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NEW APPROACH TO DERIVATION OF QUANTUM KINETIC EQUATIONS WITH

INITIAL CORRELATIONS

We propose a new approach to the derivation of kinetic equations from dynamics of large par-

ticle quantum systems, involving correlations of particle states at initial time. The developed ap-

proach is based on the description of the evolution within the framework of marginal observables

in scaling limits. As a result the quantum Vlasov-type kinetic equation with initial correlations is

constructed and the statement relating to the property of a propagation of initial correlations is

proved in a mean field limit.
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INTRODUCTION

As it is well known the collective behavior of large particle quantum systems can be effec-

tively described within the framework of a one-particle (marginal) density operator governed

by the kinetic equation [1–4]. In this paper we consider the problem of the rigorous description

of the kinetic evolution in the presence of initial correlations of quantum particles. Such initial

states are typical for the condensed states of quantum gases [5–8] in contrast to the gaseous

state. For example, the equilibrium state of the Bose condensate satisfies the weakening of

correlation condition specified by correlations of the condensed state [5]. One more example

is the influence of initial correlations on ultrafast relaxation processes in plasmas [9], [10].

The conventional approach to the rigorous derivation of the quantum kinetic equations is

based on the consideration of an asymptotic behavior of a solution of the quantum BBGKY hi-

erarchy for marginal density operators constructed within the framework of the theory of per-

turbations in case of initial states specified by a one-particle (marginal) density operator with-

out correlations [11–14], i.e. such that satisfy a chaos condition. This method of the derivation

of quantum kinetic equations can not be extended on case of initial states specified by initial

correlations.

In the paper for the rigorous derivation of the quantum kinetic equations in the presence

of initial correlations we develop a new approach based on the description of the evolution

of large particle quantum systems within the framework of marginal observables governed by

the dual quantum BBGKY hierarchy [15]. In article [16] a rigorous formalism of the description

of the kinetic evolution of observables of quantum particles in a mean field scaling limit was

developed. In this case the limit dynamics is described by the set of recurrence evolution
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equations, namely by the dual quantum Vlasov hierarchy. In this paper, using established

relationships of initial states specified by initial correlations and constructed solution of the

dual quantum Vlasov hierarchy for the limit marginal observables, we derive the quantum

Vlasov-type kinetic equation with initial correlations. The statement relating to the property

of a propagation of initial correlations is also proved.

1 PRELIMINARY FACTS

We consider a quantum system of a non-fixed (i.e. arbitrary but finite) number of identical

(spinless) particles obeying Maxwell–Boltzmann statistics in the space R3. We will use units

where h = 2πh̄ = 1 is a Planck constant, and m = 1 is the mass of particles.

Let the space H be a one-particle Hilbert space, then the n-particle space Hn = H⊗n is a

tensor product of n Hilbert spaces H. We adopt the usual convention that H⊗0 = C. The Fock

space over the Hilbert space H we denote by FH =
⊕∞

n=0Hn.

Let L1(Hn) be the space of trace class operators fn ≡ fn(1, . . . , n) ∈ L1(Hn) that satisfy

the symmetry condition: fn(1, . . . , n) = fn(i1, . . . , in) for arbitrary (i1, . . . , in) ∈ (1, . . . , n), and

equipped with the norm: ‖ fn‖L1(Hn)
= Tr1,...,n| fn(1, . . . , n)|, where Tr1,...,n are partial traces

over 1, . . . , n particles. We denote by L1
0(Hn) the everywhere dense set of finite sequences of

degenerate operators with infinitely differentiable kernels with compact supports.

We shall consider initial states of a quantum many-particle system specified by the one-

particle (marginal) density operator F0,ε
1 ∈ L1(H) in the presence of correlations, i.e. initial

states specified by the following sequence of marginal (s-particle) density operators

F(c) =
(

I, F0,ε
1 (1), gε

2(1, 2)
2

∏
i=1

F0,ε
1 (i), . . . , gε

n(1, . . . , n)
n

∏
i=1

F0,ε
1 (i), . . .

