ISSN 2075-9827 e-ISSN 2313-0210 Carpathian Math. Publ. 2016, 8 (1), 127–133 doi:10.15330/cmp.8.1.127-133



MOZHYROVSKA Z.H.

# HYPERCYCLIC OPERATORS ON ALGEBRA OF SYMMETRIC ANALYTIC FUNCTIONS ON $\ell_p$

In the paper, it is proposed a method of construction of hypercyclic composition operators on  $H(\mathbb{C}^n)$  using polynomial automorphisms of  $\mathbb{C}^n$  and symmetric analytic functions on  $\ell_p$ . In particular, we show that a "symmetric translation" operator is hypercyclic on a Fréchet algebra of symmetric entire functions on  $\ell_p$  which are bounded on bounded subsets.

Key words and phrases: hypercyclic operators, functional spaces, symmetric functions.

Lviv University of Trade and Economics, 10 Tuhan-Baranovskyi str., 79005, Lviv, Ukraine E-mail: zoryana.math@gmail.com

### INTRODUCTION

The theory of hypercyclicity studies the long-term behavior of continuous operators on topological spaces. Let X be a Fréchet (linear complete metric) space.

**Definition 1.** A continuous linear operator  $T : X \to X$  is called hypercyclic if there is a vector  $x_0 \in X$  for which the orbit under T,  $Orb(T, x_0) = \{x_0, Tx_0, T^2x_0, ...\}$  is dense in X. Every such vector  $x_0$  is called a hypercyclic vector of T.

The classical Birkhoff's theorem [6] asserts that any operator of composition with translation  $x \mapsto x + a$ ,  $T_a$ :  $f(x) \mapsto f(x + a)$  is hypercyclic on a space of entire functions  $H(\mathbb{C})$  on a complex plane  $\mathbb{C}$  if  $a \neq 0$ . The Birkhoff's translation  $T_a$  has also been regarded as a differentiation operator

$$T_a(f) = \sum_{n=0}^{\infty} \frac{a^n}{n!} D^n f.$$

A generalization of Birkhoff's theorem was proved by Godefroy and Shapiro in [9]. They showed that if  $\varphi(z) = \sum_{|\alpha| \ge 0} c_{\alpha} z^{\alpha}$  is a non-constant entire function of exponential type on  $\mathbb{C}^n$ ,

then the operator

$$f \mapsto \sum_{|\alpha| \ge 0} c_{\alpha} D^{\alpha} f, \qquad f \in H(\mathbb{C}^n),$$
 (1)

is hypercyclic. Moreover, in [9], it is proved that any continuous linear operator *T* on  $H(\mathbb{C}^n)$ , which commutes with translations and is not a scalar multiple of the identity, can be expressed by (1) and so is hypercyclic as well.

Let us recall that an operator  $C_{\Phi}$  on  $H(\mathbb{C}^n)$  is said to be a *composition operator* if  $C_{\Phi}f(x) = f(\Phi(x))$  for some analytic map  $\Phi \colon \mathbb{C}^n \to \mathbb{C}^n$ . It is known that only translation operator  $T_a$  for

УДК 517.98

2010 Mathematics Subject Classification: 47A16, 46E10.

some  $a \neq 0$  is a hypercyclic composition operator on  $H(\mathbb{C})$  [5]. However, if n > 1,  $H(\mathbb{C}^n)$  supports more hypercyclic composition operators. Bernal-González [4] established some necessary and sufficient conditions for a composition operator by an affine map to be hypercyclic.

In [14], it was proposed a method of construction of hypercyclic composition operators on  $H(\mathbb{C}^n)$ , which can not be described by formula (1), using symmetric analytic functions on  $\ell_1$ . The purpose of this paper is a generalization of the method for the space  $\ell_p$ ,  $1 . Also similarly to [14], we show that a symmetric translation operator is hypercyclic on a Fréchet algebra <math>H_{bs}^n(\ell_p)$  of symmetric entire functions on  $\ell_p$  which are bounded on bounded subsets. More about hypercyclic composition operators the reader can find in [13].

