ISSN 2075-9827 e-ISSN 2313-0210 Carpathian Math. Publ. 2016, 8 (1), 134–149 doi:10.15330/cmp.8.1.134-149

NAGESWARA RAO K.¹, GERMINA K.A.², SHAINI P.¹

ON THE DIMENSION OF VERTEX LABELING OF *k*-UNIFORM DCSL OF *k*-UNIFORM CATERPILLAR

A distance compatible set labeling (dcsl) of a connected graph *G* is an injective set assignment $f: V(G) \to 2^X$, X being a nonempty ground set, such that the corresponding induced function $f^{\oplus}: E(G) \to 2^X \setminus \{\emptyset\}$ given by $f^{\oplus}(uv) = f(u) \oplus f(v)$ satisfies $|f^{\oplus}(uv)| = k_{(u,v)}^f d_G(u,v)$ for every pair of distinct vertices $u, v \in V(G)$, where $d_G(u, v)$ denotes the path distance between u and v and $k_{(u,v)}^f$ is a constant, not necessarily an integer. A dcsl f of G is k-uniform if all the constant of proportionality with respect to f are equal to k, and if G admits such a dcsl then G is called a k-uniform dcsl graph. The k-uniform dcsl index of a graph G, denoted by $\delta_k(G)$ is the minimum of the cardinalities of X, as X varies over all k-uniform dcsl-sets of G. A linear extension \mathbf{L} of a partial order $\mathbf{P} = (P, \preceq)$ is a linear order on the elements of P, such that $x \preceq y$ in \mathbf{P} implies $x \preceq y$ in \mathbf{L} , for all $x, y \in P$. The dimension of a poset \mathbf{P} , denoted by $dim(\mathbf{P})$, is the minimum number of linear extensions on \mathbf{P} whose intersection is ' \preceq '. In this paper we prove that $dim(\mathcal{F}) \le \delta_k(P_n^{+k})$, where \mathcal{F} is the range of a k-uniform dcsl of the k-uniform caterpillar, denoted by P_n^{+k} $(n \ge 1, k \ge 1)$ on 'n(k+1)' vertices.

Key words and phrases: k-uniform dcsl index, dimension of a poset, lattice.

E-mail: karreynageswararao@gmail.com(Nageswara Rao K.), srgerminaka@gmail.com(Germina K.A.),

shainipv@gmail.com(ShainiP.)

INTRODUCTION

Acharya [1] introduced the notion of vertex *set-valuation* as a set-analogue of number valuation. For a graph G = (V, E) and a nonempty set X, Acharya defined a *set-valuation* of G as an injective *set-valued* function $f : V(G) \to 2^X$, and defined a *set-indexer* $f^{\oplus} : E(G) \to 2^X \setminus \{\emptyset\}$ as a *set-valuation* such that the function given by $f^{\oplus}(uv) = f(u) \oplus f(v)$ for every $uv \in E(G)$ is also injective, where 2^X is the set of all subsets of X and ' \oplus ' is the binary operation of taking the symmetric difference of subsets of X.

Acharya and Germina [2], introduced the particular kind of set-valuation for which a metric, especially the cardinality of the symmetric difference, associated with each pair of vertices is k (where k be a constant) times that of the distance between them in the graph [2]. In other words, determine those graphs G = (V, E) that admit an injective set-valued function $f : V(G) \rightarrow 2^X$, where 2^X is the power set of a nonempty set X, such that, for each pair of distinct vertices u and v in G, the cardinality of the symmetric difference $f(u) \oplus f(v)$ is k times

¹ Department of Mathematics, Central University of Kerala, Kasaragod, Kerala 671314, India

² Department of Mathematics, University of Botswana, 4775 Notwane Rd., Private Bag UB 0022, Gaborone, Botswana

УДК 519.1

²⁰¹⁰ Mathematics Subject Classification: 05C78, 05C60.

The authors are thankful to the Department of Science and Technology, Government of India, New Delhi, for the financial support concerning the Major Research Project (Ref: No. SR/S4/MS : 760/12).

that of the usual path distance $d_G(u, v)$ between u and v in G, where k is a non-negative constant. They in [2] called such a *set-valuation* f of G a *k-uniform distance-compatible set-labeling* (*kuniform dcsl*) of G, and the graph G which admits *k*-uniform dcsl, a *k-uniform distance-compatible set-labeled graph* (*k-uniform dcsl graph*) and the non empty set X corresponding to f, a *k-uniform dcsl-set*. The *k-uniform dcsl index* [4] of a graph G, denoted by $\delta_k(G)$ is the minimum of the cardinalities of X, as X varies over all *k*-uniform dcsl-sets of G.

Consider a *partially ordered set* or a *poset* **P** as a structure (P, \preceq) where *P* is a nonempty set and ' \preceq ' is a partial order relation on *P*. We denote $(x, y) \in \mathbf{P}$ by $x \preceq y$, and identify the ground set of a poset with the whole poset. Two elements of **P** standing in the relation of **P** are called *comparable*, otherwise they are *incomparable*. We denote the incomparable elements x and y of **P** by $x \parallel y$. A poset is a *chain* if it contains no incomparable pair of elements, and in this case, the partial order is a *linear order*. A poset is an *antichain* if all of its pairs are incomparable. The length of a chain is one less than the number of elements in the chain. An element $p \in \mathbf{P}$ of a finite poset is on *level k*, if there exists a sequence of elements $p_0, p_1, \ldots, p_k = p$ in **P** such that $p_0 \leq p_1 \leq ldots \leq p_k = p$ and any other such sequences in **P** has length less than or equal to k. The size of a largest chain in a poset **P** is called the *height* of the poset, denoted by $height(\mathbf{P})$ or $h(\mathbf{P})$, and that of a largest antichain is called its *width*, denoted by *width*(\mathbf{P}) or $w(\mathbf{P})$. A *Hasse diagram* of a poset (P, \preceq) is a drawing in which the points of P are placed so that if y covers x (we say, *z* covers *y* if and only if $y \prec z$ and $y \preceq x \preceq z$ implies either x = y or x = z), then *y* is placed at a higher level than x and joined to x by a line segment. A poset **P** is *connected*, if its Hasse diagram is connected as a graph. A *Cover graph or Hasse graph* of a poset (P, \preceq) is the graph with vertex set *P* such that $x, y \in P$ are adjacent if and only if one of them covers the other.

Let $\mathbf{P} = (P, \leq_P)$ and $\mathbf{Q} = (Q, \leq_Q)$ be two partially ordered sets. A mapping f from the poset \mathbf{P} to the poset \mathbf{Q} is called *order preserving* if for every two elements x and y of P, $x \leq_P y$ implies $f(x) \leq_Q f(y)$. A poset \mathbf{Q} is a subposet of \mathbf{P} if $Q \subseteq P$, and \leq_Q is the restriction of \leq_P to $Q \times Q$. i.e., for $a, b \in Q$, $a \leq_Q b$ if and only if $a \leq_P b$. Two posets \mathbf{P} and \mathbf{Q} are called *isomorphic* if there is a one to one order preserving mapping Φ from the poset \mathbf{P} onto the poset \mathbf{Q} such that for every two elements x and y of P, $x \leq_P y$ in \mathbf{P} if and only if $\Phi(x) \leq_Q \Phi(y)$ in \mathbf{Q} . The poset \mathbf{Q} is said to be *embedded* or *contained* in \mathbf{P} , denoted by $\mathbf{Q} \sqsubseteq \mathbf{P}$, if \mathbf{Q} is isomorphic to a subposet of \mathbf{P} . Let \mathbf{R} and \mathbf{S} are two partial orders (with respect to \leq) on the same set X, we call \mathbf{S} an *extension* of \mathbf{R} if $\mathbf{R} \subseteq \mathbf{S}$, i.e., $x \leq y$ in \mathbf{R} implies $x \leq y$ in \mathbf{S} for all $x, y \in X$. In particular if \mathbf{S} is a chain, then we call it as a *linear extension* of \mathbf{R} . For convenience, let $\mathbf{L} : [x_1, x_2, \dots, x_n]$ denote linear order on $\{x_1, x_2, \dots, x_n\}$ in which $x_1 \leq x_2 \leq \cdots \leq x_n$.

Definition 1 ([8]). A set $\mathcal{R} = {\mathbf{L}_1, \mathbf{L}_2, ..., \mathbf{L}_k}$ of linear extensions of **P** is a **realizer** of **P** if for every incomparable pair $x, y \in \mathbf{P}$, there are $\mathbf{L}_i, \mathbf{L}_j \in \mathcal{R}$ with $x \leq y$ in \mathbf{L}_i and $x \geq y$ in \mathbf{L}_j for $1 \leq i \neq j \leq k$. The **dimension** of **P** (denoted by $dim(\mathbf{P})$) is the minimum cardinality of a realizer.