)

, (1)

where I is an identity operator, the operators gε
n(1, . . . , n) ≡ gε

n ∈ L1
0(Hn), n ≥ 2, are specified

the initial correlations and the parameter ε > 0 is a mean field scaling parameter [17].

Traditionally correlations of quantum many-particle systems are described within the fra-

mework of marginal (s-particle) correlation operators which are introduced by means of the

cluster expansions of the marginal density operators

F0,ε
s (1, . . . , s) = ∑

P : (1, . . . , s) =
⋃

i Xi

∏
Xi⊂P

G0,ε
|Xi|

(Xi), s ≥ 1, (2)

where ∑
P:(1,...,s)=

⋃

i Xi

is the sum over all partitions P of the set (1, . . . , s) into |P| nonempty mu-

tually disjoint subsets Xi ⊂ (1, . . . , s). Hereupon solutions of cluster expansions (2)

G0,ε
s (1, . . . , s) = ∑

P : (1, . . . , s) =
⋃

i Xi

(−1)|P|−1(|P| − 1)! ∏
Xi⊂P

F0,ε
|Xi|

(Xi), s ≥ 1, (3)

are interpreted as the operators that describe correlations. Hence in the case of initial data (1)

sequence (3) of marginal correlation operators has the form

G(c) =
(

I, F0,ε
1 (1), g̃ε

2(1, 2)
2

∏
i=1

F0,ε
1 (i), . . . , g̃ε

n(1, . . . , n)
n

∏
i=1

F0,ε
1 (i), . . .

)

, (4)

where the operators g̃ε
n(1, . . . , n) ≡ g̃ε

n ∈ L1
0(Hn), n ≥ 2, specified the initial correlations are

determined by the expansions

g̃ε
s = ∑

P : Y =
⋃

i Xi

(−1)|P|−1(|P| − 1)! ∏
Xi⊂P

gε
|Xi|

, s ≥ 2. (5)



40 GERASIMENKO V.I.

We remark that in case of initial data satisfying a chaos condition [2] sequence (3) of

marginal correlation operators has the form

G0 =
(

I, G0,ε
1 (1), 0, . . . , 0, . . .

)

, (6)

and concequently sequence (2) of marginal density operators takes the form

F0 =
(

I, F0,ε
1 (1),

2

∏
i=1

F0,ε
1 (i), . . . ,

n

∏
i=1

F0,ε
1 (i), . . .

)

. (7)

Such assumption about initial states, i.e. (7) (or (6)), is intrinsic for the kinetic description of a

gas [1]. On the other hand, initial states (1) (or (4)) are typical for the condensed states of quan-

tum gases, for example, the equilibrium state of the Bose condensate satisfies the weakening

of correlation condition with the correlations which characterize the condensed state [5].

We note that the evolution of large particle quantum systems can be described not only

within the framework of marginal density operators governed by the quantum BBGKY hier-

archy [2] but also in terms of marginal observables governed by the dual quantum BBGKY

hierarchy [15].

Let a sequence g = (g0, g1, . . . , gn, . . .) be an infinite sequence of self-adjoint bounded op-

erators gn defined on the Fock space FH. An operator gn defined on the n-particle Hilbert

space Hn = H⊗n will be also denoted by the symbol gn(1, . . . , n). Let the space L(FH)

be the space of sequences g = (g0, g1, . . . , gn, . . .) of bounded operators gn defined on the

Hilbert space Hn that satisfy symmetry condition: gn(1, . . . , n) = gn(i1, . . . , in), for arbitrary

(i1, . . . , in) ∈ (1, . . . , n), equipped with the operator norm ‖.‖L(Hn). We will also consider a

more general space Lγ(FH) with the norm
∥

∥g
∥

∥

Lγ(FH)

.
= max

n≥0

γn

n!

∥

∥gn

∥

∥

L(Hn)
, where 0 < γ < 1.

We denote by Lγ,0(FH) ⊂ Lγ(FH) the everywhere dense set in the space Lγ(FH) of finite se-

quences of degenerate operators with infinitely differentiable kernels with compact supports.

