
ISSN 2075-9827 e-ISSN 2313-0210 http://www.journals.pu.if.ua/index.php/cmp

Carpathian Math. Publ. 2016, 8 (1), 83–106 Карпатськi матем. публ. 2016, Т.8, №1, С.83–106

doi:10.15330/cmp.8.1.83-106

KACHANOVSKY N.A.

OPERATORS OF STOCHASTIC DIFFERENTIATION ON SPACES OF NONREGULAR
GENERALIZED FUNCTIONS OF LÉVY WHITE NOISE ANALYSIS

The operators of stochastic differentiation, which are closely related with the extended Skorohod
stochastic integral and with the Hida stochastic derivative, play an important role in the classical
(Gaussian) white noise analysis. In particular, these operators can be used in order to study some
properties of the extended stochastic integral and of solutions of stochastic equations with Wick-
type nonlinearities.

During recent years the operators of stochastic differentiation were introduced and studied, in
particular, in the framework of the Meixner white noise analysis, in the same way as on spaces of
regular test and generalized functions and on spaces of nonregular test functions of the Lévy white
noise analysis. In the present paper we make the next natural step: introduce and study operators
of stochastic differentiation on spaces of nonregular generalized functions of the Lévy white noise
analysis (i.e., on spaces of generalized functions that belong to the so-called nonregular rigging of
the space of square integrable with respect to the measure of a Lévy white noise functions). In so
doing, we use Lytvynov’s generalization of the chaotic representation property. The researches of
the present paper can be considered as a contribution in a further development of the Lévy white
noise analysis.
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INTRODUCTION

Let L = (Lt)t∈[0,+∞) be a Lévy process (i.e., a random process on [0,+∞) with stationary
independent increments and such that L0 = 0, see, e.g., [5, 30, 31] for details) without Gaus-
sian part and drift. In [23] the extended Skorohod stochastic integral with respect to L and
the corresponding Hida stochastic derivative on the space of square integrable random vari-
ables (L2) were constructed in terms of Lytvynov’s generalization of the chaotic representation
property (CRP) (see [27] and Subsection 1.2), some properties of these operators were estab-
lished; and it was shown that the above-mentioned integral coincides with the well-known
(constructed in terms of Itô’s generalization of the CRP [14]) extended stochastic integral with
respect to a Lévy process (e.g., [6, 7]). In [10, 21] the notion of stochastic integral and derivative
was widened to spaces of regular and nonregular test and generalized functions that belong
to so-called regular parametrized and nonregular riggings of (L2) respectively, this gives a
possibility to extend an area of possible applications of the above-mentioned operators (in
particular, now it is possible to define the stochastic integral and derivative as linear continu-
ous operators). Together with the stochastic integral and derivative, it is natural to introduce
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and to study so-called operators of stochastic differentiation in the Lévy white noise analysis, by
analogy with the Gaussian analysis [1, 37], the Gamma-analysis [17, 18], and the Meixner anal-
ysis [19, 20]. These operators are closely related with the extended Skorohod stochastic integral
with respect to a Lévy process and with the corresponding Hida stochastic derivative and, by
analogy with the classical Gaussian case, can be used, in particular, in order to study some
properties of the extended stochastic integral and of solutions of normally ordered stochas-
tic equations (stochastic equations with Wick-type nonlinearities in another terminology). In
[9, 8] the operators of stochastic differentiation on spaces that belong to a regular parametrized
rigging of (L2) ([21]) were introduced and studied. This rigging plays a very important role in
the Lévy analysis; but, in order to solve some problems that arise in this analysis (in particular,
in the theory of normally ordered stochastic equations), it is necessary to introduce into con-
sideration another, nonregular rigging of (L2) (see [21] and Subsection 1.3), and operators (e.g.,
the extended stochastic integral, the Hida stochastic derivative) on spaces (of nonregular test
and generalized functions) that belong to this rigging. Therefore it is natural to introduce and
to study operators of stochastic differentiation on the just now mentioned spaces.

In the paper [24] the operators of stochastic differentiation were introduced and studied
on the spaces of nonregular test functions of the Lévy white noise analysis. In particular, it
was shown that, roughly speaking, these operators are the restrictions to the above-mentioned
spaces of the corresponding operators on (L2). The next natural step is, of course, to consider
operators of stochastic differentiation on the spaces of nonregular generalized functions. But
here there is a problem: in contrast to the classical Gaussian case and to the "regular case",
the operators of stochastic differentiation on (L2) cannot be naturally continued to the just
now mentioned spaces (to the point, actually for the same reason the Hida stochastic deriva-
tive also cannot be naturally continued from (L2) to the spaces of nonregular generalized
functions). Nevertheless, it is possible to introduce on these spaces natural analogs of the
above-mentioned operators. These analogs have properties quite analogous to the properties
of operators of stochastic differentiation, and can be accepted as operators of stochastic differ-
entiation on the spaces of nonregular generalized functions. In the present paper we introduce
and study in detail the just now mentioned operators. In forthcoming papers we’ll consider
elements of the so-called Wick calculus in the Lévy white noise analysis, this will give us the
possibility to continue the study of properties and to consider some applications of the opera-
tors of stochastic differentiation.

The paper is organized in the following manner. In the first section we introduce a Lévy
process L and construct a convenient for our considerations probability triplet connected with
L; then, following [21, 23, 27], we describe in detail Lytvynov’s generalization of the CRP, the
nonregular rigging of (L2), and stochastic derivatives and integrals on the spaces that belong
to this rigging. In the second section we deal with the operators of stochastic differentiation on
the spaces of nonregular generalized functions, considering separately the cases of bounded
and unbounded operators. Note that some results of this paper were announced without
proofs in [25].

1 PRELIMINARIES

In this paper we denote by ‖ · ‖H or | · |H the norm in a space H; by (·, ·)H the scalar product
in a space H; and by 〈·, ·〉H or 〈〈·, ·〉〉H the dual pairing generated by the scalar product in a
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space H. Another notation for norms, scalar products and dual pairings will be introduced
when it will be necessary.

1.1 Lévy processes

Denote R+ := [0,+∞). In this paper we deal with a real-valued locally square integrable
Lévy process L = (Lt)t∈R+ (a random process on R+ with stationary independent increments
and such that L0 = 0) without Gaussian part and drift (it is comparatively simple to consider
such processes from technical point of view). As is well known (e.g., [7]), the characteristic
function of L is

E[eiθLt ] = exp
[
t
∫

R
(eiθx − 1− iθx)ν(dx)

]
, (1)

where ν is the Lévy measure of L, which is a measure on (R,B(R)), here and below B denotes
the Borel σ-algebra; E denotes the expectation. We assume that ν is a Radon measure whose
support contains an infinite number of points, ν({0}) = 0, there exists ε > 0 such that∫

R
x2eε|x|ν(dx) < ∞,

and ∫
R

x2ν(dx) = 1. (2)

Let us define a measure of the white noise of L. Let D denote the set of all real-valued
infinite-differentiable functions on R+ with compact supports. As is well known, D can be
endowed by the projective limit topology generated by a family of Sobolev spaces (e.g., [4]).
Let D′ be the set of linear continuous functionals on D. For ω ∈ D′ and ϕ ∈ D denote ω(ϕ) by
〈ω, ϕ〉; note that one can understand 〈·, ·〉 as the dual pairing generated by the scalar product
in the space L2(R+) of (classes of) square integrable with respect to the Lebesgue measure real-
valued functions on R+, see Subsection 1.3 for details. The notation 〈·, ·〉 will be preserved for
dual pairings in tensor powers of spaces.

Definition. A probability measure µ on (D′, C(D′)), where C denotes the cylindrical σ-algebra,
with the Fourier transform∫

D′
ei〈ω,ϕ〉µ(dω) = exp

[ ∫
R+×R

(eiϕ(u)x − 1− iϕ(u)x)duν(dx)
]
, ϕ ∈ D, (3)

is called the measure of a Lévy white noise.

The existence of µ follows from the Bochner–Minlos theorem (e.g., [13]), see [27]. Below we
assume that the σ-algebra C(D′) is complete with respect to µ, i.e., C(D′) contains all subsets of all
measurable sets O such that µ(O) = 0.

Denote (L2) := L2(D′, C(D′), µ) the space of (classes of) real-valued square integrable with
respect to µ functions on D′; let also H := L2(R+). Substituting in (3) ϕ = tψ, t ∈ R, ψ ∈ D,
and using the Taylor decomposition by t and (2), one can show that∫

D′
〈ω, ψ〉2µ(dω) =

∫
R+

(
ψ(u)

)2du (4)

(this statement follows also from results of [27] and [7]). Let f ∈ H and D 3 ϕk → f in
H as k → ∞ (it is well known (e.g., [4]) that D is a dense set in H). It follows from (4) that
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{〈◦, ϕk〉}k≥1 is a Cauchy sequence in (L2), therefore one can define 〈◦, f 〉 := (L2)− lim
k→∞
〈◦, ϕk〉.

It is easy to show (by the method of "mixed sequences") that 〈◦, f 〉 does not depend on the
choice of an approximating sequence for f and therefore is well defined in (L2).

Let us consider 〈◦, 1[0,t)〉 ∈ (L2), t ∈ R+ (here and below 1A denotes the indicator of a set
A). It follows from (1) and (3) that

(
〈◦, 1[0,t)〉

)
t∈R+

can be identified with a Lévy process on the
probability space (D′, C(D′), µ), i.e., one can write Lt = 〈◦, 1[0,t)〉 ∈ (L2).

Remark. Note that one can understand the Lévy white noise as a generalized random process
(in the sense of [11]) with trajectories from D′: formally L′·(ω) = 〈ω, 1[0,·)〉′ = 〈ω, δ·〉 = ω(·),
where δ· is the Dirac delta-function concentrated at ·. Therefore µ is the measure of L′ in the
classical sense of this notion [12].