There are equivalent definitions for $dim(\mathbf{P})$. It is defined as the minimum k for which there are linear extensions $\mathbf{L}_1, \ldots, \mathbf{L}_k$ such that $\mathbf{P} = \mathbf{L}_1 \cap \mathbf{L}_2 \cap \cdots \cap \mathbf{L}_k$, where the intersection is taken over the sets of relations of \mathbf{L}_i , for $1 \le i \le k$. Another characterization of dimension, in terms of coordinates, is obtained by using an embedding of \mathbf{P} into R^t (called *t*-dimensional poset) [11]. Let R^t denotes the poset of all *t*-tuples of real numbers, partially ordered by inequality in each coordinate: $(a_1, a_2, \ldots, a_t) \le (b_1, b_2, \ldots, b_t)$ if and only if $a_i \le b_i$, for $i = 1, 2, \ldots, t$. Then

the dimension of a poset **P** is the minimum number *t* such that **P** is embedded in \mathbb{R}^t , denoted as $\mathbf{P} \sqsubseteq \mathbb{R}^t$. For more results on dimension of poset one may see [7, 9, 12, 13].

A poset (L, \preceq) is a *lattice* if every pair of elements $x, y \in L$, has a *least upper bound* (*lub*), denoted by $x \lor y$ (called join), and a *greatest lower bound* (*glb*), denoted by $x \land y$ (called meet). In general, a lattice is denoted by (L, \preceq) . Throughout this paper lattice (and poset) means lattice (and poset) under set inclusion \subseteq . Unless otherwise mentioned, for all the terminology in graph theory and lattice theory, the reader is asked to refer, respectively [5, 6].

This paper initiates a study on the dimension of vertex labeling of *k*-uniform dcsl of *k*uniform caterpillar, and prove that $dim(\mathcal{F}) \leq \delta_k(P_n^{+k})$, where \mathcal{F} is the range of a *k*-uniform dcsl of the *k*-uniform caterpillar, denoted by P_n^{+k} $(n \geq 1, k \geq 1)$ on (n(k+1))' vertices that forms a poset under set inclusion \subseteq .

Following are the definitions and results used in this paper.

Definition 2 ([10]). The height-2 poset H_n on 2n elements $a_1, \ldots, a_n, b_1, \ldots, b_n$ is the poset of height two consisting of two antichains $A = \{a_1, \ldots, a_n\}$ and $B = \{b_1, \ldots, b_n\}$ such that $b_i \leq a_j$ in H_n exactly if i = j, and j = i - 1.

Proposition 1 ([10]). *For* $n \ge 2$, $dim(H_n) = 2$.

Proposition 2 ([10]). Let \mathcal{F} be the range of a vertex labeling of 1-uniform dcsl path $P_n(n > 2)$, which is embedded in H_n , then $dim(\mathcal{F}) = 2$.

Definition 3 ([10]). A width-2 poset W_n is the poset $(\{a_1, \ldots, a_n, b_1, \ldots, b_n\}, \preceq)$ of width two consisting of two chains $A = \{a_1, \ldots, a_n\}$ and $B = \{b_1, \ldots, b_n\}$ such that $a_{i-1} \preceq a_i$ for $2 \leq i \leq n$, $b_i \preceq b_{i+1}$ for $1 \leq i \leq n-1$, $a_1 \preceq b_i$ for $1 \leq i \leq n$, and for $2 \leq i \leq n$ and $1 \leq j \leq n$, $a_i \parallel b_j$.

Proposition 3 ([10]). *For* $n \ge 2$, $dim(W_n) = 2$.

Proposition 4 ([10]). Let \mathcal{F} be the range of a vertex labeling of 1-uniform dcsl path $P_n(n > 2)$, which is embedded in W_n , then $dim(\mathcal{F}) = 2$.

Lemma 1 ([3]). $\delta_d(P_n) = n - 1$, for n > 2.

Lemma 2 ([10]). $\delta_k(P_n) = k(n-1)$, for n > 2.

1 MAIN RESULTS

Since the existence of vertex labeling of 1-uniform dcsl graph is not unique, the problem of determining posets which embeds the vertex labeling of 1-uniform dcsl of *k*-uniform caterpillar is same as determining the existence of different vertex labels *f* of 1-uniform dcsl of *k*-uniform caterpillar whose corresponding range, say $\mathcal{F} = Range(f)$ forms a poset under set inclusion \subseteq . Thus, there is a one to one correspondence between the vertex labeling *f* of 1-uniform dcsl of *k*-uniform caterpillar and its corresponding poset \mathcal{F} . Thus, it is always possible to find a 1-uniform dcsl *f* of a graph *G* so that $\mathcal{F} = Range(f)$ forms a poset under set inclusion \subseteq . Hence, \mathcal{F} contains the vertex labeling *f* of 1-uniform dcsl graph *G* as an embedding of itself. Hence, the problem of determining the 1-uniform dcsl vertex labeling *f* of a graph *G* is equivalent in determining the poset \mathcal{F} which embeds the 1-uniform dcsl vertex labeling *f* of the same graph *G*.

Definition 4. Let $\mathbf{P} = (\{a_1, ..., a_n\}, \preceq)$ be a poset. We define *k*-uniform extended poset or, simply, *k*-extended poset of \mathbf{P} , denoted by \mathbf{P}^k as

$$(\{a_1, a_1^1, a_1^2, \ldots, a_1^k, a_2, a_2^1, a_2^2, a_2^k, \ldots, a_n, a_n^1, a_n^2, \ldots, a_n^k\}, \preceq),$$

which is an extension of **P**, and for $1 \le i \le n$, each $k(\ge 1)$ elements $a_i^1, a_i^2, ..., a_i^k$ of **P**^{*k*} covers only a_i . We call **P** as an underline poset of **P**^{*k*}.

Remark 1. It is interesting to note the following in a k-extended posets.

- (i) If there exist any two distinct elements which belong to the same level in \mathbf{P}^k , then they are incomparable.
- (ii) For each $k(\geq 1)$ elements $a_i^1, a_i^2, \ldots, a_i^k$ of \mathbf{P}^k covers only a_i , where $1 \leq i \leq n$. This implies that there exist no element in \mathbf{P}^k that covers any one of the *k* elements $a_i^1, a_i^2, \ldots, a_i^k$. Hence, the *k* elements $a_i^1, a_i^2, \ldots, a_i^k$ are maximal elements of \mathbf{P}^k . Thus, they are the *nk* maximal elements, namely, a_i^j in \mathbf{P}^k , $1 \leq i \leq n$ and $1 \leq j \leq k$.

Proposition 5. For any poset **P** (finite and connected) of size greater than 1, the *k*-extended poset \mathbf{P}^k ($k \ge 1$) of **P**, does not form a lattice.

Proof. If possible let, \mathbf{P}^k forms a lattice, then \mathbf{P}^k has unique glb and unique lub, say g and l respectively. Since l is the lub of \mathbf{P}^k , $x \leq l$, for every $x \in \mathbf{P}^k$, which in turn implies one of the element from the maximal elements $a_n^1, a_n^2, \ldots, a_n^k$ of \mathbf{P}^k should be equal to l, say, a_n^1 . Hence for $2 \leq i \leq n$, we have $a_n^i \leq l$ which is a contradiction as remarked in Remark 1.

Proposition 6. Let **P** be a linear order as of the form: $a_{i-1} \leq a_i$, for $2 \leq i \leq n$, then the dimension of *k*-extended poset **P**^{*k*}($k \geq 1$) of **P** is 2.

Proof. Let $\mathcal{R} = \{\mathbf{L}_1, \mathbf{L}_2\}$ be linear extensions of \mathbf{P}^k , where $\mathbf{L}_1 : [a_1, a_1^1, \dots, a_1^k, a_2, a_2^1, \dots, a_2^k, \dots, a_n, a_n^1, \dots, a_n^k]$ and $\mathbf{L}_2 : [a_1, \dots, a_n, a_n^k, \dots, a_n^1, a_{n-1}^k, \dots, a_{n-1}^1, \dots, a_1^k, \dots, a_1^1].$ Then \mathcal{R} is a realizer of \mathbf{P}^k and hence $dim(\mathbf{P}^k) \leq 2$. We

Then \mathcal{R} is a realizer of \mathbf{P}^k , and hence $dim(\mathbf{P}^k) \leq 2$. We prove that there is no proper subset S of \mathcal{R} which realizes \mathbf{P}^k . For, if there is a proper subset S of \mathcal{R} which realizes \mathbf{P}^k , then, the only one member in S give rise to the poset \mathbf{P}^k , and hence, all the elements of \mathbf{P}^k are comparable, which is a contradiction. Hence $dim(\mathbf{P}^k) = 2$.

Since the graph P_n^{+k} is the extension of P_n , the *k*-extended poset can embed the vertex labeling of a 1-uniform dcsl *k*-uniform caterpillar only when its corresponding underline poset embed the vertex labeling of a 1-uniform dcsl path.