In Section 1, we discuss some relationship between polynomial automorphisms on  $\mathbb{C}^n$  and an operation of changing of polynomial bases in an algebra of symmetric analytic functions on the Banach space of summing sequences,  $\ell_p$ . In Section 2, we prove the hypercyclicity of a special operator on the algebra of symmetric analytic functions on  $\ell_p$  which plays the role of translation in this algebra. We consider, in the third section, an algebra which is the completion of the space of symmetric polynomials on  $\ell_p$  endowed with the uniform topology on bounded subsets and we prove hypercyclicity of our special operator on this algebra.

Let us recall a well known Kitai-Gethner-Shapiro's theorem which is also known as the Hypercyclicity Criterion.

**Theorem 1** (Hypercyclicity Criterion). Let X be a separable complete linear metric space and  $T: X \to X$  be a linear and continuous operator. Suppose there exist  $X_0, Y_0$  dense subsets of X, a sequence  $(n_k)$  of positive integers and a sequence of mappings (possibly nonlinear, possibly not continuous)  $S_n: Y_0 \to X$  so that

- 1.  $T^{n_k}(x) \to 0$  for every  $x \in X_0$  as  $k \to \infty$ ,
- 2.  $S_{n_k}(y) \rightarrow 0$  for every  $y \in Y_0$  as  $k \rightarrow \infty$ ,
- 3.  $T^{n_k} \circ S_{n_k}(y) = y$  for every  $y \in Y_0$ .

Then *T* is hypercyclic.

The operator *T* is called the operator that satisfy the *Hypercyclicity Criterion for full sequence* if we can chose  $n_k = k$ .

For details of the theory of analytic functions on Banach spaces we refer the reader to Dineen's book [8]. Note that an analogue of the Godefroy-Shapiro's theorem for a special class of entire functions on Banach space with separable dual was proved by Aron and Bés in [2]. Current state of theory of symmetric analytic functions on Banach spaces can be found in [1, 10]. A detailed survey of hypercyclic operators is given by Grosse-Erdmann in [3, 11, 12].

### **1** Algebra of symmetric functions

Let *X* be a Banach space with a symmetric basis  $(e_i)_{i=1}^{\infty}$ . A function *g* on *X* is called *symmetric* if for every  $x = \sum_{i=1}^{\infty} x_i e_i \in X$ ,  $g(x) = g\left(\sum_{i=1}^{\infty} x_i e_i\right) = g\left(\sum_{i=1}^{\infty} x_i e_{\sigma(i)}\right)$  for an arbitrary permutation  $\sigma$  on the set  $\{1, ..., m\}$  for any positive integer *m*. The sequence of homogeneous polynomials  $(P_j)_{j=1}^{\infty}$ , deg  $P_k = k$  is called a *homogeneous algebraic basis* in the algebra of symmetric

polynomials, if for every symmetric polynomial *P* of degree *n* on *X* there exists a polynomial *q* on  $\mathbb{C}^n$  such that  $P(x) = q(P_1(x), \dots, P_n(x))$ .

We denote by  $\mathcal{P}_s(\ell_p)$  algebra symmetric continuous polynomials. Let  $\lceil p \rceil$  be the smallest integer that is greater than or equal to *p*. In [10], it is proved that the polynomials

$$F_k\left(\sum_{i=1}^{\infty} a_i e_i\right) = \sum_{i=1}^{\infty} a_i^k \tag{2}$$

for  $k = \lceil p \rceil$ ,  $\lceil p \rceil + 1$ ,... form an algebraic basis in  $\mathcal{P}_s(\ell_p)$ .

So, there are no symmetric polynomials of degree less than  $\lceil p \rceil$  in  $\mathcal{P}_s(\ell_p)$  and if  $\lceil p_1 \rceil = \lceil p_2 \rceil$ , then  $\mathcal{P}_s(\ell_{p_1}) = \mathcal{P}_s(\ell_{p_2})$ . Thus, without loss of generality we can consider  $\mathcal{P}_s(\ell_p)$  only for integer values of p. Throughout, we will assume that p is an integer,  $1 \le p < \infty$ .

**Corollary 1** ([1]). Given  $(\xi_1, \ldots, \xi_n) \in \mathbb{C}^n$ , there is  $x \in \ell_p^{n+p-1}$  such that  $F_p(x) = \xi_1, \ldots, F_{n+p-1}(x) = \xi_n$ .