Remark. A Lévy process L without Gaussian part and drift is a Poisson process if its Lévy
measure ν(∆) = δ1(∆), ∆ ∈ B(R), i.e., if ν is a point mass at 1. This measure does not
satisfy the conditions accepted above (the support of δ1 does not contain an infinite number of
points); nevertheless, all results of the present paper have natural (and often strong) analogs
in the Poissonian analysis. The reader can find more information about peculiarities of the
Poissonian case in [23], Subsection 1.2.

1.2 Lytvynov’s generalization of the CRP

As is known, some random processes L have a so-called chaotic representation property (CRP)
that consists, roughly speaking, in the following: any square integrable random variable can
be decomposed in a series of repeated stochastic integrals from nonrandom functions with
respect to L (see, e.g., [28] for a detailed presentation). The CRP plays a very important role in
the stochastic analysis (in particular, for processes with the CRP this property can be used in
order to construct extended stochastic integrals [16, 34, 15], stochastic derivatives and operators
of stochastic differentiation, e.g., [37, 1]), but, unfortunately, the only Lévy processes with this
property are Wiener and Poisson processes (e.g., [36]).

There are different approaches to a generalization of the CRP for Lévy processes: Itô’s ap-
proach [14], Nualart-Schoutens’ approach [29, 32], Lytvynov’s approach [27], Oksendal’s ap-
proach [7, 6] etc. The interconnections between these generalizations of the CRP are described
in, e.g., [27, 2, 7, 35, 6, 23]. In the present paper we deal with Lytvynov’s generalization of the
CRP that will be described now in detail.

Denote by ⊗̂ a symmetric tensor product and set Z+ := N ∪ {0}. Let P ≡ P(D′) be the
set of polynomials on D′, i.e., P consists of zero and elements of the form

f (ω) =

N f

∑
n=0
〈ω⊗n, f (n)〉, ω ∈ D′, N f ∈ Z+, f (n) ∈ D⊗̂n, f (N f ) 6= 0,

here N f is called the power of a polynomial f ; 〈ω⊗0, f (0)〉 := f (0) ∈ D⊗̂0 := R. Since the measure
µ of a Lévy white noise has a holomorphic at zero Laplace transform (this follows from (3) and
properties of the measure ν, see also [27]), P is a dense set in (L2) [33]. Denote by Pn the set
of polynomials of power not greater than n, by Pn the closure of Pn in (L2). Let for n ∈ N

Pn := Pn 	Pn−1 (the orthogonal difference in (L2)), P0 := P0. It is clear now that

(L2) =
∞
⊕

n=0
Pn.
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Let f (n) ∈ D⊗̂n, n ∈ Z+. Denote by : 〈◦⊗n, f (n)〉 : the orthogonal projection in (L2) of a mono-
mial 〈◦⊗n, f (n)〉 onto Pn. Let us define scalar products (·, ·)ext on D⊗̂n, n ∈ Z+, by setting for
f (n), g(n) ∈ D⊗̂n

( f (n), g(n))ext :=
1
n!

∫
D′

: 〈ω⊗n, f (n)〉 :: 〈ω⊗n, g(n)〉 :µ(dω),

and let | · |ext be the corresponding norms, i.e., | f (n)|ext =
√
( f (n), f (n))ext. Denote by H(n)

ext ,

n ∈ Z+, the completions of D⊗̂n with respect to the norms | · |ext. For F(n) ∈ H(n)
ext define

a Wick monomial : 〈◦⊗n, F(n)〉 : def
= (L2)− limk→∞ : 〈◦⊗n, f (n)k 〉 :, where D⊗̂n 3 f (n)k → F(n) as

k → ∞ in H(n)
ext (well-posedness of this definition can be proved by the method of "mixed

sequences"). Since, as is easy to see, for each n ∈ Z+ the set {: 〈◦⊗n, f (n)〉 :| f (n) ∈ D⊗̂n} is a
dense one in Pn, we have the next statement (which describes Lytvynov’s generalization of the
CRP).

Theorem. ([27]) A random variable F ∈ (L2) if and only if there exists a unique sequence of
kernels F(n) ∈ H(n)

ext , n ∈ Z+, such that

F =
∞

∑
n=0

: 〈◦⊗n, F(n)〉 : (5)

(the series converges in (L2)) and

‖F‖2
(L2) =

∫
D′
|F(ω)|2µ(dω) = E|F|2 =

∞

∑
n=0

n!|F(n)|2ext < ∞.

So, for F, G ∈ (L2) the scalar product has the form

(F, G)(L2) =
∫
D′

F(ω)G(ω)µ(dω) = E[FG] =
∞

∑
n=0

n!(F(n), G(n))ext,

where F(n), G(n) ∈ H(n)
ext are the kernels from decompositions (5) for F and G respectively. In

particular, for F(n) ∈ H(n)
ext and G(m) ∈ H(m)

ext , n, m ∈ Z+,(
: 〈◦⊗n, F(n)〉 :, : 〈◦⊗m, G(m)〉 :

)
(L2)

=
∫
D′

: 〈ω⊗n, F(n)〉 :: 〈ω⊗m, G(m)〉 :µ(dω)

= E
[
: 〈◦⊗n, F(n)〉 :: 〈◦⊗m, G(m)〉 :

]
= δn,mn!(F(n), G(n))ext.

Note that in the space (L2) we have : 〈◦⊗0, F(0)〉 : = 〈◦⊗0, F(0)〉 = F(0) and : 〈◦, F(1)〉 : = 〈◦, F(1)〉
[27].

Remark. In order to make calculations connected with the spacesH(n)
ext , it is necessary to know

explicit formulas for the scalar products (·, ·)ext. Such formulas were obtained by E.W. Lytvy-
nov in [27]. Here, following [23], we write out it for convenience of a reader. Denote by ‖ · ‖ν

the norm in the space L2(R, ν) of (classes of) square integrable with respect to ν real-valued
functions on R. Let

pn(x) := xn + an,n−1xn−1 + · · ·+ an,1x, an,j ∈ R, j ∈ {1, . . . , n− 1}, n ∈N, (6)
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be orthogonal in L2(R, ν) polynomials, i.e., for natural numbers n, m such that n 6= m,∫
R

pn(x)pm(x)ν(dx) = 0. Then for F(n), G(n) ∈ H(n)
ext , n ∈N, we have

(F(n),G(n))ext = ∑
k,lj ,sj∈N: j=1,...,k, l1>l2>···>lk ,

l1s1+···+lksk=n

n!
s1! · · · sk!

(‖pl1‖ν

l1!

)2s1
· · ·
(‖plk‖ν

lk!

)2sk

×
∫

R
s1+···+sk
+

F(n)(u1, . . . , u1︸ ︷︷ ︸
l1

, . . . , us1 , . . . , us1︸ ︷︷ ︸
l1

, . . . , us1+···+sk , . . . , us1+···+sk︸ ︷︷ ︸
lk

)

× G(n)(u1, . . . , u1︸ ︷︷ ︸
l1

, . . . , us1 , . . . , us1︸ ︷︷ ︸
l1

, . . . , us1+···+sk , . . . , us1+···+sk︸ ︷︷ ︸
lk

)du1 · · · dus1+···+sk .

(7)

In particular, for n = 1 (F(1), G(1))ext = ‖p1‖2
ν

∫
R+

F(1)(u)G(1)(u)du; if n = 2 then we have

(F(2), G(2))ext = ‖p1‖4
ν

∫
R2

+
F(2)(u, v)G(2)(u, v)dudv + ‖p2‖2

ν
2
∫

R+
F(2)(u, u)G(2)(u, u)du, etc.

It follows from (7) thatH(1)
ext = H ≡ L2(R+): by (6) p1(x) = x and therefore by (2) ‖p1‖ν =

1; and for n ∈ N\{1} one can identify H⊗̂n with the proper subspace of H(n)
ext that consists of

"vanishing on diagonals" elements (i.e., F(n)(u1, . . . , un) = 0 if there exist k, j ∈ {1, . . . , n} such
that k 6= j but uk = uj). In this sense the spaceH(n)

ext is an extension ofH⊗̂n (this explains why we

use the subscript ext in the notationsH(n)
ext , (·, ·)ext and | · |ext).

1.3 A nonregular rigging of (L2)

Denote by T the set of indexes τ = (τ1, τ2), where τ1 ∈ N, τ2 is an infinite differentiable
function on R+ such that for all u ∈ R+ τ2(u) ≥ 1. Let Hτ be the Sobolev space on R+ of
order τ1 weighted by the function τ2, i.e.,Hτ is a completion of the set of infinite differentiable
functions on R+ with compact supports with respect to the norm generated by the scalar
product

(ϕ, ψ)Hτ
=
∫

R+

(
ϕ(u)ψ(u) +

τ1

∑
k=1

ϕ[k](u)ψ[k](u)
)

τ2(u)du,

here ϕ[k] and ψ[k] are derivatives of order k of functions ϕ and ψ respectively. It is well known
(e.g., [4]) that D = pr limτ∈THτ (moreover, D⊗̂n = pr limτ∈TH⊗̂n

τ , see, e.g., [3] for details)
and for each τ ∈ T Hτ is densely and continuously embedded into H ≡ L2(R+), therefore
one can consider the chain

D′ ⊃ H−τ ⊃ H ⊃ Hτ ⊃ D,

where H−τ, τ ∈ T, are the spaces dual of Hτ with respect to H. Note that by the Schwartz
theorem [4] D′ = ind limτ∈TH−τ (it is convenient for us to consider D′ as a topological space
with the inductive limit topology). By analogy with [22] one can easily show that the measure
µ of a Lévy white noise is concentrated on H−τ̃ with some τ̃ ∈ T, i.e., µ(H−τ̃) = 1. Excepting
from T the indexes τ such that µ is not concentrated onH−τ, we will assume, in what follows,
that for each τ ∈ T µ(H−τ) = 1.

