G is a quasicyclic q-group for some prime q.

2. G = Q × 〈g〉 where Q is a quasicyclic p-subgroup, g is a d-element and gd ∈ D, p, d are

prime (not necessary different).

3. G includes a normal divisible Chernikov p-subgroup Q, such that G = Q〈g〉 where g is

a d-element, p, d are prime (not necessary different). Moreover, G satisfies the following

conditions:

(a) gd ∈ D;

(b) Q is G-quasifinite;

(c) if p = d, then Q has special rank dm−1(d − 1) where dm = |〈g〉/C〈g〉(Q)|;

(d) if p 6= d, then Q has special rank o(p, dm) where again dm = |〈g〉/C〈g〉(Q)| and

o(p, dm) is the order of p modulo dm.

Furthermore, for the types 2, 3 A(ωZp∞ D) is a Chernikov p-subgroup.

Here ωRG be the augmentation ideal of the group ring RG, the two-sided ideal of RG gen-

erated by all elements g − 1, g ∈ G.

Recall also that an abelian normal subgroup A of a group G is called G-quasifinite if every

proper G-invariant subgroup of A is finite. Clearly that in this case either A is a union of

its finite G-invariant subgroups or A includes a finite G-invariant subgroup B such that the

factor A/B is a G-chief. At the end of the article, we provide the examples showing that all the

situations that arise in the theorem can be realized.

1 SOME PRELIMINARY RESULTS

Let R be a ring and M a class of R-modules. Then M is said to be a formation if it satisfies

the following conditions:

F1. if A ∈ M and B is an R-submodule of A, then A/B ∈ M;
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F2. if A is an R-module and B1, ..., Bk are R-submodules of A such that A/Bj ∈ M,

1 ≤ j ≤ k, then A/(B1 ∩ ... ∩ Bk) ∈ M.

Lemma 1. Let R be a ring, M a formation of R-modules, G a group and A an RG-module.

(i) If L, H are subgroups of G such that L ≤ H and A/CA(H) ∈ M, then A/CA(L) ∈ M.

(ii) If L, H are subgroups of G whose cocentralizers belong to M, then A/CA(〈H, L〉) ∈ M.

Proof. The inclusion L ≤ H implies that CA(L) ≥ CA(H). Since A/CA(H) ∈ M and M is a

formation, A/CA(L) ∈ M. Clearly CA(〈H, L〉) ≤ CA(H) ∩ CA(L). Since M is a formation,

A/(CA(H) ∩ CA(L)) ∈ M. Then we have A/CA(〈H, L〉) ∈ M.

Lemma 2. Let R be a ring, M a formation of R-modules, G a group and A an RG-module.

Then

CocM(G) = {x ∈ G | A/CA(x) ∈ M}

is a normal subgroup of G.

Proof. By Lemma 1 CocM(G) is a subgroup of G. Now let x ∈ CocM(G), g ∈ G. Then

CA(xg) = CA(x)g. Since the mapping a 7→ ag, a ∈ A, is R-linear,

A/CA(x) ∼=R Ag/CA(x)g = A/CA(x)g = A/CA(xg),

which shows that A/CA(xg) ∈ M, and hence xg ∈ CocM(G).

Clearly the class of minimax modules over an integral domain R is a formation and so we

obtain the following result.

Corollary 1. Let R be a ring, G a group and A an RG-module.

(i) L, H are subgroups of G such that L ≤ H and a factor-module A/CA(H) is minimax,

then A/CA(L) is also minimax.

(ii) If L, H are subgroups of G whose cocentralizers are minimax, then A/CA(〈H, L〉) is

also minimax.

Corollary 2. Let R be a ring, G a group and A an RG-module. Then

CocR−mmx(G) = {x ∈ G | A/CA(x)is minimax}

is a normal subgroup of G.

A group G is said to be F-perfect if G does not include proper subgroups of finite index.

Lemma 3. Let G be a locally generalized radical group and A be a Zp∞ G-module. Suppose

that A includes a Zp∞–minimax Zp∞ G-submodule B, which is minimax. Then the following

assertions hold:

(i) G/CG(B) is soluble-by-finite;

(ii) if G/CG(B) is periodic, then it is nilpotent-by-finite;

(iii) if G/CG(B) is F-perfect and periodic, then it is abelian; moreover [[B, G], G] = 〈0〉.
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Proof. Without loss of generality we can suppose that CG(B) = 〈1〉. Since B is minimax, it has

a series of G-invariant subgroups 〈0〉 ≤ D ≤ K ≤ B where D is divisible Chernikov subgroup,

K/D is finite, and B/K is torsion-free and has finite Zp∞-rank. In particular, the Π(D) =