This result shows that any  $P \in \mathcal{P}_s(\ell_p)$  has a unique representation in terms of  $\{F_k\}$ , in sense that if  $q \in \mathcal{P}(\mathbb{C}^n)$  for some n is such that  $P(x) = q(F_p(x), \ldots, F_{n+p}(x))$ , and if  $q' \in \mathcal{P}(\mathbb{C}^m)$  for some m is such that  $P(x) = q'(F_p(x), \ldots, F_{m+p}(x))$ , with, say,  $n \leq m$ , then  $q'(\xi_1, \cdots, \xi_m) = q(\xi_1, \cdots, \xi_n)$ .

Let us denote by  $\mathcal{P}_s^n(\ell_p)$ ,  $n \ge p$ , the subalgebra of  $\mathcal{P}_s(\ell_p)$  generated by  $\{F_p, \ldots, F_n\}$ .

Denote by  $H_{bs}^n(\ell_p)$  an algebra of entire symmetric functions on  $\ell_p$  which is topologically generated by polynomials  $F_p, \ldots, F_n$ . It means that  $H_{bs}^n(\ell_p)$  is the completion of the algebraic span of  $F_p, \ldots, F_n$  in the uniform topology on bounded subsets. We say that polynomials  $Q_p, \ldots, Q_n$  (not necessary homogeneous) form an *algebraic basis* in  $H_{bs}^n(\ell_p)$  if they topologically generate  $H_{bs}^n(\ell_p)$ . Evidently, if  $(Q_j)_{j=1}^{\infty}$  is a homogeneous algebraic basis in  $\mathcal{P}_s(\ell_p)$ , then  $(Q_p, \ldots, Q_n)$  is an algebraic basis in  $H_{bs}^n(\ell_p)$ .

#### 2 Symmetric translation

In this section, we construct a special operator on the algebra of symmetric analytic functions on  $\ell_p$ . We start with an evident statement, which actually is a very special case of the Universal Comparison Principle (see [11, Proposition 4]).

**Proposition 1.** Let *T* be a hypercyclic operator on *X* and *A* be an isomorphism of *X*. Then  $A^{-1}TA$  is hypercyclic.

We will say that  $A^{-1}TA$  is a *similar* operator to T. If  $T = C_{\alpha}$  is a composition operator on  $H(\mathbb{C}^n)$  and  $A = C_{\Phi}$  is a composition by an analytic automorphism  $\Phi$  of  $\mathbb{C}^n$ , then  $A^{-1}TA = C_{\Phi \circ \alpha \circ \Phi^{-1}}$  is a composition operator too. If A is a composition with a polynomial automorphism, we will say that  $A^{-1}TA$  is *polynomially similar* to T. Now we consider operators which are similar to the translation composition  $T_a: f(x) \mapsto f(x+a)$  on  $H(\mathbb{C}^n)$ .

Let us denote by  $\mathcal{F}_p^n$  the mapping from  $\ell_p$  to  $\mathbb{C}^{n+1-p}$ ,  $n \ge p$ , given by

$$\mathcal{F}_p^n: x \mapsto (F_p(x), \ldots, F_n(x)).$$

It is known (see [1]) that the map

$$C_{\mathcal{F}_n^n}$$
:  $f(t_1,\ldots,t_n) \mapsto f(F_p(x),\ldots,F_n(x))$ 

is a topological isomorphism from the algebra  $H(\mathbb{C}^{n+1-p})$  to the algebra  $H_{hs}^n(\ell_p)$ .

Easy to see that for symmetric function f(x) on  $\ell_p$  the function f(x + y) is not symmetric for some fixed  $y \in \ell_p$ . The space of symmetric function is not invariant respect to certain translation operator  $f(x) \mapsto f(x + y)$ . We propose another translation on  $\ell_p$ , which keep the space of symmetric analytic functions.

Let  $x, y \in \ell_p$ ,  $x = (x_1, x_2, ...)$  and  $y = (y_1, y_2, ...)$ . We put

$$x \bullet y := (x_1, y_1, x_2, y_2, \ldots).$$

We note the basic properties of symmetric translation.