In terms of observables the evolution of quantum many-particle systems is described by

the sequence B(t) = (B0, B1(t, 1), . . . , Bs(t, 1, . . . , s), . . .) of marginal observables (or s-particle

observables) Bs(t, 1, . . . , s), s ≥ 1, determined by the following expansions [15]:

Bs(t, Y) =
s

∑
n=0

1

n!

s

∑
j1 6=... 6=jn=1

A1+n(t, {Y \ X}, X) B0,ε
s−n(Y \ X), s ≥ 1, (8)

where B(0) = (B0, B0,ε
1 (1), . . . , B0,ε

s (1, . . . , s), . . .) ∈ Lγ(FH) is a sequence of initial marginal

observables, and the generating operator A1+n(t) of expansion (8) is the (1 + n)th-order cu-

mulant of groups of operators (10) defined by the expansion

A1+n(t, {Y \ X}, X)
.
= ∑

P: ({Y\X}, X)=
⋃

iXi

(−1)|P|−1(|P| − 1)! ∏
Xi⊂P

G|θ(Xi)|
(t, θ(Xi)), (9)

where we hold abridged notations: Y ≡ (1, . . . , s), X ≡ (j1, . . . , jn) ⊂ Y, and {Y \ X} is the

set, consisting of a single element Y \ X = (1, . . . , s) \ (j1, . . . , jn), thus, the set {Y \ X} is a

connected subset of the set Y, the symbol ∑
P

means the sum over all partitions P of the set

({Y \ X}, j1, . . . , jn) into |P| nonempty mutually disjoint subsets Xi ⊂ ({Y \ X}, X), and θ(·)
is the declusterization mapping defined as follows: θ({Y \ X}, X) = Y. In expansion (9) for

gn ∈ L(Hn) the one-parameter mapping Gn(t) is defined by the formula

R
1 ∋ t 7→ Gn(t)gn

.
= eitHn gne−itHn , (10)
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where the Hamilton operator Hn of a system of n particles is a self-adjoint operator with the

domain D(Hn) ⊂ Hn has the structure

Hn =
n

∑
i=1

K(i) + ε
n

∑
i1<i2=1

Φ(i1, i2), (11)

and K(i) is the operator of a kinetic energy of the i particle, Φ(i1, i2) is the operator of a two-

body interaction potential and ε > 0 is a scaling parameter [17]. The operator K(i) acts on

functions ψn, that belong to the subspace L2
0(R

3n) ⊂ D(Hn) ⊂ L2(R3n) of infinitely differen-

tiable functions with compact supports, according to the formula: K(i)ψn = −1
2 ∆qi

ψn. Corre-

spondingly, we have: Φ(i1, i2)ψn = Φ(qi1 , qi2)ψn, and we assume that the function Φ(qi1 , qi2) is

symmetric with respect to permutations of its arguments, translation-invariant and bounded

function.

On the space L(Hn) one-parameter mapping (10) is an isometric ∗-weak continuous group

of operators. The infinitesimal generator Nn of this group of operators is a closed operator for

the ∗-weak topology, and on its domain of the definition D(Nn) ⊂ L(Hn) it is defined in the

sense of the ∗-weak convergence of the space L(Hn) by the operator

w∗− lim
t→0

1

t

(

Gn(t)gn − gn

)

= −i (gn Hn − Hngn)
.
= Nngn, (12)

where Hn is the Hamiltonian (11) and the operator Nngn defined on the domain D(Hn) ⊂ Hn

has the structure

Nn =
n

∑
j=1

N (j) + ε
n

∑
j1<j2=1

Nint(j1, j2),

where

N (j)gn
.
= −i (gnK(j)− K(j)gn), (13)

Nint(j1, j2)gn
.
= −i (gnΦ(j1, j2)− Φ(j1, j2)gn). (14)

Therefore on the space L(Hn) a unique solution of the Heisenberg equation for observables of

a n-particle system is determined by group (10).