{p}. Clearly D is G-invariant. The factor-group G/CG(D) is isomorphic to a subgroup of

GLm(Qp∞) where Qp∞ is the field of fractions of Zp∞ and m satisfies qm = |Ω1(D)|. Let Qp∞ be

a field of fractions of Zp∞ , then G/CG(D) is isomorphic to a subgroup of GLm(Qp∞). Note that

char(Qp∞) = 0. Being locally generalized radical, G/CG(D) does not include the non-cyclic

free subgroup; thus an application of Tits Theorem (see, for example, [12, Corollary 10.17])

shows that G/CG(D) is soluble-by-finite. If G is periodic, then G/CG(D) is finite (see, for

example, [12, Theorem 9.33]). Since K/D is finite, G/CG(K/D) is finite. Finally, G/CG(B/K)

is isomorphic to a subgroup of GLr(Qp∞), where r = rZp∞ (B/K). Using again the fact that

G/CG(A/K) does not include the non-cyclic free subgroup and Tits Theorem or Theorem 9.33

of the book [12] (for periodic G), we obtain that G/CG(B/K) is soluble-by-finite (respectively

finite whenever G is periodic). Put

Z = CG(D) ∩ CG(K/D) ∩ CG(B/K).

Then G/Z is embedded in G/CG(D) ∩ G/CG(K/D) ∩ G/CG(B/K), in particular, G/Z is

soluble-by- finite (respectively finite).

If x ∈ Z, then x acts trivially in every factors of the series 〈0〉 ≤ D ≤ K ≤ A. By Kaloujnin’s

theorem [7] Z is nilpotent. It follows that G is soluble-by-finite (respectively nilpotent-by-

finite).

Suppose now that G is an F-perfect group. Again consider the series of G-invariant sub-

groups 〈0〉 ≤ K ≤ B. Being abelian and Chernikov, K is a union of the ascending series

〈0〉 = K0 ≤ K1 ≤ ... ≤ Kn ≤ Kn+1 ≤ ...

of G-invariant finite subgroups Kn, n ∈ N. Then the factor-group G/CG(Kn) is finite for every

n ∈ N. Since G is F-perfect, G = CG(Kn) for each n ∈ N. The equality K =
⋃

n∈N Kn implies

that G = CG(K). As proved above, since G/CG(B/K) is soluble–by–finite and F–perfect, it is

soluble. Then G/CG(B/K) includes normal subgroups U, V such that CG(B/K) ≤ U ≤ V,

U/CG(B/K) is isomorphic to a subgroup of UTr(Qp∞), V/U includes a free abelian subgroup

of finite index [1, Theorem 2]. Since G/CG(B/K) is F-perfect, it follows that G/CG(B/K)

is torsion-free. Then G/CG(B/K) must be identity, because it is periodic. In other words,

G = CG(B/K). Hence G acts trivially in every factors of a series 〈0〉 ≤ K ≤ B, so that

[[B, G], G] = 〈0〉, and using again Kaloujnin’s theorem [7], we obtain that G is abelian.

Lemma 4. Let G be a Chernikov q-group and A a Zp∞ G-module. If A/CA(G) is minimax (as

a Zp∞-module), then the additive group of A(ωZp∞ G) is a Chernikov p-subgroup and q = p.

Proof. For each element x of G consider the mapping δx : A → A, defined by the rule

δx(a) = a(x − 1), a ∈ A. Clearly this mapping is a Zp∞-endomorphism of A, Ker(δx) = CA(x)

and Im(δx) = A(ωZp∞ 〈x〉) = A(x − 1). Hence

A(x − 1) = Im(δx) ∼=Zp∞ A/Ker(δx) = A/CA(x).

Since A/CA(G) is minimax, it has finite special rank r for some positive integer r. An inclusion

CA(G) ≤ CA(x) follows that A/CA(x) has a special rank at most r. Then r(A(x − 1)) ≤ r.
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Let k be a positive integer such that |Ω1(G)| = qk. Then G has an ascending series of finite

subgroups

L1 = Ω1(G) ≤ L2 ≤ . . . ≤ Ln ≤ Ln+1 ≤ . . .

such that Ln = Dr1≤j≤k〈xnj
〉, where |xnj

| ≤ qn for each j, and G =
⋃

n∈N Ln. The equality

A(ωZp∞ Ln) = A(ωZp∞ 〈xn1〉) + . . . + A(ωZp∞ 〈xnk
〉) = A(xn1 − 1) + . . . + A(xnk

− 1)

together with r(A(xnj
− 1)) ≤ r, 1 ≤ j ≤ k, shows that r(A(ωZLn)) ≤ rk for every n ∈ N.