Now, we aim to determine the dimension of *k*-extended posets which embeds the vertex labeling of a 1-uniform dcsl of a *k*-uniform caterpillar.

Proposition 7. Let **P** be a linear order as $a_{i-1} \leq a_i$, for $2 \leq i \leq n$, then the *k*-extended poset **P**^{*k*} embeds the vertex labeling of a 1-uniform dcsl of the *k*-uniform caterpillar.

Proof. Let $G = P_n^{+k}$ be the *k*-uniform caterpillar with n(k+1) vertices, where $n \ge 2$ and $k \ge 1$. Let $V(G) = \{v_i, v_i^j \mid 1 \le i \le n, 1 \le j \le k\}$, where v_i are the internal vertices and v_i^j are the pendant vertices which are adjacent to v_i . First we claim that there exist a vertex labeling f of a 1-uniform dcsl of the k-uniform caterpillar, whose range is suitable for the embedding of k-extended poset \mathbf{P}^k . Let $X = \{1, 2, ..., n(k + 1) - 1\}$. Define $f : V(G) \rightarrow 2^X$ such that $f(v_1) = \emptyset$ and $f(v_j) = \{1, 2, ..., j - 1\}, 2 \le j \le n$. For, $1 \le i \le n$ and $1 \le j \le k$,

$$f(v_i^j) = f(v_i) \cup \{(n-1) + (i-1)k + j\} = \{1, 2, \dots, i-1, (n-1) + (i-1)k + j\}$$

Case 1: When $u = v_l$ and $v = v_m$, l = 1 and $2 \le m \le n$. Then,

$$|f(v_l) \oplus f(v_m)| = | \varnothing \oplus \{1, 2, \dots, m-1\} | = | \{1, 2, \dots, m-1\} | = m-l = d(v_l, v_m).$$

Case 2: When $u = v_l$ and $v = v_m$, $l \neq m, 2 \leq l, m \leq n$. Then,

$$|f(v_l) \oplus f(v_m)| = |\{1, 2, \dots, l-1\} \oplus \{1, 2, \dots, m-1\}| \\ = |\{l, l+1, \dots, m-1\}| = m-l = d(v_l, v_m), \quad 2 \le l < m \le n.$$

Case 3: When $u = v_l$ and $v = v_m^j$, $l = 1, 2 \le m \le n$ and $1 \le j \le k$. Then,

$$|f(v_l) \oplus f(v_m^j)| = | \varnothing \oplus \{1, 2, \dots, m-1, (n-1) + (m-1)k + j\} |$$

= | {1, 2, \ldots, m-1, (n-1) + (m-1)k + j} |= m = d(v_l, v_m^j).

Case 4: When $u = v_l$ and $v = v_m^j$, $l \neq m, 2 \leq l$, $m \leq n$ and $1 \leq j \leq k$. Then,

$$|f(v_l) \oplus f(v_m^j)| = |\{1, 2, \dots, l-1\} \oplus \{1, 2, \dots, m-1, (n-1) + (m-1)k + j\} |$$

= | {l, l + 1, ..., m - 1, (n - 1) + (m - 1)k + j} |
= m - l + 1 = d(v_l, v_m^j), 2 \le l < m \le n \text{ and } 1 \le j \le k.

Case 5: When $u = v_l^i$ and $v = v_m^j$, $l = 1, 2 \le m \le n$ and $1 \le i, j \le k$. Then,

$$\begin{aligned} |f(v_l^i) \oplus f(v_m^j)| &= |\{(n-1) + (l-1)k + i\} \\ &\oplus \{1, \dots, m-1, (n-1) + (m-1)k + j\} | \\ &= |\{1, \dots, m-1, (n-1) + (m-1)k + j, (n-1) + (l-1)k + i\} | = m+1 = d(v_l^i, v_m^j). \end{aligned}$$

Case 6: When $u = v_l^i$ and $v = v_m^j$, $l \neq m$, $2 \leq l$, $m \leq n$ and $1 \leq i, j \leq k$. Then,

$$\begin{aligned} f(v_l^i) \oplus f(v_m^j) &= |\{1, \dots, l-1, (n-1) + (l-1)k + i\} \\ \oplus \{1, \dots, m-1, (n-1) + (m-1)k + j\} | \\ &= |\{(n-1) + (l-1)k + i, l, l+1, \dots, m-1, (n-1) + (m-1)k + j\} | \\ &= m-l+2 = d(v_l^i, v_m^j), \quad 2 \le l < m \le n \text{ and } 1 \le i \le j \le k. \end{aligned}$$

Hence, for any distinct $u, v \in V(G)$, $|f(u) \oplus f(v)| = d(u, v)$. Thus, f is a 1-uniform dcsl of G.

Now, to prove, $\mathcal{F} \sqsubseteq \mathbf{P}^k$, where \mathcal{F} is the range of f which forms a poset under ' \subseteq ' and \mathbf{P} a linear order as $a_{i-1} \preceq a_i, 2 \leq i \leq n$. Define $\Phi : \mathcal{F} \to \mathbf{P}^k$ as follows.

Case 1. On the internal vertices v_i of V(G), define $\Phi(f(v_i)) = a_i$. *Case 2.* On the pendant vertices v_i^j of V(G), define $\Phi(f(v_i^j)) = a_i^j$.

In Case 1, the corresponding vertex labels of a pair of internal vertices are comparable where as in Case 2, for any pair of pendant vertices the corresponding vertex labels are incomparable. Hence, $f(v_i) \subseteq f(v_j)$ in \mathcal{F} if and only if $a_i \preceq a_j$ in \mathbf{P}^k and $f(v_i^r) \parallel f(v_i^s)$ in \mathcal{F} if and only if $a_i^r \parallel a_i^s$ in \mathbf{P}^k . Also, $f(v_i) \subseteq f(v_i^j)$ in \mathcal{F} if and only if $a_i \preceq a_i^j$ in \mathbf{P}^k and $f(v_i) \parallel f(v_{i-1}^s)$ in \mathcal{F} if and only if $a_i \parallel a_{i-1}^s$ in \mathbf{P}^k . Therefore, $\mathcal{F} \sqsubseteq \mathbf{P}^k$.

Using Proposition 6 and Proposition 7, we have the following result.

Proposition 8. Let \mathcal{F} be the range of a 1-uniform dcsl of the k-uniform caterpillar such that $\mathcal{F} \sqsubseteq \mathbf{P}^k$, where \mathbf{P} is a linear order of finite length. Then $dim(\mathcal{F}) = 2$.

Remark 2. From Proposition 2 and Proposition 4, we have seen that the height-2 poset, H_n and width-2 poset, W_n on '2n' elements embeds the vertex labeling of a 1-uniform dcsl path. Choosing these posets as underline posets defined on 'n' elements, the corresponding k-extended posets embedding, restricted to height-2 poset and width-2 poset on n elements, give two subposets, namely min height poset (denoted by Min_n) and avg height poset(denoted by Avg_n), respectively. Further, the poset Min_n end up with $b_{\lceil \frac{n}{2} \rceil}$, when n is odd; $a_{\frac{n}{2}}$ if n is even. Hence, $Min_n \sqsubseteq H_n$. For the poset Avg_n , $Avg_n \sqsubseteq W_n$. For, without loss of generality, consider the poset as $(\{a_1, \ldots, a_{\lceil \frac{n}{2} \rceil = h}, b_1, \ldots, b_{n-h}\}, \preceq)$ of width two consisting of two chains $A = \{a_1, \ldots, a_h\}$ and $B = \{b_1, \ldots, b_{n-h}\}$ such that a_{i-1} preceqa_i for $2 \le i \le h$, $b_i \preceq b_{i+1}$ for $1 \le i \le n-h-1$, $a_1 \preceq b_i$ for $1 \le i \le n-h$, and for $2 \le i \le h$ and $1 \le j \le n-h$, $a_i \parallel b_j$. In particular, if the underline poset is of linear order, then it posses maximum height and by Proposition 6, the k-extended poset of it has dimension 2.

Proposition 9. For a *k*-extended poset Min_n , $dim(Min_n^k) = 2$.

Proof. We define the linear extensions L_1 and L_2 of Min_n^k , in two cases.