Denote the norms in Hτ and its tensor powers by | · |τ, i.e., for f (n) ∈ H⊗̂n
τ , n ∈ N,

| f (n)|τ =
√
( f (n), f (n))H⊗̂n

τ
.
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Lemma. ([21]) There exists τ′ ∈ T such that for each n ∈ N the space H⊗̂n
τ′ is densely and

continuously embedded into the spaceH(n)
ext . Moreover, for all f (n) ∈ H⊗̂n

τ′

| f (n)|2ext ≤ n!cn| f (n)|2τ′ ,

where c > 0 is some constant.

It follows from this lemma that if for some τ ∈ T the space Hτ is continuously embedded
into the space Hτ′ then for each n ∈ N the space H⊗̂n

τ is densely and continuously embedded
into the spaceH(n)

ext , and there exists c(τ) > 0 such that for all f (n) ∈ H⊗̂n
τ

| f (n)|2ext ≤ n!c(τ)n| f (n)|2τ. (8)

In what follows, it will be convenient to assume that the indexes τ such thatHτ is not contin-
uously embedded intoHτ′ , are removed from T.

Denote PW :=
{

f = ∑
N f
n=0 : 〈◦⊗n, f (n)〉 :, f (n) ∈ D⊗̂n, N f ∈ Z+

}
⊂ (L2). Accept on default

q ∈ Z+, τ ∈ T; setH⊗̂0
τ := R; and define scalar products (·, ·)τ,q on PW by setting for

f =

N f

∑
n=0

: 〈◦⊗n, f (n)〉 :, g =
Ng

∑
n=0

: 〈◦⊗n, g(n)〉 : ∈ PW

( f , g)τ,q :=
min(N f ,Ng)

∑
n=0

(n!)22qn( f (n), g(n))H⊗̂n
τ

. (9)

Let ‖ · ‖τ,q be the corresponding norms, i.e., ‖ f ‖τ,q =
√
( f , f )τ,q. In order to verify the well-

posedness of this definition, i.e., that formula (9) defines scalar, and not just quasiscalar prod-
ucts, we note that if for f ∈ PW ‖ f ‖τ,q = 0 then by (9) for each coefficient f (n) of f | f (n)|τ = 0
and therefore by (8) | f (n)|ext = 0. So, in this case f = 0 in (L2).

Definition. We define Kondratiev spaces of nonregular test functions (Hτ)q as completions of
PW with respect to the norms ‖ · ‖τ,q, and set

(Hτ) := pr lim
q∈Z+

(Hτ)q, (D) := pr lim
q∈Z+,τ∈T

(Hτ)q.

As is easy to see, f ∈ (Hτ)q if and only if f can be presented in the form

f =
∞

∑
n=0

: 〈◦⊗n, f (n)〉 :, f (n) ∈ H⊗̂n
τ (10)

(the series converges in (Hτ)q), with

‖ f ‖2
τ,q := ‖ f ‖2

(Hτ)q
=

∞

∑
n=0

(n!)22qn| f (n)|2τ < ∞; (11)

and for f , g ∈ (Hτ)q

( f , g)(Hτ)q =
∞

∑
n=0

(n!)22qn( f (n), g(n))H⊗̂n
τ

,

where f (n), g(n) ∈ H⊗̂n
τ are the kernels from decompositions (10) for f and g respectively (since

for each n ∈ Z+ H⊗̂n
τ ⊆ H(n)

ext , for f (n) ∈ H⊗̂n
τ : 〈◦⊗n, f (n)〉 : is a well defined Wick monomial,

see Subsection 1.2). Further, f ∈ (Hτ) ( f ∈ (D)) if and only if f can be presented in form (10)
and norm (11) is finite for each q ∈ Z+ (for each q ∈ Z+ and each τ ∈ T).
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Proposition. ([21]) For each τ ∈ T there exists q0 = q0(τ) ∈ Z+ such that for each q ∈ Nq0 :=
{q0, q0 + 1, · · · } the space (Hτ)q is densely and continuously embedded into (L2).

In view of this proposition for τ ∈ T and q ≥ q0(τ) one can consider a chain
(D′) ⊃ (H−τ) ⊃ (H−τ)−q ⊃ (L2) ⊃ (Hτ)q ⊃ (Hτ) ⊃ (D), (12)

where (H−τ)−q, (H−τ) = ind limq→∞(H−τ)−q and (D′) = ind limq→∞,τ∈T(H−τ)−q are the
spaces dual of (Hτ)q, (Hτ) and (D) with respect to (L2).

Definition. Chain (12) is called a nonregular rigging of the space (L2). The negative spaces of
this chain (H−τ)−q, (H−τ) and (D′) are called Kondratiev spaces of nonregular generalized
functions.

Finally, we describe natural orthogonal bases in the spaces (H−τ)−q. Let us consider chains

D′(m) ⊃ H(m)
−τ ⊃ H

(m)
ext ⊃ H

⊗̂m
τ ⊃ D⊗̂m, (13)

m ∈ Z+ (for m = 0 D⊗̂0 = H⊗̂0
τ = H(0)

ext = H(0)
−τ = D′(0) = R), where H(m)

−τ and D′(m) =

ind limτ∈TH
(m)
−τ are the spaces dual ofH⊗̂m

τ andD⊗̂m with respect toH(m)
ext . The next statement

follows from the definition of the spaces (H−τ)−q and the general duality theory (cf. [22]).

Proposition. ([21]) There exists a system of generalized functions{
: 〈◦⊗m, F(m)

ext 〉 : ∈ (H−τ)−q | F(m)
ext ∈ H

(m)
−τ , m ∈ Z+

}
such that

1) for F(m)
ext ∈ H

(m)
ext ⊂ H

(m)
−τ : 〈◦⊗m, F(m)

ext 〉 : is a Wick monomial that was defined in Subsec-
tion 1.2;

2) any generalized function F ∈ (H−τ)−q can be presented as a series

F =
∞

∑
m=0

: 〈◦⊗m, F(m)
ext 〉 :, F(m)

ext ∈ H
(m)
−τ , (14)

that converges in (H−τ)−q, i.e.,

‖F‖2
−τ,−q := ‖F‖2

(H−τ)−q
=

∞

∑
m=0

2−qm|F(m)
ext |

2
H(m)
−τ

< ∞; (15)

and, vice versa, any series (14) with finite norm (15) is a generalized function from (H−τ)−q
(i.e., such a series converges in (H−τ)−q);

3) for F, G ∈ (H−τ)−q the scalar product has a form

(F, G)(H−τ)−q =
∞

∑
m=0

2−qm(F(m)
ext , G(m)

ext )H(m)
−τ

,

where F(m)
ext , G(m)

ext ∈ H
(m)
−τ are the kernels from decompositions (14) for F and G respectively;

4) the dual pairing between F ∈ (H−τ)−q and f ∈ (Hτ)q that is generated by the scalar
product in (L2), has the form

〈〈F, f 〉〉(L2) =
∞

∑
m=0

m!〈F(m)
ext , f (m)〉ext, (16)

where F(m)
ext ∈ H

(m)
−τ and f (m) ∈ H⊗̂m

τ are the kernels from decompositions (14) and (10) for F
and f respectively, 〈·, ·〉ext denotes the dual pairings between elements of negative and positive
spaces from chains (13), these pairings are generated by the scalar products inH(m)

ext .

It is clear that F ∈ (H−τ) (F ∈ (D′)) if and only if F can be presented in form (14) and norm
(15) is finite for some q ∈Nq0(τ) (for some τ ∈ T and some q ∈Nq0(τ)).
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1.4 Stochastic derivatives and integrals

First, following [24], we recall the notion of the Hida stochastic derivative on the spaces
of nonregular test functions, and of the extended stochastic integral on the spaces of non-
regular generalized functions. Decomposition (5) for elements of (L2) defines an isometric

isomorphism (a generalized Wiener-Itô-Sigal isomorphism) I : (L2) →
∞
⊕

n=0
n!H(n)

ext , where
∞
⊕

n=0
n!H(n)

ext is a weighted extended Fock space (cf. [26]): for F ∈ (L2) of form (5) IF =

(F(0), F(1), . . . , F(n), . . . ) ∈
∞
⊕

n=0
n!H(n)

ext . Let 1 : H → H be the identity operator. Then the

operator I ⊗ 1 : (L2) ⊗H →
( ∞
⊕

n=0
n!H(n)

ext
)
⊗H ∼=

∞
⊕

n=0
n!(H(n)

ext ⊗H) is an isometric isomor-

phism between the spaces (L2)⊗H and
∞
⊕

n=0
n!(H(n)

ext ⊗H). It is clear that for arbitrary n ∈ Z+

and F(n)
· ∈ H(n)

ext ⊗H a vector (0, . . . , 0︸ ︷︷ ︸
n

, F(n)
· , 0, . . . ) belongs to

∞
⊕

n=0
n!(H(n)

ext ⊗H). Set

: 〈◦⊗n, F(n)
· 〉 :

de f
= (I⊗ 1)−1(0, . . . , 0︸ ︷︷ ︸

n

, F(n)
· , 0, . . . ) ∈ (L2)⊗H. (17)

By the construction elements : 〈◦⊗n, F(n)
· 〉 :, n ∈ Z+, form an orthogonal basis in the space

(L2)⊗H in the sense that any F ∈ (L2)⊗H can be presented as

F(·) =
∞

∑
n=0

: 〈◦⊗n, F(n)
· 〉 :, F(n)

· ∈ H(n)
ext ⊗H

(the series converges in (L2) ⊗ H), with ‖F‖2
(L2)⊗H = ∑∞

n=0 n!|F(n)
· |2H(n)

ext⊗H
< ∞. Since, as

is easily seen, the restriction of the generalized Wiener-Itô-Sigal isomorphism I to the space

(Hτ)q is an isometric isomorphism between (Hτ)q and a weighted Fock space
∞
⊕

n=0
(n!)22qnH⊗̂n

τ

(cf. [26]), and, of course, the restriction of the identity operator on H to the space Hτ is the
identity operator on Hτ, for arbitrary n ∈ Z+ and f (n)· ∈ H⊗̂n

τ ⊗Hτ ⊂ H(n)
ext ⊗H we have

: 〈◦⊗n, f (n)· 〉 : ∈ (Hτ)q ⊗Hτ. Moreover, elements : 〈◦⊗n, f (n)· 〉 :, f (n)· ∈ H⊗̂n
τ ⊗Hτ, n ∈ Z+, form

orthogonal bases (in the above-described sense) in the spaces (Hτ)q ⊗Hτ.