Since G =
⋃

n∈N Ln we have A(ωZp∞ G) =
⋃

n∈N A(ωZp∞ Ln), moreover Ln ≤ Ln+1 implies

that A(ωZp∞ Ln) ≤ A(ωZp∞ Ln+1) for every n ∈ N. Let B be an arbitrary finitely generated

subgroup of A(ωZp∞ G). Then there exists a positive integer m such that B ≤ A(ωZp∞ Lm). By

proved above B has at most rk generators. It follows that A(ωZp∞ G) has a finite special rank

at most rk.

Let Q be the divisible part of G. Since A/CA(Q) is minimax, A has a series of Zp∞ G-

submodules CA(Q) = C ≤ T ≤ A where T/C = Tor(A/C) is a Chernikov group and A/T

is torsion-free and has finite Zp∞-rank. Repeating the final part of the proof of Lemma 3, we

obtain that Q = CQ(T) and Q = CQ(A/T).

Let a be an arbitrary element of T. Consider the mapping γa : Q → A(ωZp∞ Q), defined

by the rule γa(x) = a(x − 1). By (x − 1)(y − 1) = (xy − 1) − (x − 1) − (y − 1). We have

a(xy − 1) = a(x − 1) + a(y − 1) + a(x − 1)(y − 1) = a(x − 1) + a(y − 1). An equality Q =

CQ(T) implies that a(x − 1)(y − 1) = 0. In other words, γa(xy) = γa(x) + γa(y), thus γa is a

homomorphism. Furthermore, Ker(γa) = CQ(a) and Im(γa) = 〈a〉(ωZp∞ Q) = [a, Q], so that

[a, Q] ∼= Q/CQ(a). It follows that if [a, Q] 6= 〈0〉, then it is a divisible Chernikov subgroup and

Π([a, Q]) ⊆ Π(Q) = {q}. Since it is valid for every a ∈ T, T(ωZp∞ Q) is a divisible subgroup

(if it is non-trivial) and Π(T(ωZp∞ Q)) ⊆ Π(Q) = {q}. By proved above, T(ωZp∞ Q) has finite

special rank, and therefore T(ωZp∞ Q) is a Chernikov subgroup.

Consider now the factor-module A/V where V = T(ωZp∞ Q). Then the inclusion

T/V ≤ CA/V(Q) implies that (A/V)(ωZp∞ Q) ≤ T/V. Using the above arguments, we obtain

that (A/V)(ωZp∞ Q) is a Chernikov divisible group such that Π((A/V)(ωZp∞ Q)) ⊆ Π(Q).

We have

(A/V)(ωZp∞ Q) = (A(ωZp∞ Q) + V)/V = (A(ωZp∞ Q) + T(ωZp∞ Q))/(T(ωZp∞ Q),

which follows that A(ωZp∞ Q) is a Chernikov divisible subgroup such that

Π(A(ωZp∞ Q)) ⊆ Π(Q).

Let M = A(ωZp∞ Q), then Q ≤ CG(A/M), in particular, G/CG(A/M) is finite. By proved

above (A/M)(ωZp∞ G) has finite special rank. Using the above arguments, we obtain that

〈a + M〉(ωZp∞ G) is a finite group and Π(〈a + M〉(ωZp∞ G)) ⊆ Π(G) = {q} for every ele-

ment a ∈ A. The finiteness of Π(G) implies that (A/M)(ωZp∞ G) is a Chernikov subgroup

of A/M and Π((A/M)(ωZp∞ G)) ⊆ Π(G) = {q}. Hence A(ωZp∞ G) is Chernikov and

Π(A(ωZp∞ G)) ⊆ Π(G) = {q} but Π(A(ωZp∞ G)) ⊆ {p} so we have q = p.

Corollary 3. Let G be a group and A a Zp∞ G-module. If A/CA(G) is minimax as Zp∞-module,

then every locally generalized radical subgroup of G/CG(A) is soluble-by- finite, and every

periodic subgroup of G/CG(A) is nilpotent-by-finite.
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Proof. Indeed, Lemma 3 shows that G/CG(A/CA(G)) is soluble-by-finite. Every element x ∈

CG(A/CA(G)) acts trivially in the factors of the series 〈0〉 ≤ CA(G) ≤ A. It follows that

CG(A/CA(G)) is abelian. Suppose now that H/CG(A) is a periodic subgroup of G/CG(A).