The simplest examples of marginal observables (8) are given by the expansions:

B1(t, 1) = A1(t, 1)B0,ε
1 (1),

B2(t, 1, 2) = A1(t, {1, 2})B0,ε
2 (1, 2) +A2(t, 1, 2)(B0,ε

1 (1) + B0,ε
1 (2)),

where the corresponding order cumulants (9) of groups of operators (10) are given by the

formulas

A1(t, {1, 2}) = Gs(t, 1, 2),

A2(t, 1, 2) = Gs(t, 1, 2)− G1(t, 1)G1(t, 2).

If γ < e−1, for the sequence of operators (8) the following estimate is true:
∥

∥B(t)
∥

∥

Lγ(FH)
≤ e2(1 − γe)−1

∥

∥B(0)
∥

∥

Lγ(FH)
.

A sequence of marginal observables (8) is the non-perturbative solution of recurrence evo-

lution equations known as the dual quantum BBGKY hierarchy [15].

We note that in case of initial states specified by sequences (23) the average values (mean

values) of marginal observables (8) are determined by the following positive continuous linear
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functional

(

B(t), F(c)
) .
=

∞

∑
n=0

1

n!
Tr1,...,n Bn(t, 1, ..., n) gε

n(1, . . . , n)
n

∏
i=1

F0,ε
1 (i). (15)

For operators B(t) ∈ Lγ(FH) and F0,ε
1 ∈ L1(H), functional (24) exists under the condition that

‖F0,ε
1 ‖L1(H) < γ.

2 THE DESCRIPTION OF THE KINETIC EVOLUTION WITHIN THE FRAMEWORK OF MARGINAL

OBSERVABLES

In scaling limits the kinetic evolution of many-particle systems can be described within

the framework of observables. We consider this problem on an example of the mean field

asymptotic behavior of non-perturbative solution (8) of the dual quantum BBGKY hierarchy

for marginal observables.

A mean field asymptotic behavior of marginal observables (8) is described by the following

proposition [16].

Let for B0,ε
n ∈ L(Hn), in the sense of the ∗-weak convergence on the space L(Hn) it holds

w∗− lim
ε→0

(ε−nB0,ε
n − b0

n) = 0, n ≥ 1,

then for arbitrary finite time interval there exists mean field scaling limit of marginal observ-

ables (8)

w∗− lim
ε→0

(ε−sBs(t)− bs(t)) = 0, s ≥ 1, (16)

that are determined by the following expansions:

bs(t, Y) =
s−1

∑
n=0

t
∫

0

dt1 . . .

tn−1
∫

0

dtn ∏
l1∈Y

G1(t − t1, l1)
s

∑
i1 6=j1=1

Nint(i1, j1)

× ∏
l2∈Y\(j1)

G1(t1 − t2, l2) . . . ∏
ln∈Y\(j1,...,jn−1)

G1(tn−1 − tn, ln)

×
s

∑
in 6= jn = 1,

in, jn 6= (j1, . . . , jn−1)

Nint(in, jn) ∏
ln+1∈Y\(j1,...,jn)

G1(tn, ln+1)b
0
s−n(Y \ (j1, . . . , jn)),

(17)

where the operator Nint(i1, j2) is defined on operators gn ∈ L(Hn) by formula (14).

The proof of this statement is based on formulas for cumulants of asymptotically perturbed

groups of operators (10).

Indeed, for arbitrary finite time interval the asymptotically perturbed group of operators

(10) has the following scaling limit in the sense of the ∗-weak convergence on the space L(Hs):

w∗− lim
ε→0

(

Gs(t, Y)−
s

∏
j=1

G1(t, j)
)

gs = 0. (18)

Taking into account analogs of the Duhamel equations for cumulants of asymptotically per-
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turbed groups of operators [17], in view of formula (18) we have

w∗− lim
ε→0

(

ε−n 1

n!
A1+n

(

t, {Y \ X}, j1, . . . , jn
)

−

t
∫

0

dt1 . . .

tn−1
∫

0

dtn ∏
l1∈Y

G1(t − t1, l1)
s

∑
i1 6=j1=1

Nint(i1, j1) ∏
l2∈Y\(j1)

G1(t1 − t2, l2) . . .