Definition. For g ∈ (Hτ)q we define a Hida stochastic derivative ∂·g ∈ (Hτ)q ⊗Hτ by the
formula

∂·g :=
∞

∑
n=0

(n + 1): 〈◦⊗n, g(n+1)(·)〉 :, (18)

where g(n+1) ∈ H⊗̂n+1
τ , n ∈ Z+, are the kernels from decomposition (10) for g considered as

elements ofH⊗̂n
τ ⊗Hτ.

Since (see (11))

‖∂·g‖2
(Hτ)q⊗Hτ

=
∞

∑
n=0

((n + 1)!)22qn|g(n+1)(·)|2
H⊗̂n

τ ⊗Hτ

= 2−q
∞

∑
n=0

((n + 1)!)22q(n+1)|g(n+1)|2τ ≤ 2−q‖g‖2
τ,q,

(19)
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this definition is well posed and, moreover, the Hida stochastic derivative

∂· : (Hτ)q → (Hτ)q ⊗Hτ (20)

is a linear continuous operator. It is shown in [24] that this derivative is (generated by) the
restriction to (Hτ)q of the Hida stochastic derivative on (L2). We note also that the restric-
tions of derivative (20) to (Hτ) and to (D) generate linear continuous operators ∂· : (Hτ) →
(Hτ)⊗Hτ := pr limq∈Z+

(Hτ)q ⊗Hτ and ∂· : (D) → (D)⊗D := pr limq∈Z+,τ∈T(Hτ)q ⊗Hτ

respectively.

Definition. We define an extended stochastic integral∫
◦(u)d̂Lu : (H−τ)−q ⊗H−τ → (H−τ)−q (21)

as a linear continuous operator adjoint to Hida stochastic derivative (20): for F ∈ (H−τ)−q ⊗
H−τ ∫

F(u)d̂Lu := ∂∗· F ∈ (H−τ)−q, (22)

i.e., for arbitrary g ∈ (Hτ)q 〈〈
∫

F(u)d̂Lu, g〉〉(L2) = 〈〈F(·), ∂·g〉〉(L2)⊗H.

It is shown in [24] that integral (21) is an extension of the extended Skorohod stochastic
integral on (L2)⊗H.

By analogy one can define linear continuous operators
∫
◦(u)d̂Lu : (H−τ)⊗H−τ → (H−τ)

and
∫
◦(u)d̂Lu : (D′) ⊗ D′ → (D′), where (H−τ) ⊗ H−τ := ind limq→∞(H−τ)−q ⊗ H−τ,

(D′)⊗D′ := ind limq→∞,τ∈T(H−τ)−q ⊗H−τ.
In contrast to formula (18) for the Hida stochastic derivative, formula (22) for integral (21)

is inconvenient for calculations. Therefore let us write out a representation for this integral in
terms of orthogonal bases in the spaces of nonregular generalized functions.

First we note that, as in the case of the spaces (H−τ)−q, it follows from the general dual-
ity theory that there exists a system of orthogonal in (H−τ)−q ⊗H−τ generalized functions{

: 〈◦⊗m, F(m)
ext,·〉 : ∈ (H−τ)−q ⊗ H−τ | F(m)

ext,· ∈ H
(m)
−τ ⊗ H−τ, m ∈ Z+

}
such that for F(m)

ext,· ∈
H(m)

ext ⊗ H ⊂ H
(m)
−τ ⊗ H−τ : 〈◦⊗m, F(m)

ext,·〉 : is given by (17); and any generalized function F ∈
(H−τ)−q ⊗H−τ can be presented as a convergent in (H−τ)−q ⊗H−τ series

F(·) =
∞

∑
m=0

: 〈◦⊗m, F(m)
ext,·〉 :, F(m)

ext,· ∈ H
(m)
−τ ⊗H−τ, (23)

now

‖F‖2
(H−τ)−q⊗H−τ

=
∞

∑
m=0

2−qm|F(m)
ext,·|

2
H(m)
−τ ⊗H−τ

< ∞. (24)

Consider a family of chains

D′⊗̂m ⊃ H⊗̂m
−τ ⊃ H⊗̂m ⊃ H⊗̂m

τ ⊃ D⊗̂m, m ∈ Z+ (25)

(as is well known (e.g., [4]),H⊗̂m
−τ andD′⊗̂m = ind limτ∈TH⊗̂m

−τ are the spaces dual ofH⊗̂m
τ and

D⊗̂m respectively; in the case m = 0 all spaces from chain (25) are equal to R). Since the spaces
of test functions in chains (25) and (13) coincide, there exists a family of natural isomorphisms

Um : D′(m) → D′⊗̂m, m ∈ Z+,
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such that for all F(m)
ext ∈ D′

(m) and f (m) ∈ D⊗̂m

〈F(m)
ext , f (m)〉ext = 〈UmF(m)

ext , f (m)〉. (26)

It is easy to see that the restrictions of Um to H(m)
−τ are isometric isomorphisms between the

spacesH(m)
−τ andH⊗̂m

−τ .

Remark. As we saw above, H(1)
ext = H, and therefore in the case m = 1 chains (25) and (13)

coincide. Thus U1 = 1 is the identity operator on D′(1) = D′. In the case m = 0 U0 is,
obviously, the identity operator on R.

Proposition. ([24]) Let F ∈ (H−τ)−q⊗H−τ. The extended stochastic integral can be presented
in the form ∫

F(u)d̂Lu =
∞

∑
m=0

: 〈◦⊗m+1, F̂(m)
ext 〉 :, (27)

where
F̂(m)

ext := U−1
m+1{Pr[(Um ⊗ 1)F(m)

ext,·]} ∈ H
(m+1)
−τ , (28)

Pr is the symmetrization operator (more exactly, the orthoprojector acting for each m ∈ Z+

from H⊗̂m
−τ ⊗H−τ to H⊗̂m+1

−τ ), F(m)
ext,· ∈ H

(m)
−τ ⊗H−τ, m ∈ Z+, are the kernels from decomposi-

tion (23) for F.

Remark. Sometimes it can be convenient to introduce the Hida stochastic derivative and the
extended stochastic integral as linear continuous operators acting from (Hτ)q to (Hτ)q ⊗H
and from (H−τ)−q ⊗H to (H−τ)−q respectively, this case is described in detail in [21].

Unfortunately, in contrast to the Hida stochastic derivative, the extended stochastic integral
with respect to a Lévy process cannot be naturally restricted to the spaces of nonregular test
functions. More precisely, for f ∈ (Hτ)q ⊗ Hτ

∫
f (u)d̂Lu not necessary a nonregular test

function (one can show that for τ ∈ T and q ∈ Z+ such that q > log2 c(τ), where c(τ) >

0 from estimate (8), if f ∈ (Hτ)q ⊗ Hτ then
∫

f (u)d̂Lu ∈ (L2); and for q sufficiently large
this integral is a regular test function [21]). Nevertheless, one can introduce on each space of
nonregular test functions a linear operator that has properties quite analogous to the properties
of the extended stochastic integral. Now we’ll introduce such operators (which will be called
generalized stochastic integrals) and consider them in detail.

Let f ∈ (Hτ)q ⊗ Hτ. Using the above-described orthogonal basis in this space, we can
write

f (·) =
∞

∑
n=0

: 〈◦⊗n, f (n)· 〉 :, f (n)· ∈ H⊗̂n
τ ⊗Hτ (29)

(the series converges in (Hτ)q ⊗Hτ), in this case

‖ f ‖2
(Hτ)q⊗Hτ

=
∞

∑
n=0

(n!)22qn| f (n)· |2H⊗̂n
τ ⊗Hτ

< ∞. (30)

Definition. We define a generalized stochastic integral

I : (Hτ)q+1 ⊗Hτ → (Hτ)q (31)
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as a linear continuous operator given for f ∈ (Hτ)q+1 ⊗Hτ by the formula

I( f ) :=
∞

∑
n=0

: 〈◦⊗n+1, f̂ (n)〉 : (32)

(cf. (27)), where f̂ (n) := Pr f (n)· ∈ H⊗̂n+1
τ are the orthoprojections ontoH⊗̂n+1

τ (the symmetriza-
tions by all variables) of the kernels f (n)· ∈ H⊗̂n

τ ⊗Hτ from decomposition (29) for f .