Case 1: When *n* is even. Consider,

$$\mathbf{L}_{1} : [b_{1}, b_{1}^{1}, \dots, b_{1}^{k}, b_{2}, b_{2}^{1}, \dots, b_{2}^{k}, \dots, b_{\frac{n}{2}}, b_{\frac{n}{2}}^{1}, \dots, b_{\frac{n}{2}}^{k}, a_{1}, a_{1}^{1}, \dots, a_{1}^{k}, a_{2}, a_{2}^{1}, \dots, a_{2}^{k}, \dots, a_{\frac{n}{2}}^{k}, a_{\frac{n}{2}}, a_{\frac{n}{2}}^{1}, \dots, a_{\frac{n}{2}}^{k}, \dots, a_{\frac{n}{2}}^{1}, \dots, a_{\frac{n}{2}}^{k}, \dots, a_{\frac{n}{2}}^{1}, \dots, a_{\frac{n}{2}}^{k}, \dots, a_{\frac{n}{2}}^{1}, \dots, a_$$

Since, these extensions intersect to yield the partial order on Min_n^k , $dim(Min_n^k) \le 2$. *Case 2:* When *n* is odd. Consider,

$$\mathbf{L}_{1} : [b_{\lceil \frac{n}{2} \rceil}, b_{\lceil \frac{n}{2} \rceil}^{1}, \dots, b_{\lceil \frac{n}{2} \rceil}^{k}, b_{\lceil \frac{n}{2} \rceil - 1}, b_{\lceil \frac{n}{2} \rceil - 1}^{1}, \dots, b_{\lceil \frac{n}{2} \rceil - 1}^{k}, \dots, b_{1}^{k}, a_{\lceil \frac{n}{2} \rceil - 1}^{1}, a_{\lceil \frac{n}{2} \rceil - 1}^{1}, \dots, a_{1}^{k}, a_{\lceil \frac{n}{2} \rceil - 1}^{1}, a_{\lceil \frac{n}{2} \rceil - 1}^{1}, \dots, a_{1}^{k}]$$

$$\mathbf{L}_{2} : [b_{1}, a_{1}, b_{2}, a_{2}, \dots, b_{\lceil \frac{n}{2} \rceil - 1}^{n}, a_{\lceil \frac{n}{2} \rceil - 1}^{n}, b_{\lceil \frac{n}{2} \rceil}^{n}, a_{1}^{k}, \dots, a_{1}^{1}, a_{2}^{k}, \dots, a_{2}^{1}, \dots, a_{\lceil \frac{n}{2} \rceil - 1}^{k}, \dots, a_{\lceil \frac{n}{2} \rceil - 1}^{n}, \dots, a_{\lceil \frac{n}{2} \rceil - 1}^{1}, b_{\lceil \frac{n}{2} \rceil}^{n}, \dots, b_{\lceil \frac{n}{2} \rceil}^{1}, \dots, b_{1}^{1}, b_{2}^{k}, \dots, b_{2}^{1}, \dots, b_{\lceil \frac{n}{2} \rceil}^{n}, \dots, b_{\lceil \frac{n}{2} \rceil}^{1}].$$

Clearly, these extensions produces a realizer of Min_n^k , hence $dim(Min_n^k) \leq 2$. Following as in the proof of Proposition 6, the dimension cannot be less than 2. Therefore, $dim(Min_n^k) =$ 2.

Proposition 10. The *k*-extended poset Min_n^k embeds the vertex labeling of a 1-uniform dcsl of the *k*-uniform caterpillar.

Proof. Let $V(P_n^k) = \{v_1, v_1^1, \dots, v_1^k, v_2, v_2^1, \dots, v_2^k, \dots, v_n, v_n^1, \dots, v_n^k\}$, where v_i are the internal vertices and v_i^j are the pendant vertices which are adjacent to v_i .

Let $X = \{1, 2, ..., w, ..., n, ..., m = n(k+1) - 1\}$, where $w = \lceil \frac{|V(P_n)|}{2} \rceil$.

We claim that there exists a poset \mathcal{F} which can be obtained from a vertex labeling of 1uniform dcsl caterpillar, that suits for the embedding of Min_n^k .

Define $f: V(P_n^k) \to 2^X$, on internal vertices, by

$$f(v_1) = \{1, 2, \dots, w - 1\}, f(v_2) = \{1, 2, \dots, w - 1, w\}, f(v_3) = \{2, \dots, w - 1, w\},$$

$$f(v_4) = \{2, \dots, w - 1, w, w + 1\}, f(v_5) = \{3, \dots, w, w + 1\}, \dots, f(v_n) = \{w, w + 1, \dots, n - 1\},$$

when *n* is odd; otherwise, $f(v_n) = \{w, w+1, \dots, n\}$. In general, for $1 \le i \le n$, $f(v_i) = \begin{cases} \{\frac{i+1}{2}, \frac{i+1}{2} + 1, \dots, \frac{i+1}{2} + w - 2\}, & \text{if } i \text{ is odd} \\ \{\frac{i}{2}, \frac{i}{2} + 1, \dots, \frac{i}{2} + w - 1\}, & \text{otherwise,} \\ \text{and on pendant vertices, vertex labeling is same, as in Proposition 7.} \end{cases}$

Case 1: When $u = v_i$ and $v = v_{i+1}$, where *i* is odd. Then,

$$|f(v_i) \oplus f(v_{i+1})| = \left\{\frac{i+1}{2}, \dots, \frac{i+1}{2} + w - 2\right\} \oplus \left\{\frac{i+1}{2}, \dots, \frac{i+1}{2} + w - 1\right\} |$$
$$= \left\{\frac{i+1}{2} + w - 1\right\} | = 1 = d(v_i, v_{i+1}).$$

Case 2: When $u = v_{i+1}$ and $v = v_i$, where *i* is even. Then,

$$|f(v_{i+1}) \oplus f(v_i)| = |\{\frac{i+2}{2}, \dots, \frac{i+2}{2} + w - 2\} \oplus \{\frac{i}{2}, \dots, \frac{i}{2} + w - 1\}|$$
$$= |\{\frac{i}{2}\}| = 1 = d(v_{i+1}, v_i).$$

Case 3: When $u = v_l$ and $v = v_m$, $l \neq m$, $1 \leq l$, $m \leq n$ and both l and m are odd. Then,

$$|f(v_l) \oplus f(v_m)| = \left\{\frac{l+1}{2}, \dots, \frac{l+1}{2} + w - 2\right\} \oplus \left\{\frac{m+1}{2}, \dots, \frac{m+1}{2} + w - 2\right\} |$$
$$= \left\{\frac{l+1}{2}, \dots, \frac{m+1}{2} + w - 2\right\} | = m - l = d(v_l, v_m), \quad 1 \le l < m \le n.$$

Case 4: When $u = v_l$ and $v = v_m$, $l \neq m$, $1 \leq l$, $m \leq n$ and both l and m are even. Then,

$$|f(v_l) \oplus f(v_m)| = |\{\frac{l}{2}, \dots, \frac{l}{2} + w - 1\} \oplus \{\frac{m}{2}, \dots, \frac{m}{2} + w - 1\}|$$

= | { $\frac{l}{2}, \dots, \frac{m}{2} + w - 1$ } |= $m - l = d(v_l, v_m), \quad 1 \le l < m \le n.$

Case 5: When $u = v_i$ and $v = v_i^j$, $1 \le i \le n$ and $1 \le j \le k$. Then,

$$|f(v_i) \oplus f(v_i^j)| = |\{n + (i-1)k + (j-1)\}| = 1 = d(v_i, v_i^j).$$

Case 6: When $u = v_i$ and $v = v_{i+1}^j$, $1 \le j \le k$ and i is odd. Then,

$$|f(v_i) \oplus f(v_{i+1}^j)| = |\{\frac{i+1}{2}, \dots, \frac{i+1}{2} + w - 2\} \\ \oplus \{\frac{i+1}{2}, \dots, \frac{i+1}{2} + w - 1, n + (i)k + (j-1)\} | \\ = |\{\frac{i+1}{2} + w - 1, n + (i)k + (j-1)\}| = 2 = d(v_i, v_{i+1}^j).$$

Case 7: $u = v_{i+1}$ and $v = v_i^j$, $1 \le j \le k$ and i is even. Then,

$$|f(v_{i+1}) \oplus f(v_i)| = |\{\frac{i+2}{2}, \frac{i+2}{2} + 1, \dots, \frac{i+2}{2} + w - 2\} \\ \oplus \{\frac{i}{2}, \frac{i}{2} + 1, \dots, \frac{i}{2} + w - 1, n + (i-1)k + (j-1)\} | \\ = |\{\frac{i}{2}, n + (i-1)k + (j-1)\}| = 2 = d(v_{i+1}, v_i^j).$$

Case 8: When $u = v_l$ and $v = v_m^j$, $l \neq m$, $1 \leq l$, $m \leq n$, $1 \leq j \leq k$ and both l and m are odd. Then,

$$\begin{aligned} |f(v_l) \oplus f(v_m^j)| &= |\{\frac{l+1}{2}, \frac{l+1}{2} + 1, \dots, \frac{l+1}{2} + w - 2\} \\ &\oplus \{\frac{m+1}{2}, \frac{m+1}{2} + 1, \dots, \frac{m+1}{2} + w - 2, n + (m-1)k + (j-1)\} | \\ &= |\{\frac{l+1}{2}, \dots, \frac{m+1}{2} + w - 2, n + (m-1)k + (j-1)\} | = m - l + 1 = d(v_l, v_m^j), \\ &1 \le l < m \le n \text{ and } 1 \le j \le k. \end{aligned}$$