- 1. If  $x = \sigma_1(u)$  i  $y = \sigma_2(v)$  for some permutations  $\sigma_1$ ,  $\sigma_2$  then  $x \bullet y = \sigma(u \bullet v)$  for some permutation  $\sigma$  on  $\mathbb{N}$ .
- 2.  $||x \bullet y||^p = ||x||^p + ||y||^p$ .
- 3. For any natural  $n \ge p$

$$F_n(x \bullet y) = F_n(x) + F_n(y). \tag{3}$$

We define

$$\mathcal{T}_y(f)(x) := f(x \bullet y)$$

and will say that  $x \mapsto x \bullet y$  is the *symmetric translation* and the operator  $\mathcal{T}_y$  is the *symmetric translation operator*. It is clear that if f is a symmetric function, then  $f(x \bullet y)$  is a symmetric function for any fixed y. In [7], it is proved that  $\mathcal{T}_y$  is a topological isomorphism from the algebra of symmetric analytic functions to itself.

Let 
$$g \in H_s^n(\ell_p)$$
 and  $\alpha = (\alpha_1, \dots, \alpha_n)$ . Set for  $f = (\mathcal{F}_n^{\mathbf{F}})^{-1}g$   
 $\mathcal{D}^{\alpha}g := \mathcal{F}_n^{\mathbf{F}}D^{\alpha}(\mathcal{F}_n^{\mathbf{F}})^{-1}g = \left(\frac{\partial^{\alpha_1}}{\partial t_1^{\alpha_1}}\cdots \frac{\partial^{\alpha_n}}{\partial t_n^{\alpha_n}}f\right)(F_1(\cdot), \dots, F_{p+n-1}(\cdot)).$ 

**Theorem 2.** Let  $y \in \ell_p$  such that  $(F_p(y), \ldots, F_{p+n-1}(y))$  is a nonzero vector in  $\mathbb{C}^n$ . Then the symmetric translation operator  $\mathcal{T}_y$  is hypercyclic on  $H^n_{bs}(\ell_p)$ . Moreover, every operator  $\mathcal{A}$  on  $H^n_s(\ell_p)$  which commutes with  $\mathcal{T}_y$  and is not a scalar multiple of the identity is hypercyclic and can be represented by

$$\mathcal{A}(g) = \sum_{|\alpha| \ge 0} c_{\alpha} \mathcal{D}^{\alpha} g, \tag{4}$$

where  $c_{\alpha}$  are coefficients of a non-constant entire function of exponential type on  $\mathbb{C}^{n}$ .

*Proof.* Let  $a = (F_p(y), \ldots, F_{p+n-1}(y)) \in \mathbb{C}^n$ . If  $g \in H^n_{bs}(\ell_p)$ , then

$$g(x) = C_{\mathcal{F}_p^n}(f)(x) = f(F_p(x), \dots, F_{p+n-1}(x))$$

for some  $f \in H_s^n(\ell_1)$  and property (3) implies that

$$\begin{aligned} \mathcal{T}_{y}(g)(x) &= g(x \bullet y) = f(F_{p}(x \bullet y), \dots, F_{p+n-1}(x \bullet y)) \\ &= f(F_{p}(x) + F_{p}(y), \dots, F_{p+n-1}(x) + F_{p+n-1}(y)) \\ &= C_{\mathcal{F}_{n}^{n}}((f)(t+a)) = C_{\mathcal{F}_{n}^{n}}(T_{a}(f)(t)). \end{aligned}$$

Since the set  $(T_a^k(f))_{k=1}^{\infty}$  is dense in  $H(\mathbb{C}^n)$ , then set  $(\mathcal{T}_y^k(g))_{k=1}^{\infty} = (C_{\mathcal{F}_p^n}(T_a^k(f)))_{k=1}^{\infty}$  is dense in  $H_{bs}^n(\ell_p)$ . So, the symmetric translation of operator  $\mathcal{T}_y$  is hypercyclic on  $H_{bs}^n(\ell_p)$ . Since  $\mathcal{T}_y(g)(x) = \mathcal{F}_n^{\mathbf{F}}T_a(\mathcal{F}_n^{\mathbf{F}})^{-1}(g)(x)$ , the proof of (4) follows from Proposition 1 and the Godefroy-Shapiro Theorem.