∏
ln∈Y\(j1,...,jn−1)

G1(tn−1 − tn, ln)
s

∑
in 6= jn = 1,

in, jn 6= (j1, . . . , jn−1)

Nint(in, jn)

× ∏
ln+1∈Y\(j1,...,jn)

G1(tn, ln+1)
)

gs−n = 0,

where we used notations accepted in (17) and gs−n ≡ gs−n((1, . . . , s) \ (j1, . . . , jn)), n ≥ 1. As a

result of this equality we establish the validity of statement (16) for expansion (8) of marginal

observables.

If b0 ∈ Lγ(FH), then the sequence b(t) = (b0, b1(t), . . . , bs(t), . . .) of limit marginal observ-

ables (17) is a generalized global solution of the Cauchy problem of the dual quantum Vlasov

hierarchy

∂

∂t
bs(t, Y) =

s

∑
j=1

N (j) bs(t, Y) +
s

∑
j1 6=j2=1

Nint(j1, j2) bs−1(t, Y \ (j1)), (19)

bs(t)|t=0 = b0
s , s ≥ 1, (20)

where the infinitesimal generator N (j) of the group of operators G1(t, j) of j particle is defined

on g1 ∈ L0(H) by formula (13). It should be noted that equations set (19) has the structure

of recurrence evolution equations. We give several examples of the evolution equations of

the dual quantum Vlasov hierarchy (19) in terms of operator kernels of the limit marginal

observables

i
∂

∂t
b1(t, q1; q′1) = −

1

2
(−∆q1 + ∆q′1

)b1(t, q1; q′1),

i
∂

∂t
b2(t, q1, q2; q′1, q′2) = −

1

2

2

∑
i=1

(−∆qi
+ ∆q′i

)b2(t, q1, q2; q′1, q′2)

+
(

Φ(q′1 − q′2)− Φ(q1 − q2)
)(

b1(t, q1; q′1) + b1(t, q2; q′2)
)

.

We consider the mean field limit of a particular case of marginal observables, namely the

additive-type marginal observables B(1)(0) = (0, B0,ε
1 (1), 0, . . .) (the k-ary marginal observable

is represented by the sequence B(k)(0) = (0, . . . , 0, B0,ε
k (1, . . . , k), 0, . . .)). In case of additive-

type marginal observables expansions (8) take the following form:

B
(1)
s (t, Y) = As(t)

s

∑
j=1

B0,ε
1 (j), s ≥ 1, (21)

where the operator As(t) is sth-order cumulant (9) of groups of operators (10).

If for the additive-type marginal observable B0,ε
1 ∈ L(H) it holds

w∗− lim
ε→0

(ε−1B0,ε
1 − b0

1) = 0,
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then for additive-type marginal observables (21) there exists the following mean field limit

w∗− lim
ε→0

(ε−sB
(1)
s (t)− b

(1)
s (t)) = 0, s ≥ 1,

where the limit additive-type marginal observable b
(1)
s (t) is determined by a special case of

expansion (17)

b
(1)
s (t, Y) =

t
∫

0

dt1 . . .

ts−2
∫

0

dts−1 ∏
l1∈Y

G1(t − t1, l1)
s

∑
i1 6=j1=1

Nint(i1, j1)

× ∏
l2∈Y\(j1)

G1(t1 − t2, l2) . . . ∏
ls−1∈Y\(j1,...,js−2)

G1(ts−2 − ts−1, ls−1)

×
s

∑
is−1 6= js−1 = 1,

is−1, js−1 6= (j1, . . . , js−2)

Nint(is−1, js−1) ∏
ls∈Y\(j1,...,js−1)

G1(ts−1, ls)b
0
1(Y \ (j1, . . . , js−1)).

(22)

We make several examples of expansions (22) for the limit additive-type marginal observables

b
(1)
1 (t, 1) = G1(t, 1) b0

1(1),

b
(1)
2 (t, 1, 2) =

t
∫

0

dt1

2

∏
i=1

G1(t − t1, i)Nint(1, 2)
2

∑
j=1

G1(t1, j) b0
1(j).