Case 9: When $u = v_l$ and $v = v_m^j$, $l \neq m$, $1 \leq l$, $m \leq n$, $1 \leq j \leq k$ and both l and m are even. Then,

$$\begin{split} |f(v_l) \oplus f(v_m^j)| &= |\{\frac{l}{2}, \frac{l}{2} + 1, \dots, \frac{l}{2} + w - 1\} \\ &\oplus \{\frac{m}{2}, \frac{m}{2} + 1, \dots, \frac{m}{2} + w - 1, n + (m - 1)k + (j - 1)\} | \\ &= |\{\{\frac{l}{2}, \dots, \frac{m}{2} + w - 1, n + (m - 1)k + (j - 1)\} | = m - l + 1 = d(v_l, v_m^j), \\ &1 \le l < m \le n \text{ and } 1 \le j \le k. \end{split}$$

Case 10: When $u = v_i^r$ and $v = v_{i+1}^s$, $1 \le r$, $s \le k$ and i is odd. Then,

$$\begin{aligned} |f(v_i^r) \oplus f(v_{i+1}^s)| &= |\{\frac{i+1}{2}, \dots, \frac{i+1}{2} + w - 2, n + (i-1)k + (r-1)\} \\ &\oplus \{\frac{i+1}{2}, \dots, \frac{i+1}{2} + w - 1, n + (i)k + (s-1)\} | \\ &= |\{n + (i-1)k + (r-1), \frac{i+1}{2} + w - 1, n + (i)k + (s-1)\} | = 3 = d(v_i^r, v_{i+1}^s). \end{aligned}$$

Case 11: $u = v_{i+1}^r$ and $v = v_i^s$, $1 \le r$, $s \le k$ and i is even. Then,

$$\begin{aligned} |f(v_{i+1}^r) \oplus f(v_i^s)| &= |\{\frac{i+2}{2}, \dots, \frac{i+2}{2} + w - 2, n + (i)k + (r-1)\} \\ &\oplus \{\frac{i}{2}, \dots, \frac{i}{2} + w - 1, n + (i-1)k + (j-1)\} | \\ &= |\{\frac{i}{2}, n + (i)k + (r-1), n + (i-1)k + (s-1)\} | = 3 = d(v_{i+1}^r, v_i^s). \end{aligned}$$

Case 12: When $u = v_l^i$ and $v = v_m^j$, $l \neq m$, $1 \leq l$, $m \leq n, 1 \leq i, j \leq k$ and both l and m are odd. Then,

$$\begin{split} |f(v_l^i) \oplus f(v_m^j)| &= |\{\frac{l+1}{2}, \dots, \frac{l+1}{2} + w - 2, n + (l-1)k + (i-1)\} \\ &\oplus \{\frac{m+1}{2}, \dots, \frac{m+1}{2} + w - 2, n + (m-1)k + (j-1)\} | \\ &= |\{\{\frac{l+1}{2}, \dots, \frac{m+1}{2} + w - 2, n + (l-1)k + (i-1), n + (m-1)k + (j-1)\} | \\ &= m - l + 2 = d(v_l^i, v_m^j), \quad 1 \le l < m \le n \text{ and } 1 \le i, j \le k. \end{split}$$

Case 13: When $u = v_l^i$ and $v = v_m^j$, $l \neq m$, $1 \leq l$, $m \leq n, 1 \leq i$, $j \leq k$ and both l and m are even. Then,

$$\begin{split} |f(v_l^i) \oplus f(v_m^j)| &= |\{\frac{l}{2}, \dots, \frac{l}{2} + w - 1, n + (l-1)k + (i-1)\} \\ &\oplus \{\frac{m}{2}, \dots, \frac{m}{2} + w - 1, n + (m-1)k + (j-1)\} | \\ &= |\{\{\frac{l}{2}, \dots, \frac{m}{2} + w - 1, n + (l-1)k + (i-1), n + (m-1)k + (j-1)\} | \\ &= m - l + 2 = d(v_l^i, v_m^j), \quad 1 \le l < m \le n \text{ and } 1 \le i, j \le k. \end{split}$$

Thus, for any distinct $u, v \in V(P_n^k)$, $|f(u) \oplus f(v)| = d(u, v)$ and hence f admits 1-uniform dcsl. Also, to prove $\mathcal{F} \sqsubseteq Min_n^k$, where \mathcal{F} is the range of f, which forms a poset, we define $\Phi : \mathcal{F} \to Min_n^k$ as follows in two different cases.

Case 1. On the internal vertices v_i of $V(P_n^k)$. $\Phi(f(v_i)) = \begin{cases} a_{\frac{i}{2}}, & \text{if } i \text{ is even,} \\ b_{\lceil \frac{i}{2} \rceil}, & \text{otherwise.} \end{cases}$ *Case 2.* On the pendant vertices v_i^j of $V(P_n^k)$. $\Phi(f(v_i^j)) = \begin{cases} a_{\frac{i}{2}}^j, & \text{if } i \text{ is even,} \\ b_{\lceil \frac{i}{2} \rceil}^j, & \text{otherwise.} \end{cases}$

In Case 1, the internal vertex labeling of $V(P_n^k)$, exhibits the embedding of \mathcal{F} into the underline poset of Min_n^k ; and in Case 2, the pendent vertex labeling of $V(P_n^k)$, exhibits the embedding of \mathcal{F} into the outermost labeling of an underline set of Min_n^k . Thus, all together, we get $\mathcal{F} \sqsubseteq Min_n^k$.

Analogously, from Proposition 9 and Proposition 10, we have.

Proposition 11. Let \mathcal{F} be the range of a 1-uniform dcsl of the *k*-uniform caterpillar such that $\mathcal{F} \sqsubseteq Min_n^k$. Then $dim(\mathcal{F}) = 2$.

Proposition 12. For the *k*-extended poset Avg_n^k , $dim(Avg_n^k) = 2$.

Proof. Let us take the linear extensions of Avg_n^k as

$$\mathbf{L}_{1} : [a_{1}, a_{1}^{1}, \dots, a_{1}^{k}, a_{2}, a_{2}^{1}, \dots, a_{2}^{k}, \dots, a_{h}, a_{h}^{1}, \dots, a_{h}^{k}, b_{1}, b_{1}^{1}, \dots, b_{1}^{k}, b_{2}, b_{2}^{1}, \dots, b_{2}^{k}, \dots, b_{n-h}, b_{n-h}^{1}, \dots, b_{n-h}^{k}] \text{ and } \\ \mathbf{L}_{2} : [a_{1}, b_{1}, b_{2}, \dots, b_{n-h}, a_{2}, \dots, a_{h}, b_{n-h}^{k}, \dots, b_{n-h}^{1}, b_{n-h-1}^{k}, \dots, b_{n-h-1}^{1}, \dots, b_{1}^{k}, \dots, b_{1}^{1}, a_{h}^{k}, \dots, a_{h-1}^{1}, \dots, a_{h-1}^{k}, \dots, a_{1}^{1}].$$

Then dimension of Avg_n^k is at most 2. Again, as in Proposition 6 the dimension cannot be less than 2. Hence $dim(Avg_n^k) = 2$.

Proposition 13. The *k*-extended poset Avg_n^k embeds the vertex labeling of a 1-uniform dcsl of the *k*-uniform caterpillar.

Proof. Let $v_1, v_1^1, ..., v_1^k, v_2, v_2^1, ..., v_2^k, ..., v_n, v_n^1, ..., and <math>v_n^k$ be the vertices of $V(P_n^k)$.

Let $X = \{1, 2, ..., h, ..., n, ..., m = n(k+1) - 1\}$, where $h = \lceil \frac{|V(P_n)|}{2} \rceil$. To prove the existence of a poset \mathcal{F} from a vertex labeling of 1-uniform dcsl of the *k*-uniform caterpillar, that suits for the embedding of Avg_n^k , define $f : V(P_n^k) \to 2^X$, on internal vertices, by

$$f(v_j) = \{1, \dots, n-h-(j-1)\}, \ 1 \le j \le n-h, \quad f(v_{n-h+1}) = \emptyset, f(v_{n-h+i}) = \{n-h+1, \dots, n-h+(i-1)\}, \ 2 \le i \le h$$

and we consider the vertex labeling on pendant vertices which is same as mentioned in Proposition 7.

Case 1: When $u = v_l$ and $v = v_m$, $l \neq m$, $1 \leq l \leq n - h$ and m = n - h + 1. Then,

$$|f(v_l) \oplus f(v_m)| = |\{1, \dots, n-h-(l-1)\} \oplus \emptyset|$$

= | {1, \ldots, n-h-(l-1)} |= n-h-(l-1) = d(v_l, v_m).