A given algebraic basis **R** on  $H_s^n(\ell_p)$  we set

$$T_{\mathbf{R},y} := (\mathcal{F}_n^{\mathbf{R}})^{-1} \mathcal{T}_y \mathcal{F}_n^{\mathbf{R}} \quad and \quad D_{\mathbf{R}}^{\alpha} := (\mathcal{F}_n^{\mathbf{R}})^{-1} \mathcal{D}^{\alpha} \mathcal{F}_n^{\mathbf{R}}.$$

**Corollary 2.** Let **R** be an algebraic basis on  $H_s^n(\ell_p)$  and let  $y \in \ell_p$  such that  $(F_p(y), \ldots, F_{p+n-1}(y)) \neq 0$ . Then the operator  $T_{\mathbf{R},y}$  is hypercyclic on  $H(\mathbb{C}^n)$ . Moreover, every operator A on  $H(\mathbb{C}^n)$  which commutes with  $T_{\mathbf{R},y}$  and is not a scalar multiple of the identity is hypercyclic and can be represented by the form

$$A(f) = \sum_{|\alpha| \ge 0} c_{\alpha} D_{\mathbf{R}}^{\alpha} f,$$
(5)

where  $c_{\alpha}$  as in (1).

We need the next proposition.

**Proposition 2** ([14]). Let  $\Phi = (\Phi_1, ..., \Phi_n)$  be a polynomial automorphism on  $\mathbb{C}^n$ . Then  $(\Phi_1(\mathbf{R}), ..., \Phi_n(\mathbf{R}))$  is an algebraic basis in  $H^n_s(\ell_p)$  for an arbitrary algebraic basis  $\mathbf{R} = (R_1, ..., R_n)$ .

Conversely, if  $(\Phi_1(\mathbf{R}), ..., \Phi_n(\mathbf{R}))$  is an algebraic basis for some algebraic basis  $\mathbf{R} = (R_1, ..., R_n)$  in  $H_s^n(\ell_p)$  and a polynomial map  $\Phi$  on  $\mathbb{C}^n$ , then  $\Phi$  is a polynomial automorphism.

Note that due to Proposition 2 the transformation  $(\mathcal{F}_n^{\mathbf{R}})^{-1}\mathcal{T}_y\mathcal{F}_n^{\mathbf{R}}$  is nothing else than a composition with  $\Phi \circ (I + a) \circ \Phi^{-1}$ , where  $\Phi(F_p, \ldots, F_{p+n-1}) = (R_p, \ldots, R_{p+n-1})$  and  $a = (F_p(y), \ldots, F_{p+n-1}(y))$ . Conversely, every polynomially similar operator to the translation can be represented by the form  $(\mathcal{F}_n^{\mathbf{R}})^{-1}\mathcal{T}_y\mathcal{F}_n^{\mathbf{R}}$  for some algebraic basis of symmetric polynomials **R**. This observation can be helpful in order to construct some examples of such operators.

The next algebraic bases of  $\mathcal{P}_s(\ell_p)$  is useful for us:  $(G_k^{(p)})_{k=1}^{\infty}$ , where

$$G_k(x) = G_k^{(1)}(x) = \sum_{i_1 < \dots < i_k} x_{i_1} \cdots x_{i_k}$$

and  $G_k^{(p)}(x)$  can be obtained from Newton's formula (see [16, §53]), putting  $F_1(x) = F_2(x) = \cdots = F_{p-1}(x) = 0$ . So, we get ([15])

$$nG_n^{(p)} = (-1)^{p+1}F_p(x)G_{n-p}^{(p)}(x) + (-1)^{p+2}F_{p+1}(x)G_{n-p-1}^{(p)}(x) + \dots + (-1)^{n-p+1}F_{n-p}(x)G_p^{(p)}(x) + (-1)^{n+1}F_n(x),$$

where n > p,  $G_0^{(p)}(x) \equiv 1$ ,  $F_0(x) \equiv 1$  and  $G_1^{(p)}(x) = G_2^{(p)}(x) = \cdots = G_{p-1}^{(p)}(x) = 0$ ,  $F_1(x) = F_2(x) = \cdots = F_{p-1}(x) = 0$ . By another words, in (2) the terms  $F_r(x)G_{q-r}^{(p)}(x) = 0$ , if r < p and q - r < p, where  $p \le r \le n - p$ ,  $p \le q - r \le n - p$ .