Thus, for arbitrary initial states in the mean field scaling limit the kinetic evolution of quan-

tum many-particle systems is described in terms of limit marginal observables (17) governed

by the dual quantum Vlasov hierarchy (19).

Furthermore, the relation between the evolution of observables (17) and the kinetic evo-

lution of initial states described in terms of a one-particle (marginal) density operator and

correlation operators (1) is considered.

3 THE QUANTUM VLASOV-TYPE KINETIC EQUATION WITH INITIAL CORRELATIONS

We assume that for the initial one-particle (marginal) density operator F0,ε
1 ∈ L1(H) there

exists the mean field limit lim
ε→0

∥

∥ε F0,ε
1 − f 0

1

∥

∥

L1(H)
= 0, and lim

ε→0

∥

∥gε
n − gn

∥

∥

L1(Hn)
= 0, n ≥ 2, then

in the mean field limit the initial state is specified by the following sequence of limit operators

f (c) =
(

I, f 0
1 (1), g2(1, 2)

2

∏
i=1

f 0
1 (i), . . . , gn(1, . . . , n)

n

∏
i=1

f 0
1 (i), . . .

)

. (23)

We note that in case of initial states specified by sequence (23) the average values (mean val-

ues) of limit marginal observables (17) are determined by the limit positive continuous linear

functional (15)

(

b(t), f (c)
) .
=

∞

∑
n=0

1

n!
Tr1,...,n bn(t, 1, ..., n) gn(1, ..., n)

n

∏
i=1

f 0
1 (i). (24)

For operators b(t) ∈ Lγ(FH) and f 0
1 ∈ L1(H), functional (24) exists under the condition that

‖ f 0
1 ‖L1(H) < γ.

We shall establish the relations of mean value functional (24) represented in terms of con-

structed mean field asymptotics of marginal observables (17) with its representation in terms
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of a solution of the quantum Vlasov-type kinetic equation with initial correlations, i.e. in case

of initial states (23).

For the limit additive-type marginal observables (22) the following equality is true

(

b(1)(t), f (c)
)

=
∞

∑
s=0

1

s!
Tr1,...,s b

(1)
s (t, 1, . . . , s)gs(1, . . . , s)

s

∏
i=1

f 0
1 (i) = Tr1 b0

1(1) f1(t, 1),

where the operator b
(1)
s (t) is determined by expansion (22) and the one-particle (marginal)

density operator f1(t, 1) is represented by the series expansion

f1(t, 1) =
∞

∑
n=0

t
∫

0

dt1 . . .

tn−1
∫

0

dtn Tr2,...,n+1G
∗
1 (t − t1, 1)N ∗

int(1, 2)
2

∏
j1=1

G∗
1 (t1 − t2, j1) . . .

×
n

∏
in=1

G∗
1 (tn − tn, in)

n

∑
kn=1

N ∗
int(kn, n + 1)

n+1

∏
jn=1

G∗
1 (tn, jn)g1+n(1, . . . , n + 1)

n+1

∏
i=1

f 0
1 (i).

(25)

In series expansion(25) the operator N ∗
int(j1, j2) fn = −Nint(j1, j2) fn is an adjoint operator to

operator (12) and the group G∗
1 (t, i) = G1(−t, i) is dual to group (10) in the sense of functional

(24). For bounded interaction potentials series (25) is norm convergent on the space L1(H)

under the condition that t < t0 ≡ (2 ‖Φ‖L(H2)‖ f 0
1 ‖L1(H))

−1.

The operator f1(t) represented by series (25) is a solution of the Cauchy problem of the

quantum Vlasov-type kinetic equation with initial correlations:

∂

∂t
f1(t, 1) = N ∗(1) f1(t, 1)

+ Tr2 N
∗
int(1, 2)

2

∏
i1=1

G∗
1 (t, i1)g2(1, 2)

2

∏
i2=1

(G∗
1 )

−1(t, i2) f1(t, 1) f1(t, 2),
(26)

f1(t)|t=0 = f 0
1 , (27)

where the operator N ∗(1) = −N (1) is an adjoint operator to operator (13) in the sense of

functional (24) and the group (G∗
1 )

−1(t) = G∗
1 (−t) = G1(t) is inverse to the group (G∗

1 )(t). This

fact is proved similarly as in case of a solution of the quantum BBGKY hierarchy represented

by the iteration series [13].