Case 2: When $u = v_l$ and $v = v_m$, $l \neq m$, $n - h + 2 \leq l \leq n$ and m = n - h + 1. Then,

$$|f(v_l) \oplus f(v_m)| = |\{n - h + 1, \dots, l - 1\} \oplus \emptyset|$$

= | {n - h + 1, \dots, l - 1 = n - h + (l - m)} |= l - m = d(v_l, v_m).

Case 3: When $u = v_l$ and $v = v_m$, $l \neq m$, $1 \leq l \leq n - h$ and $n - h + 2 \leq m \leq n$. Then,

$$|f(v_l) \oplus f(v_m)| = |\{1, \dots, n-h-(l-1)\} \oplus \{n-h+1, \dots, m-1\}|$$

= | {1, \ldots, n-h-(l-1), n-h+1, \ldots, m-1} |= m-l = d(v_l, v_m).

Case 4: When $u = v_l$ and $v = v_m^j$, $l \neq m$, $1 \leq l \leq n - h$, m = n - h + 1 and $1 \leq j \leq k$. Then,

$$|f(v_l) \oplus f(v_m^j)| = |\{1, \dots, n-h-(l-1)\} \oplus \{n-1+(m-1)k+j\}|$$

= | {1, ..., n-h-(l-1), n-1+(m-1)k+j} |= m-l+1 = d(v_l, v_m^j).

Case 5: When $u = v_l$ and $v = v_m^j$, $l \neq m$, $n - h + 2 \leq l \leq n$, m = n - h + 1 and $1 \leq j \leq k$. Then,

$$|f(v_l) \oplus f(v_m^j)| = |\{n-h+1, \dots, l-1\} \oplus \{n-1+(m-1)k+j\}|$$

= | {n-h+1, \dots, l-1, n-1+(m-1)k+j} |= l-m+1 = d(v_l, v_m^j).

Case 6: When $u = v_l$ and $v = v_m^j$, $l \neq m$, $1 \leq l \leq n-h$, $n-h+2 \leq m \leq n$ and $1 \leq j \leq k$. Then,

$$\begin{aligned} |f(v_l) \oplus f(v_m^j)| &= |\{1, \dots, n-h-(l-1)\} \oplus \{n-h+1, \dots, m-1, n-1+(m-1)k+j\} | \\ &= |\{1, \dots, n-h-(l-1), n-h+1, \dots, m-1, n-1+(m-1)k+j\} | \\ &= m-l+1 = d(v_l, v_m^j). \end{aligned}$$

Case 7: When $u = v_l^i$ and $v = v_m^j$, $l \neq m$, $1 \leq l \leq n - h$, m = n - h + 1 and $1 \leq i, j \leq k$. Then,

$$\begin{split} |f(v_l^i) \oplus f(v_m^j)| &= |\{1, \dots, n-h-(l-1), n-1+(l-1)k+i\} \oplus \{n-1+(m-1)k+j\} |\\ &= |\{1, \dots, n-h-(l-1), n-1+(l-1)k+i, n-1+(m-1)k+j\} |\\ &= m-l+2 = d(v_l^i, v_m^j). \end{split}$$

Case 8: When $u = v_l^i$ and $v = v_m^j$, $l \neq m$, $n - h + 2 \le l \le n$, m = n - h + 1 and $1 \le i, j \le k$. Then,

$$\begin{aligned} |f(v_l^i) \oplus f(v_m^j)| &= |\{n-h+1, \dots, l-1, n-1+(l-1)k+i\} \oplus \{n-1+(m-1)k+j\} | \\ &= |\{n-h+1, \dots, l-1, n-1+(l-1)k+i, n-1+(m-1)k+j\} | = l-m+2 = d(v_l^i, v_m^j). \end{aligned}$$

Case 9: When $u = v_l^i$ and $v = v_m^j$, $l \neq m$, $1 \leq l \leq n - h$, $n - h + 2 \leq m \leq n$ and $1 \leq j \leq k$. Then,

$$\begin{split} |f(v_l^i) \oplus f(v_m^j)| &= |\{1, \dots, n-h-(l-1), n-1+(l-1)k+i\} \\ &\oplus \{n-h+1, \dots, m-1, n-1+(m-1)k+j\} | \\ &= |\{1, \dots, n-h-(l-1), n-1+(l-1)k+i, n-h+1, \dots, m-1, n-1+(m-1)k+j\} | \\ &= m-l+2 = d(v_l^i, v_m^j). \end{split}$$

Thus, for any distinct vertices $u, v \in V(P_n^k)$, $|f(u) \oplus f(v)| = d(u, v)$, and hence f admits 1-uniform dcsl.

Finally, to prove $\mathcal{F} \sqsubseteq Avg_n^k$, where \mathcal{F} is the range of f, which forms a poset, define $\Psi : \mathcal{F} \rightarrow Avg_n^k$ as follows.

Case 1. On the internal vertices v_i of $V(P_n^k)$. $\Psi(f(v_i)) = \begin{cases} b_i, & \text{when } 1 \le i \le n-h, \\ a_{i-(n-h)}, & \text{otherwise.} \end{cases}$ *Case 2.* On the pendant vertices v_i^j of $V(P_n^k)$. $\Phi(f(v_i^j)) = \begin{cases} b_i^j, & \text{when } 1 \le i \le n-h, \\ a_{i-(n-h)}^j, & \text{otherwise.} \end{cases}$

In Case 1, we can identify the internal vertex labeling of $V(P_n^k)$, as the embedding of \mathcal{F} into the underline poset of Avg_n^k . In Case 2, the pendent vertex labeling of $V(P_n^k)$, list the embedding of \mathcal{F} into the outermost labeling of an underline set of Avg_n^k . Thus, from Case 1 and Case 2, we get $\mathcal{F} \sqsubseteq Avg_n^k$.

The following result follows from Proposition 12 and Proposition 13.

Proposition 14. Let \mathcal{F} be the range of vertex labeling of a 1-uniform dcsl k-uniform caterpillar such that $\mathcal{F} \sqsubseteq Avg_n^k$. Then $dim(\mathcal{F}) = 2$.

Theorem 1 ([7]). If **T** is a tree¹, then $dim(\mathbf{T}) \leq 2$ unless **T** contains one or more of the trees J_1 and J_2 or their duals as subposets.

Theorem 2. Let \mathcal{F} be the poset. Then there exists a 1-uniform dcsl f (the vertex labeling of a k-uniform caterpillar) such that $\mathcal{F} = Range(f) = \{f(v) \mid v \in V(P_n^k)\}$, where n > 2 and $k \ge 1$, and $dim(\mathcal{F}) = 2$.

Proof. Let *f* be a vertex labeling of 1-uniform dcsl *k*-uniform caterpillar on (n(k + 1)) vertices, where n > 2 and $k \ge 1$, other than the labeling which is mentioned in Proposition 7, Proposition 10 and Proposition 13, respectively, and let \mathcal{F} be the range of *f*. Hence, $\mathcal{F} = Range(f) = \{f(v) \mid v \in V(P_n^k)\}$, is a poset.

We prove that $dim(\mathcal{F}) = 2$.

Since the Hasse diagram of \mathcal{F} is a tree, from Theorem 1, we have $dim(\mathcal{F}) \leq 2$. But, $dim(\mathcal{F})$ is never less than 2. For, if it is of dimension 1, then the Hasse diagram of it resembles a path, which is not possible. Hence, $dim(\mathcal{F}) = 2$.

Recall that [3] the minimum cardinality of the underlying set *X* such that *G* admits a 1uniform dcsl is called the 1-uniform dcsl index $\delta_d(G)$ of *G*. Following discussion is an attempt to establish the relationship between the 1-uniform dscl index of a *k*-uniform caterpillar and the dimension of the poset $\mathcal{F} = Range(f) = \{f(v) \mid v \in V(P_n^k)\}$, where $n \ge 1$ and $k \ge 1$.

Lemma 3. The 1-uniform dcsl index of P_n^k $(n \ge 1, k \ge 1)$ is n(k+1) - 1.

Proof. Let $V(P_n^k) = \{v_1, v_1^1, \dots, v_1^k, v_2, v_2^1, \dots, v_n^k, \dots, v_n, v_n^1, \dots, v_n^k\}$, and let f be the dcsl labeling of P_n^k with the underlying set as X. First, we claim that $|X| \ge n(k+1) - 1$. By Lemma 1, the 1-uniform dcsl index of P_n is n - 1, and hence for the internal vertices of P_n^k , the dcsl index is n - 1. For the remaining 'nk' vertices (pendant vertices), we need to have atleast 'nk' subsets of X other than the subsets which has already been labeled for the internal vertices. Hence, the cardinality of X is atleast nk + n - 1. By Proposition 7, the vertex labeling of 1-uniform dcsl of P_n^k with underlying set X is of cardinality n(k + 1) - 1. Hence, $\delta_d(P_n^k) = n(k + 1) - 1$.