Since (see (11), (32) and (30))

‖I( f )‖2
τ,q =

∞

∑
n=0

((n + 1)!)22q(n+1)| f̂ (n)|2τ ≤ 2q
∞

∑
n=0

(n!)22(q+1)n[(n + 1)22−n]| f (n)· |2H⊗̂n
τ ⊗Hτ

≤ 9 · 2q−2‖ f ‖2
(Hτ)q+1⊗Hτ

,

this definition is well posed. It is clear that the restriction of the operator I to the space (Hτ)⊗
Hτ (respectively to the space (D)⊗D) is a linear continuous operator acting from (Hτ)⊗Hτ

to (Hτ) (respectively from (D)⊗D to (D)).
The Hida stochastic derivative, in turn, has no a natural extension to the spaces of non-

regular generalized functions (the kernels from decompositions (14) for elements of (H−τ)−q

belong to the spaces H(m)
−τ , m ∈ Z+, and for elements of these spaces it is impossible "to sepa-

rate a variable"). Nevertheless, one can define a natural analog of this derivative (a generalized
Hida derivative) on each of the above-mentioned spaces as an operator adjoint to I.

Definition. We define a generalized Hida derivative

∂̃· : (H−τ)−q → (H−τ)−q−1 ⊗H−τ (33)

as a linear continuous operator adjoint to generalized stochastic integral (31) (∂̃· := I∗), i.e., for
all F ∈ (H−τ)−q and f ∈ (Hτ)q+1 ⊗Hτ

〈〈∂̃·F, f (·)〉〉(L2)⊗H = 〈〈F, I( f )〉〉(L2). (34)

By analogy one can define linear continuous operators ∂̃· : (H−τ)→ (H−τ)⊗H−τ and ∂̃· :
(D′)→ (D′)⊗D′. We note also that since operators (33) and (31) are continuous, ∂̃∗· = I∗∗ = I

and ∂̃∗∗· = I∗ = ∂̃·.
In order to make calculations with derivative (33), let us obtain a representation for this

operator in terms of orthogonal bases in the spaces of nonregular generalized functions.

Proposition. Let F ∈ (H−τ)−q. Then

∂̃·F =
∞

∑
m=0

(m + 1): 〈◦⊗m, F(m+1)
ext (·)〉 : ∈ (H−τ)−q−1 ⊗H−τ (35)

(cf. (18)), where

F(m+1)
ext (·) := (U−1

m ⊗ 1)(Um+1F(m+1)
ext )(·) ∈ H(m)

−τ ⊗H−τ, (36)

here F(m+1)
ext ∈ H(m+1)

−τ are the kernels from decomposition (14) for F.
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Proof. Using (34), (14), (32), (16), (26), (36) and (29), for F ∈ (H−τ)−q and f ∈ (Hτ)q+1⊗Hτ we
obtain

〈〈∂̃·F, f 〉〉(L2)⊗H = 〈〈F, I( f )〉〉(L2) = 〈〈
∞

∑
m=0

: 〈◦⊗m, F(m)
ext 〉 :,

∞

∑
n=0

: 〈◦⊗n+1, f̂ (n)〉 :〉〉(L2)

=
∞

∑
m=0

(m + 1)!〈F(m+1)
ext , f̂ (m)〉H(m+1)

ext
=

∞

∑
m=0

(m + 1)!〈Um+1F(m+1)
ext , Pr f (m)

· 〉H⊗̂m+1

=
∞

∑
m=0

(m + 1)!〈(Um+1F(m+1)
ext )(·), f (m)

· 〉H⊗̂m⊗H

=
∞

∑
m=0

m!(m + 1)〈(U−1
m ⊗ 1)(Um+1F(m+1)

ext )(·), f (m)
· 〉H(m)

ext ⊗H

= 〈〈
∞

∑
m=0

(m + 1): 〈◦⊗m, (U−1
m ⊗ 1)(Um+1F(m+1)

ext )(·)〉 :,
∞

∑
n=0

: 〈◦⊗n, f (n)· 〉 :〉〉(L2)⊗H

= 〈〈
∞

∑
m=0

(m + 1): 〈◦⊗m, F(m+1)
ext (·)〉 :, f 〉〉(L2)⊗H,

(37)

whence the result follows.

Sometimes it can be necessary to define a generalized stochastic integral by formula (32) as
a linear unbounded operator

I : (Hτ)q ⊗Hτ → (Hτ)q (38)

with the domain

dom(I) :=
{

f ∈ (Hτ)q ⊗Hτ : ‖I( f )‖2
τ,q =

∞

∑
n=0

((n + 1)!)22q(n+1)| f̂ (n)|2τ < ∞
}

. (39)

Since set (39) is dense in (Hτ)q ⊗Hτ, one can define now a corresponding generalized Hida
derivative as an unbounded operator adjoint to operator (38):

∂̃· := I∗ : (H−τ)−q → (H−τ)−q ⊗H−τ. (40)

The domain of operator (40) by definition consists of F ∈ (H−τ)−q such that (Hτ)q ⊗Hτ ⊃
dom(I) 3 f 7→ 〈〈F, I( f )〉〉(L2) is a linear continuous functional. By properties of Hilbert
equipments the last is possible if and only if there exists H ∈ (H−τ)−q ⊗ H−τ such that
〈〈F, I( f )〉〉(L2) = 〈〈H, f 〉〉(L2)⊗H. But by definition of ∂̃· we have H = ∂̃·F and therefore the
domain of operator (40) can be described by the condition ∂̃·F ∈ (H−τ)−q ⊗H−τ. Since for
f ∈ dom(I) and F ∈ dom(∂̃·) calculation (37) is, obviously, valid, ∂̃·F has form (35). So, the
domain of operator (40) can be described as follows:

dom(∂̃·) =
{

F ∈ (H−τ)−q : ‖∂̃·F‖2
(H−τ)−q⊗H−τ

=
∞

∑
m=0

2−qm(m + 1)2|F(m+1)
ext (·)|2

H(m)
−τ ⊗H−τ

=
∞

∑
m=0

2−qm(m + 1)2|F(m+1)
ext |2

H(m+1)
−τ

< ∞
} (41)

(see (36)).

Proposition. Generalized stochastic integral (38) and generalized Hida derivative (40) are mu-
tually adjoint and, in particular, closed operators.
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Proof. Since set (41) is dense in (H−τ)−q, the operator ∂̃∗· = I∗∗ : (Hτ)q ⊗ Hτ → (Hτ)q is
well defined as a linear unbounded operator with the domain that consists of f ∈ (Hτ)q ⊗Hτ

such that (H−τ)−q ⊃ dom(∂̃·) 3 F 7→ 〈〈∂̃·F, f 〉〉(L2)⊗H is a linear continuous functional. By
properties of Hilbert equipments the last is possible if and only if there exists h ∈ (Hτ)q such
that 〈〈∂̃·F, f 〉〉(L2)⊗H = 〈〈F, h〉〉(L2). But by (40) h = I( f ) and therefore the domain of ∂̃∗· can
be described by the condition I( f ) ∈ (Hτ)q. Compareing this condition with (39) one can
conclude that dom(∂̃∗· ) = dom(I), therefore ∂̃∗· = I∗∗ = I. The equality I∗ = ∂̃· is a definition
of ∂̃·.

2 OPERATORS OF STOCHASTIC DIFFERENTIATION

2.1 The case of bounded operators

As we said above, just as the Hida stochastic derivative, the operators of stochastic differ-
entiation on (L2) [8, 9] cannot be naturally continued to the spaces of nonregular generalized
functions (because the kernels from decompositions (14) for elements of (H−τ)−q belong to too
wide spaces). Nevertheless, one can introduce on these spaces natural analogs of the above-
mentioned operators. These analogs have properties similar to the properties of operators of
stochastic differentiation, and can be accepted as operators of stochastic differentiation on the
spaces of nonregular generalized functions. In order to give an exact definition of the just now
mentioned operators, we need a preparation.

Let F(m)
ext ∈ H

(m)
−τ , f (n) ∈ H⊗̂n

τ , n, m ∈ N, m > n. We define a generalized partial pairing
〈F(m)

ext , f (n)〉ext ∈ H(m−n)
−τ by setting for any g(m−n) ∈ H⊗̂m−n

τ

〈〈F(m)
ext , f (n)〉ext, g(m−n)〉ext = 〈F(m)

ext , f (n)⊗̂g(m−n)〉ext. (42)

Since by the generalized Cauchy-Bunyakovsky inequality

|〈F(m)
ext , f (n)⊗̂g(m−n)〉ext| ≤ |F(m)

ext |H(m)
−τ

| f (n)⊗̂g(m−n)|τ ≤ |F(m)
ext |H(m)

−τ

| f (n)|τ|g(m−n)|τ,

this definition is well posed and

|〈F(m)
ext , f (n)〉ext|H(m−n)

−τ

≤ |F(m)
ext |H(m)

−τ

| f (n)|τ. (43)

Definition. Let n ∈ N, f (n) ∈ H⊗̂n
τ . We define (the analog of) the operator of stochastic

differentiation
(D̃n◦)( f (n)) : (H−τ)−q → (H−τ)−q−1

as a linear continuous operator that is given by the formula

(D̃nF)( f (n)) : =
∞

∑
m=n

m!
(m− n)!

: 〈◦⊗m−n, 〈F(m)
ext , f (n)〉ext〉 :

≡
∞

∑
m=0

(m + n)!
m!

: 〈◦⊗m, 〈F(m+n)
ext , f (n)〉ext〉 :,

(44)

where F(m)
ext ∈ H

(m)
−τ are the kernels from decomposition (14) for F ∈ (H−τ)−q.
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Since (see (15), (44) and (43))

‖(D̃nF)( f (n))‖2
−τ,−q−1 =

∞

∑
m=0

2(−q−1)m ((m + n)!)2

(m!)2 |〈F(m+n)
ext , f (n)〉ext|2H(m)

−τ

≤ | f (n)|2τ2qn
∞

∑
m=0

2−q(m+n)|F(m+n)
ext |2

H(m+n)
−τ

[
2−m ((m + n)!)2

(m!)2

]
≤ | f (n)|2τ2qnC(n)‖F‖2

−τ,−q,

where C(n) := max
m∈Z+

[2−m ((m+n)!)2

(m!)2 ] ≤ max
m∈Z+

[2−m(m + n)2n] < ∞, this definition is well posed.