Thus, in case of initial states specified by one-particle (marginal) density operator (23) we

establish that the dual quantum Vlasov hierarchy (19) for additive-type marginal observables

describes the evolution of a quantum large particle system just as the non-Markovian quantum

Vlasov-type kinetic equation with initial correlations (26).

4 THE PROPAGATION OF INITIAL CORRELATIONS IN A MEAN FIELD LIMIT

We consider the evolution of initial correlations in a mean field scaling limit.

The property of the propagation of initial correlations is a consequence of the validity of

the following equality for the mean value functional of the limit k-ary marginal observables,

i.e. the sequences b(k)(0) = (0, . . . , 0, b0
k(1, . . . , k), 0, . . .) [15] at initial instant, in case of k ≥ 2

(

b(k)(t), f (c)
)

=
∞

∑
s=0

1

s!
Tr1,...,s b

(k)
s (t, 1, . . . , s)gs(1, . . . , s)

s

∏
j=1

f 0
1 (j)

=
1

k!
Tr1,...,k b0

k(1, . . . , k)
k

∏
i1=1

G∗
1 (t, i1)gk(1, . . . , k)

k

∏
i2=1

(G∗
1 )

−1(t, i2)
k

∏
j=1

f1(t, j),

(28)
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where the limit one-particle (marginal) density operator f1(t, j) is represented by series ex-

pansion (25) and therefore it is governed by the Cauchy problem of the quantum Vlasov-type

kinetic equation with initial correlations (26), (27).

This fact is proved similarly to the proof of a property on the propagation of initial chaos

in a mean field scaling limit [18].

Therefore in case of initial states specified by sequence (1) mean field dynamics of all pos-

sible states is described in terms of the sequence f = (I, f1(t), f2(t), . . . , fn(t), . . .) of the limit

marginal density operators fn(t, 1, . . . , n), n ≥ 1, which are represented within the framework

of the one-particle density operator f1(t) as follows

fn(t, 1, . . . , n) =
n

∏
i1=1

G∗
1 (t, i1)gn(1, . . . , n)

n

∏
i2=1

(G∗
1 )

−1(t, i2)
n

∏
j=1

f1(t, j), n ≥ 2,

where the one-particle density operator f1(t, j) is a solution of the Cauchy problem of the

quantum Vlasov-type kinetic equation with initial correlations (26),(27). In case of initial states

specified by sequence (4) of the marginal correlation operators the evolution of all possible

correlations is described by the following sequence of the limit marginal correlation operators

gn(t, 1, . . . , n) =
n

∏
i1=1

G∗
1 (t, i1)g̃n(1, . . . , n)

n

∏
i2=1

(G∗
1 )

−1(t, i2)
n

∏
j=1

f1(t, j), n ≥ 2,

where the operators g̃n related to operators gn by expansions (5).

We note that the general approach to the description of the evolution of states of quantum

many-particle systems within the framework of correlation operators and marginal correlation

operators was given in paper [19].

Thus, in case of the limit k-ary marginal observables solution (22) of the dual quantum

Vlasov hierarchy (19) is equivalent to a property of the propagation of initial correlations for

the k-particle marginal density operator in the sense of equality (28) or in other words the

mean field scaling dynamics does not create correlations.

5 CONCLUSION AND OUTLOOK

In the paper the concept of quantum kinetic equations in case of the kinetic evolution,

involving correlations of particle states at initial time, for instance, correlation operators char-

acterizing the condensed states, was considered.

This paper deals with a quantum system of a non-fixed (i.e. arbitrary but finite) number of

identical (spinless) particles obeying Maxwell–Boltzmann statistics. The obtained results can

be extended to quantum systems of bosons or fermions.