In Propositions 7, 10 and 13, the existence of different vertex labeling of 1-uniform dcsl of *k*-uniform caterpillar and their embedding in respective posets have been established.

In the following theorem we determine the bounds of the poset \mathcal{F} , where $\mathcal{F} = Range(f) = \{f(v) \mid v \in V(P_n^k)\}.$

Theorem 3. Let \mathcal{F} be the poset which is the range of a 1-uniform dcsl of the *k*-uniform caterpillar, with respect to set inclusion ' \subseteq '. Then, $dim(\mathcal{F}) \leq \delta_d(P_n^k)$.

Proof. Let *f* be a 1-uniform dcsl of $P_n^k (n \ge 1, k \ge 1)$, such that $\mathcal{F} = \{f(v) \mid v \in V(P_n^k)\}$ forms a poset with respect to set inclusion ' \subseteq '. Depending on the number of vertices of $V(P_n^k)$, we prove the theorem for the following four cases.

¹ we call a poset is a tree if its Hasse diagram is a tree in the graph theoretic sense.

Case 1: When n = 1 and k = 1. In this case, the poset \mathcal{F} is isomorphic to a poset which is a chain of length 1, and hence $dim(\mathcal{F}) = 1$. But by Lemma 3, $\delta_d(P_1^1) = 1$. Thus, we have $dim(\mathcal{F}) = \delta_d(P_n^k)$.

Case 2: When n = 2 and k = 1. By Lemma 3, we have $\delta_d(P_2^1) = 3$. Also \mathcal{F} is isomorphic to any of the four posets namely, a poset which is a chain of length 3, poset Avg_4 , poset Avg_4 or poset \mathbf{P}^1 , where \mathbf{P} is a chain of length 1. If \mathcal{F} is isomorphic to chain of length 3, then $dim(\mathcal{F}) = 1$, and hence $dim(\mathcal{F}) < \delta_d(P_n^k)$. If $\mathcal{F} \cong Avg_4$, then by Proposition 14, $dim(\mathcal{F}) = 2$, and hence $dim(\mathcal{F}) < \delta_d(P_n^k)$. Since, for a poset \mathbf{P} , $dim(\mathbf{P}) = dim(\hat{\mathbf{P}})$ (see [7]), so if $\mathcal{F} \cong Avg_4$, then $dim(\mathcal{F}) = dim(\hat{\mathcal{F}}) = dim(Avg_4) = 2$. Thus, $dim(\mathcal{F}) < \delta_d(P_n^k)$. If $\mathcal{F} \cong \mathbf{P}^1$, where \mathbf{P} is a chain of length 1, then by Proposition 8, $dim(\mathcal{F}) = 2$, and hence, $dim(\mathcal{F}) < \delta_d(P_n^k)$.

Case 3: When $n \ge 3$ and $k \ge 1$. In this case, we prefer *k*-extended posets that embeds \mathcal{F} , as it is not easy to predict all the variations of the poset \mathcal{F} . Thus, based on the underline posets of the *k*-extended posets, since by Lemma 3, $\delta_d(P_n^k) = n(k+1) - 1$, it is enough to consider the following subcases under Case 3.

Case 3.1: If the underline poset is a linear order of finite length, say $\mathbf{L} : a_{i-1} \preceq a_i$, for $2 \leq i \leq n$, then by Proposition 8, $dim(\mathcal{F}) = 2$. Hence $\delta_d(P_n^k) > dim(\mathcal{F})$.

Case 3.2: If the underline poset is isomorphic to Min_n , then by Proposition 11, $dim(\mathcal{F}) = 2$. Hence $dim(\mathcal{F}) < \delta_d(P_n^k)$.

Case 3.3: If the underline poset is isomorphic to Avg_n , then by Proposition 14, $dim(\mathcal{F}) = 2$. Hence $dim(\mathcal{F}) < \delta_d(P_n^k)$.

Case 4: When the poset \mathcal{F} is not isomorphic to either \mathbf{P}^k , Min_n^k or Avg_n^k . We have from Theorem 2, $dim(\mathcal{F}) = 2$ and, by Lemma 3, $\delta_d(P_n^k) = n(k+1) - 1$, hence $dim(\mathcal{F}) < \delta_d(P_n^k)$. Thus in all the cases we get $dim(\mathcal{F}) \leq \delta_d(P_n^k)$.

Theorem 4. The *k*-uniform caterpillar P_n^k admits a *k*-uniform dcsl.

Proof. Consider $G = P_n^k$ with n(k+1) vertices, say $v_1, v_1^1, \ldots, v_1^k, v_2, v_2^1, \ldots, v_n^k, v_n, v_n^1, \ldots$, and v_n^k . Let $X = \{1, 2, \ldots, h, \ldots, n, \ldots, n(k+1) - 1, \ldots, k(n(k+1) - 1)\}$.

Define $f : V(G) \to 2^X$ by $f(v_1) = \emptyset$, $f(v_i) = \{1, 2, ..., (i-1)k\}$ for $2 \le i \le n$, and for $1 \le i \le k$,

$$\begin{split} f(v_1^i) &= f(v_1) \cup \{(n-1)k + (i-1)k + 1, \dots, (n-1)k + (i-1)k + k\}, \\ f(v_2^i) &= f(v_2) \cup \{(n-1)k + k^2 + (i-1)k + 1, \dots, (n-1)k + k^2 + (i-1)k + k\} \text{ and } \\ f(v_n^i) &= f(v_n) \cup \\ &\{(n-1)k + (n-1)k^2 + (i-1)k + 1, \dots, (n-1)k + (n-1)k^2 + (i-1)k + k\}. \end{split}$$

In general, for $1 \le i \le n$ and $1 \le j \le k$, $f(v_i^j) = f(v_i) \cup \{(n-1)k + (i-1)k^2 + (j-1)k + 1, \dots, (n-1)k + (i-1)k^2 + (j-1)k + k\}.$ *Case 1:* When $u = v_l$ and $v = v_m$, l = 1 and $2 \le m \le n$. Then,

$$|f(v_l) \oplus f(v_m)| = | \varnothing \oplus \{1, 2, \dots, (m-1)k\} |$$

= | {1, 2, \ldots, (m-1)k} |= (m-1)k = kd(v_l, v_m).

Case 2: When $u = v_l$ and $v = v_m$, $l \neq m$, $2 \leq l$, $m \leq n$. Then,

$$\begin{aligned} |f(v_l) \oplus f(v_m)| &= |\{1, 2, \dots, (l-1)k\} \oplus \{1, 2, \dots, (m-1)k\} | \\ &= |\{(l-1)k + 1, \dots, (m-1)k\} | = (m-l)k = kd(v_l, v_m), \quad 2 \le l < m \le n. \end{aligned}$$

Case 3: When $u = v_l$ and $v = v_m^j$, $l = 1, 2 \le m \le n$ and $1 \le j \le k$. Then,

$$\begin{aligned} |f(v_l) \oplus f(v_m^j)| \\ &= | \varnothing \oplus \{1, 2, \dots, (m-1)k, (n+j-2)k + (m-1)k^2 + 1, \dots, (n+j-2)k + (m-1)k^2 + k\} | \\ &= | \{1, 2, \dots, (m-1)k, (n+j-2)k + (m-1)k^2 + 1, \dots, (n+j-2)k + (m-1)k^2 + k\} | \\ &= (m-l+1)k = kd(v_l, v_m^j). \end{aligned}$$

Case 4: When $u = v_l$ and $v = v_m^j$, $l \neq m, 2 \leq l, m \leq n$ and $1 \leq j \leq k$. Then,

$$\begin{split} |f(v_l) \oplus f(v_m^j)| \\ &= |\{1, 2, \dots, (l-1)k\} \oplus \{1, 2, \dots, (m-1)k, (n+j-2)k + (m-1)k^2 + 1, \dots, (n+j-2)k + (m-1)k^2 + k\} | \\ &= |\{(l-1)k + 1, \dots, (m-1)k, (n+j-2)k + (m-1)k^2 + 1, \dots, (n+j-2)k + (m-1)k^2 + k\} | \\ &= (m-l+1)k = kd(v_l, v_m^j), \quad 2 \le l < m \le n \text{ and } 1 \le j \le k. \end{split}$$