It is clear that the operator (D̃n◦)( f (n)) can be naturally continued to a linear continuous op-
erator on the space (H−τ) (or (D′)).

Let us consider main properties of the operator D̃n.

Theorem. 1) For k1, . . . , km ∈N, f
(kj)

j ∈ H⊗̂kj
τ , j ∈ {1, . . . , m},

(D̃km(· · · (D̃k2((D̃k1◦)( f (k1)
1 )))( f (k2)

2 ) · · · ))( f (km)
m ) = (D̃k1+···+km◦)( f (k1)

1 ⊗̂ · · · ⊗̂ f (km)
m ).

2) For each F ∈ (H−τ)−q the kernels F(n)
ext ∈ H

(n)
−τ , n ∈ N, from decomposition (14) can be

presented in the form

F(n)
ext =

1
n!

E(D̃nF),

i.e., for each f (n) ∈ H⊗̂n
τ 〈F(n)

ext , f (n)〉ext =
1
n!E((D̃nF)( f (n))), here E◦ := 〈〈◦, 1〉〉(L2) is a general-

ized expectation.
3) The adjoint to D̃n operator has the form

(D̃ng)( f (n))∗ =
∞

∑
m=0

: 〈◦m+n, f (n)⊗̂g(m)〉 : ∈ (Hτ)q, (45)

where g ∈ (Hτ)q+1, f (n) ∈ H⊗̂n
τ , and g(m) ∈ H⊗̂m

τ are the kernels from decomposition (10) for
g.

Proof. 1) The proof consists in the application of the mathematical induction method.
2) Using (44) and (16) we obtain

E((D̃nF)( f (n))) = 〈〈(D̃nF)( f (n)), 1〉〉(L2) = n!〈F(n)
ext , f (n)〉ext.

3) Since (see (11), (10))

‖
∞

∑
m=0

: 〈◦m+n, f (n)⊗̂g(m)〉 :‖2
τ,q =

∞

∑
m=0

((m + n)!)22q(m+n)| f (n)⊗̂g(m)|2τ

≤ | f (n)|2τ2qn
∞

∑
m=0

(m!)22(q+1)m|g(m)|2τ
[
2−m ((m + n)!)2

(m!)2

]
≤ | f (n)|2τ2qnC(n)‖g‖2

τ,q+1 < ∞

(here C(n) = max
m∈Z+

[2−m ((m+n)!)2

(m!)2 ] as above), the right hand side of (45) is well defined as an

element of (Hτ)q. Further, using (44), (10), (16) and (42), for F ∈ (H−τ)−q of form (14) we
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obtain

〈〈F,(D̃ng)( f (n))∗〉〉(L2) = 〈〈(D̃nF)( f (n)), g〉〉(L2)

= 〈〈
∞

∑
m=0

(m + n)!
m!

: 〈◦⊗m, 〈F(m+n)
ext , f (n)〉ext〉 :,

∞

∑
k=0

: 〈◦⊗k, g(k)〉 :〉〉(L2)

=
∞

∑
m=0

(m + n)!〈〈F(m+n)
ext , f (n)〉ext, g(m)〉ext =

∞

∑
m=0

(m + n)!〈F(m+n)
ext , f (n)⊗̂g(m)〉ext

= 〈〈
∞

∑
k=0

: 〈◦⊗k, F(k)
ext 〉 :,

∞

∑
m=0

: 〈◦⊗m+n, f (n)⊗̂g(m)〉 :〉〉(L2)

= 〈〈F,
∞

∑
m=0

: 〈◦⊗m+n, f (n)⊗̂g(m)〉 :〉〉(L2),

(46)

whence the result follows.

Now we consider in more detail the case n = 1. Denote D̃ := D̃1.

Theorem. 1) For all g ∈ (Hτ)q+1 and f (1) ∈ Hτ

(D̃g)( f (1))∗ = I(g⊗ f (1)) ∈ (Hτ)q. (47)

2) For all F ∈ (H−τ)−q and f (1) ∈ Hτ

(D̃F)( f (1)) = 〈∂̃·F, f (1)(·)〉 ∈ (H−τ)−q−1, (48)

where 〈∂̃·F, f (1)(·)〉 is a partial pairing, i.e., the unique element of (H−τ)−q−1 such that for
arbitrary g ∈ (Hτ)q+1 〈〈〈∂̃·F, f (1)(·)〉, g〉〉(L2) = 〈〈∂̃·F, g⊗ f (1)(·)〉〉(L2)⊗H.

Remark. Similarly to the proof of the fact that the generalized partial pairing 〈·, ·〉ext is well
posed and satisfies estimate (43), one can easily show that a partial pairing is well posed and
satisfies a generalized Cauchy-Bunyakovsky inequality (in our case this inequality has the form
‖〈∂̃·F, f (1)(·)〉‖−τ,−q−1 ≤ ‖∂̃·F‖(H−τ)−q−1⊗H−τ

| f (1)|τ).

Proof. 1) The result follows from representation (45) with n = 1 and the definition of an oper-
ator I (see (32)).

2) Taking into account (47) and (34), for all g ∈ (Hτ)q+1 we obtain

〈〈(D̃F)( f (1)), g〉〉(L2) = 〈〈F, (D̃g)( f (1))∗〉〉(L2) = 〈〈F, I(g⊗ f (1))〉〉(L2)

= 〈〈∂̃·F, g⊗ f (1)(·)〉〉(L2)⊗H = 〈〈〈∂̃·F, f (1)(·)〉, g〉〉(L2),

whence the result follows.

Remark. Formally substituting in (48) f (1) = δt, t ∈ R+ (here δt is the Dirac delta-function
concentrated at t; the substitution is formal because δt 6∈ Hτ), we obtain a formal equality ∂̃t◦ =
(D̃◦)(δt) (whence ∂̃·◦ = (D̃◦)(δ·)). In this connection we note that for the Hida stochastic
derivative ∂· and the operator of stochastic differentiation D on the spaces of nonregular test
functions, for each t ∈ R+ ∂t◦ = (D◦)(δt) [24]; the formal analog of the last equality is valid
on spaces that belong to the regular rigging of (L2) [8].
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In some applications of the Gaussian analysis (in particular, in the Malliavin calculus) an
important role belongs to the commutator between the extended stochastic integral and the
operator of stochastic differentiation (see, e.g., [1]). Analogs of this commutator are calculated
in the Meixner analysis [19, 20] and on the spaces of regular test and generalized functions
of the Lévy analysis [8, 9]. Unfortunately, it is impossible to calculate a direct analog of the
above-mentioned commutator on the spaces of nonregular test functions of the Lévy analysis:
as we saw above, the extended stochastic integral cannot be naturally restricted to these spaces.
Nevertheless, there exists an analog of this integral on the just now mentioned spaces — the
generalized stochastic integral I. So, now it is natural to calculate the commutator between
I and the operator of stochastic differentiation, this commutator is calculated in [24]. On the
spaces of nonregular generalized functions of the Lévy analysis the extended stochastic inte-
gral with respect to a Lévy process is well defined, and the role of the operator of stochastic
differentiation belongs to the operator D̃. So, it is natural to calculate the commutator between
the above-mentioned integral and D̃. In order to do this, let us introduce operators of stochas-
tic differentiation on the spaces (H−τ)−q⊗H−τ (this notion is intuitively clear and can be used
without an additional explanation, but we prefer to give an exact definition).

As above, we begin with a preparation. Let f (n) ∈ H⊗̂n
τ , g(m)

· ∈ H⊗̂m
τ ⊗Hτ. We define

f (n)⊗g(m)
· := (Pr⊗ 1)( f (n) ⊗ g(m)

· ) ∈ H⊗̂n+m
τ ⊗Hτ, (49)

where Pr ⊗ 1 is the operator of symmetrization "by n + m variables, except the variable ·" or,
which is the same, the orthoprojector acting fromH⊗̂n

τ ⊗H⊗̂m
τ ⊗Hτ toH⊗̂n+m

τ ⊗Hτ (of course,
this operator depends on n and m, but we simplify the nonation). It is clear that

| f (n)⊗g(m)
· |H⊗̂n+m

τ ⊗Hτ
≤ | f (n)|H⊗̂n

τ
|g(m)
· |H⊗̂m

τ ⊗Hτ
, (50)

and for f (n) ∈ H⊗̂n
τ , g(m) ∈ H⊗̂m

τ , h(1) ∈ Hτ

f (n)⊗(g(m) ⊗ h(1)) = ( f (n)⊗̂g(m))⊗ h(1). (51)

Let f (n) ∈ H⊗̂n
τ , F(m)

ext,· ∈ H
(m)
−τ ⊗H−τ, n, m ∈ N, m ≥ n. We define a generalized partial

pairing 〈F(m)
ext,·, f (n)〉EXT ∈ H

(m−n)
−τ ⊗H−τ by setting for arbitrary g(m−n)

· ∈ H⊗̂m−n
τ ⊗Hτ

〈〈F(m)
ext,·, f (n)〉EXT, g(m−n)

· 〉H(m−n)
ext ⊗H = 〈F(m)

ext,·, f (n)⊗g(m−n)
· 〉H(m)

ext ⊗H
. (52)

Since by the generalized Cauchy-Bunyakovsky inequality and (50)

|〈F(m)
ext,·, f (n)⊗g(m−n)

· 〉H(m)
ext ⊗H

| ≤ |F(m)
ext,·|H(m)