Since A/CA(G) is minimax, A has a series of H-invariant subgroups

〈0〉 ≤ CA(G) ≤ D ≤ K ≤ A,

where D/CA(G) is a divisible Chernikov subgroup, K/D is finite and A/K is torsion-free and

has finite Zp∞-rank. In Lemma 3 we have already proved that G/CG(D/CA(G)), G/CG(K/D)

and G/CG(A/K) are finite. Let Z = CG(D/CA(G)) ∩ CG(K/D) ∩ CG(A/K). Then G/Z is

finite. If x ∈ Z, then x acts trivially in every factors of a series 〈0〉 ≤ CA(G) ≤ D ≤ K ≤ A. By

Kaloujnin’s theorem [7] Z is nilpotent.

Let G be a generalized radical group and let R1 be a normal subgroup of G, satisfying the

following conditions: R1 is radical, G/R1 does not include the non-trivial locally nilpotent

normal subgroups. Then G/R1 must include a non-trivial normal locally finite subgroup. It

follows that the locally finite radical R2/R1 is non-trivial. If we suppose that G/R2 includes

a non-trivial normal locally finite subgroup L/R2, then L/R1 is also locally finite, which con-

tradicts the choice of R2. This contradiction shows that G/R2 does not include a non-identity

normal locally finite subgroup, and therefore it must include a non-identity normal locally

nilpotent subgroup. Let R3/R2 be a normal subgroup of G/R2 satisfying the following con-

ditions: R3/R2 is radical, G/R3 does not include non-identity locally nilpotent normal sub-

groups. Using similar arguments, we construct the ascending series of normal subgroups

〈1〉 = R0 ≤ R1 ≤ . . . Rα ≤ Rα+1 ≤ . . . Rγ = G,

whose factors are radical or locally finite, and if Rα+1/Rα is radical (respectively locally finite),

then Rα+2/Rα+1 is locally finite (respectively radical).

This series is called a standard series of a generalized radical group G.

Lemma 5. Let G be a group and let A be a minimax-antifinitary Zp∞ G-module. Then every

proper generalized radical subgroup of G/CG(A) is soluble-by-finite.

Proof. Again we will suppose that CG(A) = 〈1〉. Let L be an arbitrary proper generalized

radical subgroup of G. Let

〈1〉 = R0 ≤ R1 ≤ . . . Rα ≤ Rα+1 ≤ . . . Rγ = L,

be a standard series of L. Suppose that γ ≥ ω (ω is the first infinite ordinal) and consider

the subgroup Rω. Assume that Rω is finitely generated, that is Rω = 〈u1, . . . , ut〉 for some

elements u1, . . . , ut. The equality Rω =
⋃

n∈N Rn shows that there exists a positive integer m

such that u1, . . . , ut ∈ Rm. But in this case, Rω = Rm and we obtain a contradiction. This

contradiction shows that Rω is not finitely generated. It follows that A/CA(Rω) is minimax.

Corollary 3 shows that Rω is soluble-by-finite. In this case Rω = R2 and we again obtain a

contradiction. This contradiction shows that γ = k for some positive integer.

Now we will use induction by k for a proof of our assertion. Consider the subgroup R1.

Then either R1 is radical or locally finite. If R1 is not finitely generated, then A/CA(Rω) is
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minimax. Corollary 3 shows that R1 is soluble-by-finite. Suppose that R1 is finitely generated.

If R1 is locally finite, then it is finite. Therefore assume that R1 is radical. Let

〈1〉 = V0 ≤ V1 ≤ . . . Vα ≤ Vα+1 ≤ . . . Vη = R1,

be an ascending series of R1 where Vα+1/Vα is the locally nilpotent radical of R1/Vα, α < η.

Using the above arguments we obtain that η = d for some positive integer d. Let m be a number

such that all factors Vm+1/Vm, Vm+2/Vm+1, . . . , Vd/Vd−1 are finitely generated. Since they are

locally nilpotent, they must be polycyclic. It follows that Vd/Vm is polycyclic. In particular if

every subgroup Vj is finitely generated, 1 ≤ j ≤ d, then R1 is polycyclic. Therefore assume that

there is a positive integer s such that Vs is not finitely generated, but a subgroup Vj is finitely

generated for all j > s. Then A/CA(Vs) is minimax and Corollary 3 yields that Vs is soluble.

In this case R1/Vs is polycyclic, so that R1 is soluble.

Suppose that we have already proved that all subgroups R1, R2, . . . , Rk−1 are soluble-by-

finite. Repeating the above arguments, we obtain that and Rk is soluble-by-finite, and the

result is proved.

Lemma 6. Let G be a group and let A be a minimax-antifinitary Zp∞ G-module. If H is a proper

subgroup of G and CocZp∞−mmx(G) does not include H, then H is finitely generated.