Case 5: When $u = v_l^i$ and $v = v_m^j$, $l = 1, 2 \le m \le n$ and $1 \le i, j \le k$. Then,

$$\begin{split} |f(v_l^i) \oplus f(v_m^j)| \\ &= |\{(n-1)k + (i-1)k + 1, \dots, (n-1)k + (i-1)k + k\} \oplus \{1, \dots, (m-1)k, \\ (n-1)k + (m-1)k^2 + (j-1)k + 1, \dots, (n-1)k + (m-1)k^2 + (j-1)k + k\} | \\ &= |\{1, \dots, (m-1)k, (n-1)k + (m-1)k^2 + (j-1)k + 1, \dots, \\ (n-1)k + (m-1)k^2 + (j-1)k + k, (n-1)k + (i-1)k + 1, \dots, (n-1)k + (i-1)k + k\} | \\ &= (m-l+2)k = kd(v_l^i, v_m^j). \end{split}$$

Case 6: When $u = v_l^i$ and $v = v_m^j$, $l \neq m, 2 \leq l, m \leq n$ and $1 \leq i, j \leq k$. Then,

$$\begin{split} |f(v_l^i) \oplus f(v_m^j)| \\ &= |\{1, \dots, (l-1)k, (n-1)k + (l-1)k^2 + (i-1)k + 1, \dots, \\ (n-1)k + (l-1)k^2 + (i-1)k + k\} \oplus \{1, \dots, (m-1)k, (n-1)k + (m-1)k^2 + \\ (j-1)k + 1, \dots, (n-1)k + (m-1)k^2 + (j-1)k + k\} | \\ &= |\{(n-1)k + (l-1)k^2 + (i-1)k + 1, \dots, (n-1)k + (l-1)k^2 + (i-1)k + k, \\ (l-1)k + 1, \dots, (m-1)k, (n-1)k + (m-1)k^2 + (j-1)k + 1, \dots, \\ (n-1)k + (m-1)k^2 + (j-1)k + k\} | \\ &= (m-l+2)k = kd(v_l^i, v_m^j), \quad 2 \le l < m \le n \text{ and } 1 \le i \le j \le k. \end{split}$$

Hence, for any distinct $u, v \in V(G)$, $|f(u) \oplus f(v)| = kd(u, v)$. Which shows that f admits k-uniform dcsl.

Lemma 4. For $n \ge 1, k \ge 1, \delta_k(P_n^k) = k(n(k+1) - 1)$.

Proof. Let $V(P_n^k) = \{v_1, v_1^1, \dots, v_n^k, v_2, v_2^1, \dots, v_2^k, \dots, v_n, v_n^1, \dots, v_n^k\}$, and let f be the dcsl labeling of P_n^k with the underlying set as X. By Lemma 2, the 1-uniform dcsl index of P_n is k(n-1), which implies that for internal vertices of P_n^k , the required dcsl index is k(n-1), where as for remaining 'nk' vertices (pendant vertices), we need at least ' k^2n ' subsets of X other than the subsets which has already been labeled. Hence the cardinality of X is atleast $k^2n + k(n-1)$. Since by Theorem 4, P_n^k is a k-uniform dcsl with underlying set X of cardinality k(n(k+1)-1), thus we have, $\delta_k(P_n^k) = k(n(k+1)-1)$.

Theorem 5 ([4]). If *G* is *k*-uniform dcsl, and *m* is a positive integer, then *G* is *mk*-uniform dcsl.

It has been already established in [4] that path admits arbitrary *k*-uniform dcsl labeling and *k*-uniform dcsl index, $\delta_k(P_n)$ is *k* times that of 1-uniform dcsl index. In this paper, this result is extended to a *k*-uniform caterpillar, and we prove that the *k*-uniform dcsl index, $\delta_k(P_n^k)$ is *k* times that of the 1-uniform dcsl index of *k*-uniform caterpillar. It is interesting to note that the range of any arbitrary *k*-uniform dcsl of a *k*-uniform caterpillar, P_n^k need not form a connected poset. However, there always exists a *k*-uniform dcsl of P_n^k , whose range is a connected poset. Hence, the Hasse diagram (or poset) which embeds the vertex labeling of 1-uniform dcsl P_n^k , can also embed the vertex labeling of *k*-uniform dcsl P_n^k . Hence, for such postes the dimension corresponding to 1-uniform dcsl P_n^k and the dimension corresponding to *k*-uniform dcsl P_n^k are same. Thus, we have the following theorem.

Theorem 6. If \mathcal{F} is the range of a *k*-uniform dcsl of the *k*-uniform caterpillar P_n^k $(n \ge 1, k \ge 1)$, that forms a poset with respect to set inclusion ' \subseteq ', then, $dim(\mathcal{F}) \le \delta_k(P_n^k)$.

Proof. Proof is immediate from Theorem 5, Lemma 4 and Theorem 3.

Acnowledgement. The authors would also like to thank the referee for the valuable comments that greatly improved the quality of this paper.

References

- Acharya B.D. Set-valuations of Graphs and Their Applications. In: MRI, Lecture Notes in Applied Mathematics, 2. Mehta Research Institute of Mathematics and Mathematical Physics, Allahabad, 1983.
- [2] Acharya B.D., Germina K.A. Distance Compatible Set-Labeling of Graphs. Indian J. Math. Comp. Sci. Jhs. 2011, 1, 49–54.
- [3] Germina K.A., Bindhu K.T. Distance Compatible Set-Labeling Index of Graphs. Int. J. Contemp. Math. Sciences 2010, 5 (19), 911–919.
- [4] Germina K.A. Uniform Distance-compatible Set-labelings of Graphs. J. Combinatorics, Information and System Sciences 2012, 37, 169–178.
- [5] Birkhoff G. Lattice Theory. In: Colloq. Publ., 15. Amer. Math. Soc., Providence, R.I., 1967.
- [6] Harary F. Graph theory. Addison wesley publ. comp. reading, Massachusetts, 1969.
- [7] Trotter W.T., Moore J. The dimension of Planar Posets. J. Combin. Theory Ser. B 1977, 22 (1), 54–67. doi:10.1016/0095-8956(77)90048-X
- [8] Dushnik B., Miller E.W. Partially ordered sets. Amer. J. Math. 1941, 63 (3), 600-610. doi:10.2307/2371374
- [9] Baker K., Fishburn P., Roberts F. Partial orders of dimension 2, interval orders and interval graphs. Networks 1971, 2, 11–28.
- [10] Nageswara Rao K., Germina K.A. *Dimension of Vertex labeling of k- uniform dcsl path.* Adv. Appl. Discrete Math. 2015, **16** (2), 89–109.

- [11] Ore O. Theory of Graphs. In: Colloq. Publ., 38. Amer. Math. Soc., Providence, R.I., 1962.
- [12] Kelly D. On the dimension of partially ordered sets. Discrete Math. 1981, 35, 135–156.
- [13] Hiraguchi T. On the dimension of orders. Sci. Rep. Kanazawa Univ. 1955, 4 (1), 1–20.

Received 14.01.2016 Revised 16.03.2016

Нагесвара Рао К., Герміна К.А., Шаіні П. *Про розмірність маркування вершин k-однорідного dcsl k-однорідного графа* // Карпатські матем. публ. — 2016. — Т.8, №1. — С. 134–149.

Сумісне з відстанню множинне маркування (dcsl) зв'язного графа $G \in in'єктивним відображенням <math>f : V(G) \to 2^X$, де $X \in$ непорожною базовою множиною такою, що відповідна індукована функція $f^{\oplus} : E(G) \to 2^X \setminus \{\varnothing\}$, задана рівністю $f^{\oplus}(uv) = f(u) \oplus f(v)$, задовольняє $| f^{\oplus}(uv) | = k_{(u,v)}^f d_G(u,v)$ для довільної пари різних вершин $u, v \in V(G)$, де $d_G(u,v)$ позначає відстань між u і v та $k_{(u,v)}^f \in$ числом, не обов'язково цілим. Сумісне з відстанню множинне маркування f графа $G \in k$ -однорідним, якщо всі коефіцієнти пропорційності відносно f рівні k, і якщо G допускає таке маркування, то G називають k-однорідним dcsl графом. k-однорідний dcsl індекс графа G, що позначається $\delta_k(G)$, є мінімальним серед потужностей X, де X пробігає всі k-однорідні dcsl-множини графа G. Лінійне розширення \mathbf{L} часткового порядку $\mathbf{P} = (P, \preceq)$ є лінійним порядком на елементах із P таким, що з $x \preceq y$ в \mathbf{P} слідує, що $x \preceq y$ в \mathbf{L} для всіх $x, y \in P$. Розмірність множини \mathbf{P} , яка позначається $dim(\mathbf{P})$, є мінімальним числом лінійних розширень на \mathbf{P} , перетин яких є ' \preceq '. У цій статті ми доводимо, що $dim(\mathcal{F}) \le \delta_k(P_n^{+k})$, де \mathcal{F} є образом k-однорідного dcsl k-однорідного графа, позначаєного P_n^{+k} ($n \ge 1, k \ge 1$) на 'n(k+1)' вершинах.

Ключові слова і фрази: k-однорідний dcsl індекс, розмірність множини з частковим порядком, решітка.