Let us compute how looks the operator  $T_{\mathbf{R},y}$  for  $\mathbf{R} = \mathbf{G}$ . We observe first that

$$G_m^{(p)}(x \bullet y) = \sum_{j+k=m} G_j^{(p)}(x) G_k^{(p)}(y), \qquad p \le m \le p+n-1.$$

where for the sake of convenience we take  $G_0^{(p)} \equiv 1$ . Thus

$$\mathcal{T}_{y}\mathcal{F}_{n}^{\mathbf{G}}f(t_{1},\ldots,t_{n}) = \mathcal{T}_{y}f(G_{p}^{(p)}(x),\ldots,G_{p+n}^{(p)}(x)) = f(G_{p}^{(p)}(x\bullet y),\ldots,G_{p+n}^{(p)}(x\bullet y))$$
$$= f\Big(G_{p}^{(p)}(x) + G_{p}^{(p)}(y),\ldots,\sum_{i+k=m}G_{i}^{(p)}(x)G_{k}^{(p)}(y),\ldots,\sum_{i+k=p+n-1}G_{i}^{(p)}(x)G_{k}^{(p)}(y)\Big).$$

Therefore,

$$T_{\mathbf{G},y}f(t_1,\ldots,t_n) = f\Big(t_p + b_p,\ldots,\sum_{j+k=m} t_j b_k,\ldots,\sum_{j+k=p+n-1} t_j b_k\Big),$$
(6)

where  $t_1 = 0, \dots, t_{p-1} = 0, b_1 = 0, \dots, b_{p-1} = 0$ , and  $b_j = G_j^{(p)}(y)$  for  $1 \le j \le p + n - 1$ .

Godefroy and Shapiro proved that any continuous linear operator T on  $H(\mathbb{C}^n)$ , which commutes with translations and is not a scalar multiple of the identity, can be generated by (1). Composition with an affine map still does not commute with  $T_a$ . Indeed, by (6),

$$T_a \circ T_{\mathbf{G},y} f(t_1, \dots, t_n) = f\left(t_p + b_p + a_p, \dots, \sum_{j=0}^{p+n-1} t_j b_{p+n-1-j} + a_{p+n-1}\right);$$
  
$$T_{\mathbf{G},y} \circ T_a f(t_1, \dots, t_n) = f\left(t_p + b_p + a_p, \dots, \sum_{j=0}^{p+n-1} (t_j + a_j) b_{p+n-1-j}\right),$$

where  $a_0 = 1$ . Evidently,  $T_a \circ T_{\mathbf{G},y} \neq T_{\mathbf{G},y} \circ T_a$  for some  $a \neq 0$  whenever  $b \neq (0, \dots, 0, b_{p+n-1})$ .

## 3 The case of space $H_{bs}(\ell_p)$

Note that  $T_a$  satisfies the Hypercyclicity Criterion for full sequence [9] and so the symmetric shift  $\mathcal{T}_y$  on  $H^n_s(\ell_p)$  satisfies the Hypercyclicity Criterion for full sequence provided  $(F_p(y), \ldots, F_{p+n-1}(y)) \neq 0.$ 

We will establish our result about hypercyclic operators on the space of symmetric entire functions on  $\ell_p$ . But before this, we need the following general auxiliary statement, which might be of some interest by itself.

**Lemma 1** ([14]). Let X be a Fréchet space and  $X_1 \subset X_2 \subset \cdots \subset X_m \subset \cdots$  be a sequence of closed subspaces such that  $\bigcup_{m=1}^{\infty} X_m$  is dense in X. Let T be an operator on X such that  $T(X_m) \subset X_m$  for each *m* each restriction  $T|_{X_m}$  satisfies the Hypercyclicity Criterion for full sequence on  $X_m$ . Then T satisfies the Hypercyclicity Criterion for full sequence on X.

We denote by  $H_{bs}(\ell_p)$  a Fréchet algebra of symmetric entire functions on  $\ell_p$  which are bounded on bounded subsets. This algebra is the completion of the space of symmetric polynomials on  $\ell_p$  endowed with the uniform topology on bounded subsets.

**Theorem 3.** The symmetric translation operator  $\mathcal{T}_y$  is hypercyclic on  $H_{bs}(\ell_p)$  for every  $y \neq 0$ . *Proof.* Since  $y \neq 0$ ,  $F_{m_0}(y) \neq 0$  for some  $m_0$  [1]. So,  $\mathcal{T}_y$  is hypercyclic (and satisfies the Hypercyclicity Criterion for full sequence) on  $H_s^m(\ell_p)$  whenever  $m \geq m_0$ . The set  $\bigcup_{\substack{m=m_0 \ m=m_0}}^{\infty} H_s^m(\ell_p)$  contains the space of all symmetric polynomials on  $\ell_p$  and so it is dense in  $H_{bs}(\ell_p)$ . Also  $H_s^m(\ell_p) \subset H_s^n(\ell_p)$ , if n > m. Hence, by Lemma 1,  $\mathcal{T}_y$  is hypercyclic.