Proof. Indeed if we suppose that H is not finitely generated, then A/CA(H) is minimax. Corol-

lary 1 shows that A/CA(h) is minimax for each element h ∈ H. It follows that

H ≤ CocZp∞−mmx(G), and we obtain a contradiction with the choice of H.

2 PROOFS OF THE MAIN RESULTS

Proposition 1. Let G be a locally generalized radical group and let A be a minimax-antifinitary

Zp∞ G-module. If G/CocZp∞−mmx(G) is not finitely generated, then G/CG(A) is a quasicyclic

q-group for some prime q.

Proof. Again suppose that CG(A) = 〈1〉. Let M = CocZp∞−mmx(G). Let H be a proper sub-

group of G. If M does not include H, then Lemma 6 shows that H is finitely generated. In

particular if M ≤ H, then H/M is finitely generated. In other words, every proper subgroup

of G/M is finitely generated. By [8, Proposition 2.7] G/M is a quasicyclic q-group for some

prime q.

Let L/M be a proper subgroup of G/M, then L/M is a finite cyclic subgroup. An applica-

tion of Lemma 6 shows that the subgroup L is finitely generated. The finiteness of index |L : M|

implies that M is finitely generated (see, for example, [5, Corollary 7.2.1]). Using Lemma 5 we

obtain that M is soluble-by-finite. Then M includes a maximal normal soluble subgroup S

such that M/S is finite. It is not hard to see, that S is G-invariant. Let D = S′, then M/D is

abelian-by-finite and finitely generated, therefore it is noetherian. Let V/D be a proper sub-

group of G/D. If M/D does not include V/D, then M does not include V, and as above, V is

finitely generated. Then V/D is also finitely generated. If V/D ≤ M/D, then again V/D is

finitely generated. Thus every proper subgroup of G/D is finitely generated, and application

of [8, Proposition 2.7] shows that G/D is a quasicyclic group. Since M/D is a proper subgroup

of G/D, M/D is a finite cyclic subgroup. Suppose that D 6= 〈1〉, then K = D′ 6= D. Repeating

the above arguments, we obtain that G/K is a quasicyclic group. In particular, it is abelian.
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Then S/K is abelian, which follows that K ≥ S′ = D. This contradiction shows that D = 〈1〉,

so that G is a quasicyclic group.

Lemma 7. Let G be a locally generalized radical group and let A be a minimax-antifinitary

Zp∞ G-module. Suppose that G 6= CocZp∞−mmx(G), G is not finitely generated, and

G/CocZp∞−mmx(G) is finitely generated. Then G is soluble and G/CocZp∞−mmx(G) is a group

of a prime order q.

Proof. Again suppose that CG(A) = 〈1〉. Let D = CocZp∞−mmx(G). Since G/D is finitely

generated, G = 〈M, D〉 for some finite subset M of G. We may suppose that M is minimal

finite set with this property, that is G 6= 〈S, D〉 for each proper subset S of M. Now suppose

that |M| ≥ 2. Then M includes two proper subsets X, Y such that M = X ∪Y. By the choice of

M, the subgroups 〈X, D〉 and 〈Y, D〉 are proper and also 〈X, D〉 6= D, 〈Y, D〉 6= D. By Lemma 6

both subgroups 〈X, D〉 and 〈Y, D〉 are finitely generated. An equality X ∪ Y = M implies that

G = 〈X, Y, D〉 is finitely generated. This contradiction shows that |M| = 1. In other words,

G/D is cyclic. Suppose that |G/D| is not a prime. Then G includes a proper subgroup B such

that D ≤ B, B 6= D, and G/B has a prime order. Using Lemma 6 we obtain that B is finitely

generated. The finiteness of G/B gives that G is finitely generated. This final contradiction

proves that G/D has a prime order. Choose an element g such that G = 〈g, D〉.

Since G is not finitely generated, D cannot be finitely generated. Using Lemma 5, we obtain

that D is soluble-by-finite. Let S be a maximal normal soluble subgroup of D having finite

index. Suppose that D 6= S. Clearly S is G-invariant. Since D/S is finite and non-soluble,

S〈gq〉 6= D. It follows that S〈g〉 is a proper subgroup of G. Since D does not include S〈g〉,

S〈g〉 is finitely generated by Lemma 6. Then S〈gq〉 is finitely generated (see, for example, [5,

Corollary 7.2.1]). Since the index |D : S| is finite, D is finitely generated. This contradiction

shows that D is soluble. Hence G is soluble.

Let K be a finite group. We have |K| = pt1
1 . . . pts

s where p1, . . . , ps are primes and pm 6= pj

whenever m 6= j. Put Π(K) = {p1, . . . , ps}.