−τ ⊗H−τ
| f (n)⊗g(m−n)

· |H⊗̂m
τ ⊗Hτ

≤ |F(m)
ext,·|H(m)

−τ ⊗H−τ
| f (n)|H⊗̂n

τ
|g(m−n)
· |H⊗̂m−n

τ ⊗Hτ
,

this definition is well posed and

|〈F(m)
ext,·, f (n)〉EXT|H(m−n)

−τ ⊗H−τ
≤ |F(m)

ext,·|H(m)
−τ ⊗H−τ

| f (n)|H⊗̂n
τ

. (53)
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Remark. Let F(m)
ext ∈ H

(m)
−τ , H(1) ∈ H−τ; g(m−n) ∈ H⊗̂m−n

τ , h(1) ∈ Hτ. For f (n) ∈ H⊗̂n
τ by (52),

(51) and (42) we obtain

〈〈F(m)
ext ⊗ H(1)(·), f (n)〉EXT, g(m−n) ⊗ h(1)(·)〉H(m−n)

ext ⊗H

= 〈F(m)
ext ⊗ H(1)(·), f (n)⊗(g(m−n) ⊗ h(1)(·))〉H(m)

ext ⊗H

= 〈F(m)
ext ⊗ H(1)(·), ( f (n)⊗̂g(m−n))⊗ h(1)(·)〉H(m)

ext ⊗H
= 〈F(m)

ext , f (n)⊗̂g(m−n)〉H(m)
ext
〈H(1), h(1)〉H

= 〈〈F(m)
ext , f (n)〉ext, g(m−n)〉H(m−n)

ext
〈H(1), h(1)〉H

= 〈〈F(m)
ext , f (n)〉ext ⊗ H(1)(·), g(m−n) ⊗ h(1)(·)〉H(m−n)

ext ⊗H.

Since the set {g(m−n) ⊗ h(1) : g(m−n) ∈ H⊗̂m−n
τ , h(1) ∈ Hτ} is total in the space H⊗̂m−n

τ ⊗Hτ,
we can conclude that

〈F(m)
ext ⊗ H(1), f (n)〉EXT = 〈F(m)

ext , f (n)〉ext ⊗ H(1) (54)

in the spaceH(m−n)
−τ ⊗H−τ.

Definition. Let n ∈N, f (n) ∈ H⊗̂n
τ . We define a linear continuous operator

(D̃n◦)( f (n)) : (H−τ)−q ⊗H−τ → (H−τ)−q−1 ⊗H−τ

by setting for F ∈ (H−τ)−q ⊗H−τ

(D̃nF(·))( f (n)) : =
∞

∑
m=n

m!
(m− n)!

: 〈◦⊗m−n, 〈F(m)
ext,·, f (n)〉EXT〉 :

≡
∞

∑
m=0

(m + n)!
m!

: 〈◦⊗m, 〈F(m+n)
ext,· , f (n)〉EXT〉 :,

(55)

where F(m)
ext,· ∈ H

(m)
−τ ⊗H−τ are the kernels from decomposition (23) for F.

Since (see (24), (55) and (53))

‖(D̃nF(·))( f (n))‖2
(H−τ)−q−1⊗H−τ

=
∞

∑
m=0

2(−q−1)m ((m + n)!)2

(m!)2 |〈F(m+n)
ext,· , f (n)〉EXT|2H(m)

−τ ⊗H−τ

≤ | f (n)|2τ2qn
∞

∑
m=0

2−q(m+n)|F(m+n)
ext,· |

2
H(m+n)
−τ ⊗H−τ

[
2−m ((m + n)!)2

(m!)2

]
≤ | f (n)|2τ2qnC(n)‖F‖2

(H−τ)−q⊗H−τ
,

where, as above, C(n) = max
m∈Z+

[2−m ((m+n)!)2

(m!)2 ], this definition is well posed.

Remark. Let F ∈ (H−τ)−q, H(1) ∈ H−τ. Using (55), (54) and (44) one can easily show that for
each n ∈N and f (n) ∈ H⊗̂n

τ

(D̃nF⊗ H(1))( f (n)) = (D̃nF)( f (n))⊗ H(1) ∈ (H−τ)−q−1 ⊗H−τ.

Denote D̃ := D̃1.
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Theorem. For all F ∈ (H−τ)−q ⊗H−τ and f (1) ∈ Hτ

(D̃
∫

F(u)d̂Lu)( f (1)) =
∫
(D̃F(u))( f (1))d̂Lu +

∫
F(u) f (1)(u)du ∈ (H−τ)−q−1, (56)

here
∫
(D̃F(u))( f (1))d̂Lu :=

∫
J(u)d̂Lu, where J(·) := (D̃F(·))( f (1)) ∈ (H−τ)−q−1 ⊗ H−τ;∫

F(u) f (1)(u)du is a generalized Pettis integral, i.e.,∫
F(u) f (1)(u)du ≡ 〈F(·), f (1)(·)〉 ∈ (H−τ)−q ⊂ (H−τ)−q−1

(〈F(·), f (1)(·)〉 is a partial pairing).

Proof. Using (27) and (44) we obtain

(D̃
∫

F(u)d̂Lu)( f (1)) =
∞

∑
m=0

(m + 1): 〈◦⊗m, 〈F̂(m)
ext , f (1)〉ext〉 :,

where F̂(m)
ext ∈ H

(m+1)
−τ are the kernels from decomposition (27) (which is decomposition (14)

for
∫

F(u)d̂Lu), i.e., F̂(m)
ext are given by formula (28) (F(m)

ext,· ∈ H
(m)
−τ ⊗H−τ in (28) are the kernels

from decomposition (23) for F). On the other hand, by (55), (27) and (28)∫
(D̃F(u))( f (1))d̂Lu =

∞

∑
m=0

m: 〈◦⊗m, U−1
m {Pr[(Um−1 ⊗ 1)〈F(m)

ext,·, f (1)〉EXT]}〉 :.

Let g = ∑∞
k=0 : 〈◦⊗k, g(k)〉 : ∈ (Hτ)q+1, g(k) ∈ H⊗̂k

τ (see (10)). By (16) we have

〈〈(D̃
∫

F(u)d̂Lu)( f (1)), g〉〉(L2) =
∞

∑
m=0

m!(m + 1)〈〈F̂(m)
ext , f (1)〉ext, g(m)〉H(m)

ext
,

〈〈
∫
(D̃F(u))( f (1))d̂Lu, g〉〉(L2) =

∞

∑
m=0

m!m〈U−1
m {Pr[(Um−1 ⊗ 1)〈F(m)

ext,·, f (1)〉EXT]}, g(m)〉H(m)
ext

.

Further, since for each m g(m) belongs to the symmetric tensor power of Hτ, by (26), (52) and
(49)

m〈U−1
m {Pr[(Um−1 ⊗ 1)〈F(m)

ext,·, f (1)〉EXT]}, g(m)〉H(m)
ext

= m〈(Um−1 ⊗ 1)〈F(m)
ext,·, f (1)〉EXT, g(m)〉H⊗m

= m〈(Um−1 ⊗ 1)〈F(m)
ext,·, f (1)〉EXT, g(m)(·)〉H⊗̂m−1⊗H = m〈〈F(m)

ext,·, f (1)〉EXT, g(m)(·)〉H(m−1)
ext ⊗H

= m〈F(m)
ext,·, f (1)⊗g(m)(·)〉H(m)

ext ⊗H
= 〈F(m)

ext,·(·1, . . . , ·m), f (1)(·1)⊗ g(m)(·2, . . . , ·m, ·)

+ f (1)(·2)⊗ g(m)(·3, . . . , ·m, ·1, ·) + · · ·+ f (1)(·m)⊗ g(m)(·1, . . . , ·m−1, ·)〉H(m)
ext ⊗H

;

and by (42), (28), (26), the symmetry of f (1)⊗̂g(m) and g(m), and the last calculation

(m + 1)〈〈F̂(m)
ext , f (1)〉ext, g(m)〉H(m)

ext
= (m + 1)〈F̂(m)

ext , f (1)⊗̂g(m)〉H(m+1)
ext

= (m + 1)〈(Um ⊗ 1)F(m)
ext,·, f (1)⊗̂g(m)〉H⊗m+1 = (m + 1)〈(Um ⊗ 1)F(m)

ext,·, ( f (1)⊗̂g(m))(·)〉H⊗̂m⊗H

= (m + 1)〈F(m)
ext,·, ( f (1)⊗̂g(m))(·)〉H(m)

ext ⊗H
= 〈F(m)

ext,·(·1, . . . , ·m), g(m)(·1, . . . , ·m)⊗ f (1)(·)

+ f (1)(·1)⊗ g(m)(·2, . . . , ·m, ·) + f (1)(·2)⊗ g(m)(·3, . . . , ·m, ·1, ·)

+ · · ·+ f (1)(·m)⊗ g(m)(·1, . . . , ·m−1, ·)〉H(m)
ext ⊗H

= 〈F(m)
ext,·, g(m) ⊗ f (1)(·)〉H(m)

ext ⊗H

+ m〈U−1
m {Pr[(Um−1 ⊗ 1)〈F(m)

ext,·, f (1)〉EXT]}, g(m)〉H(m)
ext

.
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Later, by (23), the construction of a pairing in a tensor product of chains (e.g., [4]), (29) and the
definition of a partial pairing

∞

∑
m=0

m!〈F(m)
ext,·, g(m) ⊗ f (1)(·)〉H(m)

ext ⊗H
= 〈〈F(·),

∞

∑
m=0

: 〈◦⊗m, g(m) ⊗ f (1)(·)〉 :〉〉(L2)⊗H

= 〈〈F(·), g⊗ f (1)(·)〉〉(L2)⊗H = 〈〈〈F(·), f (1)(·)〉H, g〉〉(L2),
(57)

where 〈F(·), f (1)(·)〉H ≡ 〈F(·), f (1)(·)〉 ∈ (H−τ)−q ⊂ (H−τ)−q−1 is a partial pairing.
So, for arbitrary g ∈ (Hτ)q+1

〈〈(D̃
∫

F(u)d̂Lu)( f (1)), g〉〉(L2) = 〈〈
∫
(D̃F(u))( f (1))d̂Lu, g〉〉(L2) + 〈〈〈F(·), f (1)(·)〉, g〉〉(L2),

from where (56) follows.