#### References

- Alencar R., Aron R., Galindo P., Zagorodnyuk A. Algebra of symmetric holomorphic functions on *l*<sub>p</sub>. Bull. London Math. Soc. 2003, 35 (1), 55–64. doi:10.1112/S0024609302001431
- [2] Aron R., Bès J. Hypercyclic differentiation operators. Contemp. Math. 1999, 232, 39–46.
- [3] Bayart F., Matheron E. Dynamics of linear operators. Cambridge University Press, New York, 2009.
- [4] Bernal-González L. Universal entire functions for affine endomorphisms of C<sup>N</sup>. J. Math. Anal. Appl. 2005, 305 (2), 690–697. doi:10.1016/j.jmaa.2004.12.031
- [5] Bès J. Three problems on hypercyclic operators. Ph. D. Thesis, Kent State University, 1998.
- [6] Birkhoff G.D. Démonstration d'un théorème élémentaire sur les fonctions entières. C.R. Acad. Sci. Paris, 1929, 189, 473–475.
- [7] Chernega I., Galindo P., Zagorodnyuk A. Some algebras of symmetric analytic functions and their spectra. Proc. Edinb. Math. Soc. (2) 2011, 55 (1), 1–17. doi:10.1017/S0013091509001655
- [8] Dineen S. Complex Analysis on Infinite Dimensional Spaces. In: Springer Monographs in Mathematics. Springer, London, 1999. doi:10.1007/978-1-4471-0869-6
- [9] Godefroy G., Shapiro J.H. Operators with dense, invariant, cyclic vector manifolds. J. Funct. Anal. 1991, 98 (2), 229–269. doi:10.1016/0022-1236(91)90078-j
- [10] Gonzaléz M., Gonzalo R., Jaramillo J. Symmetric polynomials on rearrangement invariant function spaces. J. London Math. Soc. 1999, 59 (2), 681–697. doi:10.1112/S0024610799007164
- [11] Grosse-Erdmann K.-G. Universal families and hypercyclic operators. Bull. Amer. Math. Soc. 1999, 36, 345–381.
- [12] Grosse-Erdmann K. G., Peris Manguillot A. Linear chaos. In: Universitext. Springer-Verlag, London, 2011. doi:10.1007/978-1-4471-2170-1
- [13] Mozhyrovska Z.H. Hypercyclic composion operators. Journal of Vasyl Stefanyk Precarpathian National University 2015, 2 (4), 75–92. doi:10.15330/jpnu.2.4.75-92
- [14] Novosad Z., Zagorodnyuk A. Polynomial automorphisms and hypercyclic operators on spaces of analytic functions. Arch. Math. (Basel) 2007, 89 (2), 157–166. doi:10.1007/S00013-007-2043-4
- [15] Chernega I. Symmetric analytic functions on the space  $\ell_p$ . Appl. Probl. Mech. Math. 2012, 10, 47–54. (in Ukrainian)
- [16] Kurosh A.G. Course in higher algebra. Nauka, Moscow, 1968. (in Russian)

Received 02.04.2016

Revised 27.05.2016

Можировська З.Г. Гіперциклічні оператори на алгебрі симетричних аналітичних функцій на ℓ<sub>p</sub>. // Карпатські матем. публ. — 2016. — Т.8, №1. — С. 127–133.

В статті запропоновано метод побудови гіперциклічних операторів композиції на просторі  $H(\mathbb{C}^n)$  з використанням поліноміальних автоморфізмів на  $\mathbb{C}^n$  і симетричних аналітичних функцій на  $\ell_p$ . Зокрема, в роботі показано гіперциклічність оператора "симетричного зсуву" на алгебрі Фреше симетричних цілих функцій на  $\ell_p$ , які є обмеженими на обмежених підмножинах.

Ключові слова і фрази: гіперциклічні оператори, функціональні простори.