Corollary 4. Let G be a locally generalized radical group and let A be a minimax-antifinitary

Zp∞ G-module and D = CocZp∞−mmx(G). Suppose that G 6= D, G is not finitely generated and

G/D is finitely generated. Let g be an element of G with a property G = 〈g〉D. If H is a normal

subgroup of G, having finite index, then H〈g〉 = G. Moreover, G/H is a q-group.

Proof. If we assume that H〈g〉 is a proper subgroup of G, then the choice of g yields that D

does not include H〈g〉. By Lemma 6, H〈g〉 is finitely generated. Since H〈g〉 has finite index, G

must be finitely generated. This contradiction shows that H〈g〉 = G.

Suppose that Π(G/H) 6= {q}. Let P/H be a Sylow q-subgroup of G/H. Then P/H is

a proper subgroup of G/H. Since P has finite index in G, P is not finitely generated. Then

A/CA(P) is minimax. It follows that P ≤ D. On the other hand, G/D is a non-trivial q-group

and therefore D cannot include P. This contradiction proves that G/H is a q-group.

Let G be a group, denote by Tor(G) the maximal normal periodic subgroup of G (periodic

part of G).

Proposition 2. Let G be a locally generalized radical group and let A be a minimax-antifinitary

Zp∞ G-module. Suppose that G 6= CocZp∞−mmx(G), G is not finitely generated and
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G/CocZp∞−mmx(G) is finitely generated. If G/G′ is infinite, then G = Q × 〈g〉 where Q is

a quasicyclic p-subgroup, g is a d-element and gd ∈ CocZp∞−mmx(G), where p, d are primes

(not necessary different).

Proof. As usual we suppose that CG(A) = 〈1〉. Let D = CocZ−mmx(G). By Lemma 7, G is

soluble and G/D is a group of a prime order q. Choose an element g such that G = 〈g, D〉.

Put K = G′, then K ≤ D. Suppose that K〈g〉 = G. Since G/K is infinite and

G/K = K〈g〉/K ∼= 〈g〉/(〈g〉 ∩ K) we obtain that gK has infinite order. Let r1, r2 be two distinct

primes. Then K〈grj〉 is a proper subgroup of G. Since it has finite index in G, K〈grj〉 is not

finitely generated. It follows that A/CA(K〈grj 〉) is minimax for every j ∈ {1, 2}. Since r1 6= r2

we have 〈g〉 = 〈gr1〉〈gr2〉. Corollary 1 shows that A/CA(〈g〉) is minimax, that is g ∈ D, and

we obtain a contradiction with the choice of g. It shows that K〈g〉 is a proper subgroup of G.

Now let Z/(K〈g〉) be a proper subgroup of G/(K〈g〉). Then D does not include Z and

hence Lemma 6 shows that Z is finitely generated. If we assume that Z has finite index in G,

then G must be finitely generated, so we obtain a contradiction. This contradiction shows that

the factor-group G/(K〈g〉) is F-perfect. Then G/(K〈g〉) includes a subgroup P/(K〈g〉) such

that G/P is a quasicyclic d-group for some prime d. Since g ∈ P, we have that D does not

include P. By Lemma 6, P is finitely generated. It follows that G/K is an abelian minimax

group. Suppose that Tor(G/K) 6= G/K. Then T/K = Tor(D/K) 6= D/K. Put

π = {r | r is a prime such that D/T 6= (D/T)r}.

Since D/T is torsion-free and minimax, the set π is infinite. Therefore we can choose a prime r

such that r 6= q and r ∈ π. Let L/T = (D/T)r , then D/L is a non-identity elementary abelian

r- group. By the choice of L, Π(G/L) = {r, q} and this contradicts Corollary 4. Hence we have

that G/K is periodic. In this case, P/K is finite, so that G/K is a Chernikov group. Let Q/K

be the divisible part of G/K. Since Q/K ∼= G/P, Q/K is a quasicyclic q-subgroup. Since Q

has finite index in G, Corollary 4 shows that G = Q〈g〉 and G/Q is a q-group. It follows that

G/K = Q/K × 〈gK〉 (see [2, Theorem 21.2]). Moreover, by Lemma 4 Q is a p-group.

Suppose that K 6= 〈1〉. Then L = K′ 6= K. We have already proved above that K〈g〉 is a

proper subgroup of G. Since D does not include K〈g〉, Lemma 6 shows that K〈g〉 is finitely

generated. The fact that G/K is periodic implies that K has finite index in K〈g〉. Then K

is finitely generated (see, for example, [5, Corollary 7.2.1]). Thus K/L is a finitely generated

abelian group. Then K/L includes a proper G-invariant subgroup V/L of finite index in K/L

(this subgroup can be identity). Then G/V is a Chernikov group with finite derived subgroup.