Remark. As follows from (57), the definition of a partial pairing, and (16), for

g =
∞
∑

k=0
: 〈◦⊗k, g(k)〉 : ∈ (Hτ)q

〈〈〈F(·), f (1)(·)〉H, g〉〉(L2) =
∞

∑
m=0

m!〈〈F(m)
ext,·, f (1)(·)〉H, g(m)〉H(m)

ext

= 〈〈
∞

∑
m=0

: 〈◦⊗m, 〈F(m)
ext,·, f (1)(·)〉H〉 :, g〉〉(L2),

from where 〈F(·), f (1)(·)〉H = ∑∞
m=0 : 〈◦⊗m, 〈F(m)

ext,·, f (1)(·)〉H〉 : in (H−τ)−q.

Remark. One can easily show that the restriction of an operator (D̃n◦)( f (n)), n ∈ N, f (n) ∈
H⊗̂n

τ , to the space (H−τ)−q⊗H can be interpreted as a linear continuous operator acting from
(H−τ)−q ⊗ H to (H−τ)−q−1 ⊗ H. Let us consider the extended stochastic integral∫

∆ ◦(u)d̂Lu :=
∫
◦(u)1∆(u)d̂Lu : (H−τ)−q ⊗H → (H−τ)−q, ∆ ∈ B(R+) — the Borel σ-algebra

(this integral satisfies (27) with kernels (28), see [21] for a detailed presentation). By analogy
with the proof of the last theorem one can show that for all F ∈ (H−τ)−q ⊗H and f (1) ∈ Hτ

(D̃
∫

∆
F(u)d̂Lu)( f (1)) =

∫
∆
(D̃F(u))( f (1))d̂Lu +

∫
∆

F(u) f (1)(u)du ∈ (H−τ)−q−1,

where
∫

∆(D̃F(u))( f (1))d̂Lu :=
∫

∆ J(u)d̂Lu, J(·) := (D̃F(·))( f (1)) ∈ (H−τ)−q−1 ⊗H;∫
∆

F(u) f (1)(u)du :=
∫

F(u) f (1)(u)1∆(u)du ≡ 〈F(·), f (1)(·)1∆(·)〉 ∈ (H−τ)−q ⊂ (H−τ)−q−1

is a partial pairing.

As is easily seen, the results of this subsection hold true (up to obvious modifications) if we
consider the operators of stochastic differentiation on the space (H−τ) or (D′).

Remark. As is known [1], in the classical Gaussian white noise analysis the operator of stochas-
tic differentiation is a differentiation with respect to a so-called Wick product. This result holds
true in the so-called Gamma-analysis [17] and in a more general Meixner analysis. In forth-
coming papers we’ll obtain similar results on spaces of test and generalized functions of the
Lévy white noise analysis.
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2.2 The case of unbounded operators

Similarly to the analysis on spaces of regular test and generalized functions [9, 8], some-
times it can be necessary to consider (D̃n◦)( f (n)), f (n) ∈ H⊗̂n

τ , as a linear operator acting in
(H−τ)−q. Let us accept a corresponding definition.

Definition. Let n ∈N, f (n) ∈ H⊗̂n
τ . We define the operator of stochastic differentiation

(D̃n◦)( f (n)) : (H−τ)−q → (H−τ)−q (58)

with the domain

dom((D̃n◦)( f (n))) :=
{

F ∈ (H−τ)−q :

‖(D̃nF)( f (n))‖2
−τ,−q =

∞

∑
m=0

2−qm ((m + n)!)2

(m!)2 |〈F(m+n)
ext , f (n)〉ext|2H(m)

−τ

< ∞
} (59)

(here F(m+n)
ext ∈ H(m+n)

−τ are the kernels from decomposition (14) for F) by formula (44).

Proposition. Operator of stochastic differentiation (58) with domain (59) is closed.

Proof. Let us show that there exists a second adjoint to (D̃n◦)( f (n)) operator (D̃n◦)( f (n))∗∗ =
(D̃n◦)( f (n)) (it is well known that an adjoint operator is closed). Since, obviously, the do-
main of operator (58) is a dense set in (H−τ)−q, the adjoint operator (D̃n◦)( f (n))∗ : (Hτ)q →
(Hτ)q is well defined. By definition, g ∈ dom((D̃n◦)( f (n))∗) if and only if (H−τ)−q ⊃
dom((D̃n◦)( f (n))) 3 F 7→ 〈〈(D̃nF)( f (n)), g〉〉(L2) is a linear continuous functional. By prop-
erties of Hilbert equipments the last is possible if and only if there exists h ∈ (Hτ)q such that
〈〈(D̃nF)( f (n)), g〉〉(L2) = 〈〈F, h〉〉(L2). But by calculation (46) h has form (45), therefore

dom((D̃n◦)( f (n))∗) :=
{

g ∈ (Hτ)q :

‖(D̃nF)( f (n))∗‖2
τ,q =

∞

∑
m=0

((m + n)!)22q(m+n)| f (n)⊗̂g(m)|2τ < ∞
}

(see (11)), this set is dense in (Hτ)q, hence the operator (D̃n◦)( f (n))∗∗ : (H−τ)−q → (H−τ)−q
is well defined. Now it remains to show that

dom((D̃n◦)( f (n))∗∗) = dom((D̃n◦)( f (n))). (60)

By definition, F ∈ dom((D̃n◦)( f (n))∗∗) if and only if (Hτ)q ⊃ dom((D̃n◦)( f (n))∗) 3 g 7→
〈〈F, (D̃ng)( f (n))∗〉〉(L2) is a linear continuous functional. By properties of Hilbert equipments
the last is possible if and only if there exists H ∈ (H−τ)−q such that 〈〈F, (D̃ng)( f (n))∗〉〉(L2) =

〈〈H, g〉〉(L2). It is clear that H has form (44), therefore equality (60) follows from (59).

Remark. Let

An :=
{

F ∈ (H−τ)−q :
∞

∑
m=0

2−qm ((m + n)!)2

(m!)2 |F(m+n)
ext |2

H(m+n)
−τ

< ∞
}

, n ∈N,

here F(m+n)
ext ∈ H(m+n)

−τ are the kernels from decomposition (14) for F. For each f (n) ∈ H⊗̂n
τ we

define the operator of stochastic differentiation

(D̂n◦)( f (n)) : (H−τ)−q → (H−τ)−q (61)
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with the domain An by formula (44) with D̂n instead of D̃n. It follows from the just proved
proposition that this operator is closable (its closure is operator (58)). Moreover, for each F ∈
An the operator (D̂nF)(◦) : H⊗̂n

τ → (H−τ)−q is linear bounded (and, therefore, continuous):
by (44), (15) and (43) for each f (n) ∈ H⊗̂n

τ

‖(D̂nF)( f (n))‖2
−τ,−q =

∞

∑
m=0

2−qm ((m + n)!)2

(m!)2 |〈F(m+n)
ext , f (n)〉ext|2H(m)

−τ

≤ | f (n)|2τ
∞

∑
m=0

2−qm ((m + n)!)2

(m!)2 |F(m+n)
ext |2

H(m+n)
−τ

.

It is clear that the results of Subsection 2.1 hold true (up to obvious modifications) for
operators (58) and (61).
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[35] Solé J.L., Utzet F., Vives J. Chaos expansions and Malliavin calculus for Lévy processes. In: Stoch. Anal. and
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Качановський М.О. Оператори стохастичного диференцiювання на просторах нерегулярних уза-
гальнених функцiй аналiзу бiлого шуму Левi // Карпатськi матем. публ. — 2016. — Т.8, №1. — C.
83–106.

Оператори стохастичного диференцiювання, якi тiсно пов’язанi з розширеним стохасти-
чним iнтегралом Скорохода та зi стохастичною похiдною Хiди, грають важливу роль у кла-
сичному (гауссiвському) аналiзi бiлого шуму. Зокрема, цi оператори можна використовувати
для вивчення деяких властивостей розширеного стохастичного iнтеграла та розв’язкiв стоха-
стичних рiвнянь з нелiнiйностями вiкiвського типу.

Протягом останнiх рокiв оператори стохастичного диференцiювання були уведенi та ви-
вченi, зокрема, у межах майкснерiвського аналiзу бiлого шуму, так само як i на просторах
регулярних основних i узагальнених функцiй та на просторах нерегулярних основних фун-
кцiй аналiзу бiлого шуму Левi. У цiй статтi ми робимо наступний природний крок: уводимо
та вивчаємо оператори стохастичного диференцiювання на просторах нерегулярних узагаль-
нених функцiй аналiзу бiлого шуму Левi (тобто на просторах узагальнених функцiй, якi на-
лежать так званому нерегулярному оснащенню простору квадратично iнтегровних за мiрою
бiлого шуму Левi функцiй). При цьому використовується литвинiвське узагальнення власти-
востi хаотичного розкладу. Дослiдження цiєї статтi можна розглядати як внесок у подальший
розвиток аналiзу бiлого шуму Левi.

Ключовi слова i фрази: оператор стохастичного диференцiювання, стохастична похiдна,
розширений стохастичний iнтеграл, процес Левi.