In case of pure states the quantum Vlasov-type kinetic equation with initial correlations

(26) can be reduced to the Gross–Pitaevskii-type kinetic equation [14]. Indeed, in this case

the one-particle density operator f1(t) = |ψt〉〈ψt| is a one-dimensional projector onto a unit

vector |ψt〉 ∈ H and its kernel has the following form: f1(t, q, q′) = ψ(t, q)ψ∗(t, q′). Then, if we

consider quantum particles, interacting by the potential which kernel Φ(q) = δ(q) is the Dirac

measure, from kinetic equation (26) we derive the Gross–Pitaevskii-type kinetic equation [20]

i
∂

∂t
ψ(t, q) = −

1

2
∆qψ(t, q) +

∫

dq′dq′′g(t, q, q; q′, q′′)ψ(t, q′′)ψ∗(t, q)ψ(t, q),
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where the coupling ratio g(t, q, q; q′, q′′) of the collision integral is the kernel of the scattering

length operator G∗
1 (t, 1)G∗

1 (t, 2)g2(1, 2). If we consider a system of quantum particles without

initial correlations (7) (or (6)), then this kinetic equation is the cubic nonlinear Schrödinger

equation [13].

We note also that in paper [21] it was developed one more method of the derivation of quan-

tum kinetic equations. By means of a non-perturbative solution of the quantum BBGKY hier-

archy it was established that, if initial data is completely specified by a one-particle marginal

density operator (in case of initial data with correlations see paper [20]), then all possible

states of quantum many-particle systems at arbitrary moment of time can be described within

the framework of a one-particle density operator governed by the generalized quantum kinetic

equation. The actual quantum kinetic equations can be derived from the generalized quantum

kinetic equation in the appropriate scaling limit, for example, in a mean field limit [18]. We

emphasize that one of the advantages of such an approach to the derivation of the quantum

kinetic equations from underlying dynamics governed by the generalized quantum kinetic

equation consists in an opportunity to construct the higher-order corrections to the scaling

asymptotic behavior of large particle quantum systems.
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[12] Fröhlich J., Graffi S., Schwarz S. Mean-field and classical limit of many-body Schrödinger dynamics for bosons.

Comm. Math. Phys. 2007, 271, 681–697. doi:10.1007/s00220-007-0207-5

[13] Erdös L., Schlein B., Yau H.-T. Derivation of the cubic nonlinear Schrödinger equation from quantum dynamics of

many-body systems. Invent. Math. 2007, 167 (3), 515–614. doi:10.1007/s00222-006-0022-1

[14] Erdös L., Schlein B., Yau H.-T. Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein con-

densate. Ann. of Math. Stud. 2010, 172 (1), 291–370. doi:10.4007/annals.2010.172.291



48 GERASIMENKO V.I.

[15] Borgioli G., Gerasimenko V.I. Initial-value problem of the quantum dual BBGKY hierarchy. Il Nuovo Cimento C

2010, 33 C (1), 71–78. doi:10.1393/ncc/i2010-10564-6

[16] Gerasimenko V.I. Heisenberg picture of quantum kinetic evolution in mean-field limit. Kinet. Relat. Models 2011,

4 (1), 385–399. doi:10.3934/krm.2011.4.385

[17] Banasiak J., Lachowicz M. Methods of Small Parameter in Mathematical Biology. Birkhäuser, Boston, 2014.
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Герасименко В.I. Новий метод виведення квантових кiнетичних рiвнянь з початковими кореляцiя-

ми // Карпатськi матем. публ. — 2015. — Т.7, №1. — C. 38–48.

Запропоновано новий метод виведення кiнетичних рiвнянь з динамiки квантових систем

багатьох частинок за наявностi кореляцiй станiв частинок в початковий момент. Розвинутий

пiдхiд ґрунтується на описi еволюцiї за допомогою маргiнальних спостережуваних в скейлiн-

гових границях. В результатi побудовано власовського типу квантове кiнетичне рiвняння з

початковими кореляцiями та доведено твердження стосовно властивостi поширення початко-

вих кореляцiй в ганицi самоузгодженого поля.

Ключовi слова i фрази: маргiнальнi спостережуванi, кiнетичне рiвняння з початковими ко-

реляцiями.