Let Q1/V be the divisible part of G/V, then Q1/V ∼= Q/K, so that Q1/V is a quasicyclic q-

subgroup. Since [G/V, G/V] is finite, Q1/V ≤ ζ(G/V). Since index |G : Q1| is finite, G =

Q1〈g〉 by Corollary 4. This equality together with the inclusion Q1/V ≤ ζ(G/V) implies that

G/V is abelian. But in this case K ≤ V, and this contradicts with the choice of V. Consequently

we have K = 〈1〉. So Q is a proper subgroup of G which is quasicyclic q-group, than by

Lemma 4 Q is a p-group.

Proposition 3. Let G be a locally generalized radical group and let A be a minimax-antifinitary

Zp∞ G-module. Suppose that G 6= CocZp∞−mmx(G), G is not finitely generated and

G/CocZp∞−mmx(G) is finitely generated. If G/G′ is finite, then G includes a normal divisible

Chernikov p-subgroup Q, such that G = Q〈g〉 where g is a d-element, gd ∈ CocZp∞−mmx(G)

and p, d are primes (not necessary different). Moreover, the subgroup Q is G-quasifinite.
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Proof. As usual we suppose that CG(A) = 〈1〉. Let D = CocZp∞−mmx(G). By Lemma 7, G is

soluble and G/D is a group of a prime order d. Choose an element g such that G = 〈g, D〉.

Put K = G′. Since G/K is finite, Corollary 4 shows that G = K〈g〉 and G/K is a d-group. It

follows that K is not finitely generated.

Since G is not finitely generated and soluble, L = K′ is a proper subgroup of K. If we

suppose that 〈g, L〉 = G, then G/L = 〈g〉L/L ∼= 〈g〉/(〈g〉 ∩ L) is abelian. It follows that

K ≤ L, and we obtain a contradiction. Thus 〈g, L〉 is a proper subgroup of G. If we suppose

that G/L is finite, then Corollary 4 shows that G = L〈g〉. Hence G/L is infinite, i.e. K/L is

infinite. As we noted above, 〈L, g〉 is a proper subgroup of G. Since D does not include 〈L, g〉,

〈L, g〉 is finitely generated by Lemma 6. A subgroup 〈g〉 ∩ K is cyclic, so that 〈g〉 ∩ K = 〈v〉 for

some v ∈ 〈g〉. Then we have

K ∩ (L〈g〉) = L(K ∩ 〈g〉) = L〈v〉.

Clearly L〈v〉 is a G-invariant subgroup of K. Furthermore, |〈L, g〉 : L〈v〉| ≤ |G : D| = d. It

follows that 〈L, v〉 is finitely generated (see, for example, [5, Corollary 7.2.1]). If we suppose

that K/(L〈v〉) is finitely generated, then K is finitely generated. This contradiction shows that

K/(L〈v〉) is not finitely generated.

Let Z/(L〈v〉) be a proper G-invariant subgroup of K/(L〈v〉), then we have

Z〈g〉 ∩ K = X(〈g〉 ∩ K) = Z〈v〉 = Z. It follows that Z〈g〉 is a proper subgroup of G. Since D

does not include Z〈g〉, Z〈g〉 is finitely generated by Lemma 6.

Assume that K/(L〈v〉) includes a proper subgroup U/〈L, v〉 of finite index. Then |G : U|

is finite, so that U1 = CoreG(U) has finite index in G. By above proved U1〈g〉 is finitely

generated. Finiteness of |G : U1| implies that G is finitely generated. This contradiction shows

that K/(L〈v〉) is F-perfect. Then K/(L〈v〉) includes a subgroup P/(L〈v〉) such that K/P is a

quasicyclic q-group for some prime q. We remark that K/Px = Kx/Px ∼= K/P, i.e. K/Px is a

quasicyclic q- group for all x ∈ G. Finiteness of G/K implies that the family {Px | x ∈ G} is

finite. Let {Px | x ∈ G} = {P1, P2, . . . , Pm} where P1 = P. Then the embedding

K/CoreG(P) →֒ G/P1 × G/P2 × . . . × G/Pm,

shows that K/CoreG(P) is a Chernikov q-group. Since K/CoreG(P) is F- perfect, it is divisible.

Since 〈L, v〉 ≤ P and 〈L, v〉 is G-invariant, 〈L, v〉 ≤ C = CoreG(P). By proved above, C is

finitely generated. In particular, C/L is an abelian finitely generated group, so that K/L is an

abelian minimax group. Suppose that Tor(K/L) = T/L 6= K/L. Put

π = {r | r is a prime such that K/T 6= (K/T)r}.

Since K/T is torsion-free and minimax, the set π is infinite. Therefore we can choose a prime r

such that r 6= d and r ∈ π. Let M/T = (K/T)r , then K/M is a non-identity elementary abelian

r- group. Clearly a subgroup M is G-invariant. By the choice of M, Π(G/M) = {r, d}. This

contradiction with Corollary 4 shows that K/L is periodic. In this case, C/L is finite, so that

K/L is Chernikov. Let Q/L be a divisible part of K/L. The isomorphism Q/L ∼= K/C shows

that Q/L is a q-subgroup. Since Q has finite index, an application of Corollary 4 shows that

G = Q〈g〉 and G/Q is a d-group.

Suppose that Q/L includes an infinite G-invariant subgroup Q1/L and that Q1〈g〉 is finitely

generated. Then Q1〈g〉/L = (Q1/L)〈gL〉 is also finitely generated. Now G/L is periodic, in



ON THE STRUCTURE OF SOME MINIMAX-ANTIFINITARY MODULES 131

particular, 〈gL〉 is finite. It follows that Q1/L is finitely generated. On the other hand, Q1/L

is an infinite Chernikov group, therefore it cannot be finitely generated. This contradiction

shows that Q1〈g〉 is not finitely generated. Then A/CA(Q1〈g〉) is minimax. Corollary 1 shows

that g ∈ D. This contradiction shows that Q/L is G-quasifinite.

Suppose that L 6= 〈1〉. Then V = L′ 6= L. We have already proved that L〈g〉 is is finitely

generated. The fact that G/L is periodic implies that L has finite index in L〈g〉. Then L is

finitely generated (see, for example, [5, Corollary 7.2.1]). Thus L/V is a finitely generated

abelian group. Then L/V includes a proper G-invariant subgroup W/V of finite index in

L/V (this subgroup can be identity). Then K/W is a Chernikov group, having finite derived

subgroup. Let Q2/W be the divisible part of K/W, then Q2/W ∼= Q/L, so that Q2/W is a di-

visible Chernikov q-subgroup. Since (K/W)′ is finite, Q2/W ≤ ζ(K/W). Since index |G : Q2|

is finite, G = Q2〈g〉 by Corollary 4. Then

K = K ∩ (Q2〈g〉) = Q2(K ∩ 〈g〉) = Q2〈v〉.

It follows that K/Q2 is cyclic. Then the inclusion Q2/W ≤ ζ(K/W) implies that K/W is

abelian. But L ≤ W, and this contradiction the choice of W. Consequently L is abelian. So Q is

a proper subgroup of G which is Chernikov q-group, than by Lemma 4 Q is a p-group.

Recall that a group G have finite special rank r(G) = r if every finitely generated sub group

of G has at most r generators and there exists a finitely generated subgroup H of G such that

H has exactly r generators. Therefore every abelian minimax group has finite special rank.

3 PROOF OF THE MAIN THEOREM

If G/D is not finitely generated, then Proposition 1 shows that G is a group of type (1).

Suppose now that G/D is finitely generated. Then Lemma 7 proves that G is soluble and

G/D is a group of a prime order q. If we assume that G/G′ is infinite, then Proposition 2

shows that G is a group of type (2).

Finally suppose that G/G′ is finite. Then Proposition 3 shows that G includes a normal

divisible Chernikov p-subgroup Q, such that G = Q〈g〉 where g is a d-element, p, d are primes

(not necessary different). Moreover, gd ∈ D and Q is G-quasi-finite. Finally, the assertion 3c

follows from the results of Section 3 of the paper [21], and the assertion 3d follows from Theo-

rem 3.4 of the paper [6].

Let G be a group of the type (2) or (3). Then D = Q〈gd〉 is a proper Chernikov subgroup of

G, and hence it is not finitely generated. Then A/CA(D) is minimax and Lemma 4 proves the

final assertion.
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Нехай R — кiльце, G — група. R-модуль A називається мiнiмаксним якщо A мiстить нете-

ровий пiдмодуль B такий, що A/B артiновий. Вивчаються Zp∞ G-модулi A такi, що A/CA(H) є

мiнiмаксним як Zp∞ -модуль, для кожної власної пiдгрупи H, яка не є скiнченно породженою.

Ключовi слова i фрази: мiнiмаксний модуль, коцентралiзатор, модуль над груповим кiльцем,

мiнiмаксно-антифiнiтарний RG-модуль, узагальнено радикальна група.


