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ON THE DIMENSION OF VERTEX LABELING OF k-UNIFORM DCSL OF

k-UNIFORM CATERPILLAR

A distance compatible set labeling (dcsl) of a connected graph G is an injective set assignment
f : V(G) → 2X, X being a nonempty ground set, such that the corresponding induced function

f ⊕ : E(G) → 2X \ {∅} given by f ⊕(uv) = f (u) ⊕ f (v) satisfies | f ⊕(uv) |= k
f
(u,v)dG(u, v) for

every pair of distinct vertices u, v ∈ V(G), where dG(u, v) denotes the path distance between u and

v and k
f
(u,v) is a constant, not necessarily an integer. A dcsl f of G is k-uniform if all the constant

of proportionality with respect to f are equal to k, and if G admits such a dcsl then G is called a
k-uniform dcsl graph. The k-uniform dcsl index of a graph G, denoted by δk(G) is the minimum of
the cardinalities of X, as X varies over all k-uniform dcsl-sets of G. A linear extension L of a partial
order P = (P,�) is a linear order on the elements of P, such that x � y in P implies x � y in L,
for all x, y ∈ P. The dimension of a poset P, denoted by dim(P), is the minimum number of linear
extensions on P whose intersection is ‘�’. In this paper we prove that dim(F ) ≤ δk(P+k

n ), where
F is the range of a k-uniform dcsl of the k-uniform caterpillar, denoted by P+k

n (n ≥ 1, k ≥ 1) on
‘n(k + 1)’ vertices.
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INTRODUCTION

Acharya [1] introduced the notion of vertex set-valuation as a set-analogue of number valu-
ation. For a graph G = (V, E) and a nonempty set X, Acharya defined a set-valuation of G as
an injective set-valued function f : V(G) → 2X, and defined a set-indexer f⊕ : E(G) → 2X \ {∅}

as a set-valuation such that the function given by f⊕(uv) = f (u)⊕ f (v) for every uv ∈ E(G) is
also injective, where 2X is the set of all subsets of X and ‘⊕’ is the binary operation of taking
the symmetric difference of subsets of X.

Acharya and Germina [2], introduced the particular kind of set-valuation for which a met-
ric, especially the cardinality of the symmetric difference, associated with each pair of ver-
tices is k (where k be a constant) times that of the distance between them in the graph [2]. In
other words, determine those graphs G = (V, E) that admit an injective set-valued function
f : V(G) → 2X, where 2X is the power set of a nonempty set X, such that, for each pair of
distinct vertices u and v in G, the cardinality of the symmetric difference f (u)⊕ f (v) is k times
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that of the usual path distance dG(u, v) between u and v in G, where k is a non-negative con-
stant. They in [2] called such a set-valuation f of G a k-uniform distance-compatible set-labeling (k-

uniform dcsl) of G, and the graph G which admits k-uniform dcsl, a k-uniform distance-compatible

set-labeled graph (k-uniform dcsl graph) and the non empty set X corresponding to f , a k-uniform

dcsl-set. The k-uniform dcsl index [4] of a graph G, denoted by δk(G) is the minimum of the
cardinalities of X, as X varies over all k-uniform dcsl-sets of G.

Consider a partially ordered set or a poset P as a structure (P, �) where P is a nonempty set
and ‘�’ is a partial order relation on P. We denote (x, y) ∈ P by x � y, and identify the ground
set of a poset with the whole poset. Two elements of P standing in the relation of P are called
comparable, otherwise they are incomparable. We denote the incomparable elements x and y of
P by x ‖ y. A poset is a chain if it contains no incomparable pair of elements, and in this case,
the partial order is a linear order. A poset is an antichain if all of its pairs are incomparable. The
length of a chain is one less than the number of elements in the chain. An element p ∈ P of a
finite poset is on level k, if there exists a sequence of elements p0, p1, . . . , pk = p in P such that
p0 � p1 � ldots � pk = p and any other such sequences in P has length less than or equal to
k. The size of a largest chain in a poset P is called the height of the poset, denoted by height(P)

or h(P), and that of a largest antichain is called its width, denoted by width(P) or w(P). A Hasse

diagram of a poset (P, �) is a drawing in which the points of P are placed so that if y covers x

(we say, z covers y if and only if y ≺ z and y � x � z implies either x = y or x = z), then y

is placed at a higher level than x and joined to x by a line segment. A poset P is connected, if
its Hasse diagram is connected as a graph. A Cover graph or Hasse graph of a poset (P, �) is the
graph with vertex set P such that x, y ∈ P are adjacent if and only if one of them covers the
other.

Let P = (P,�P) and Q = (Q,�Q) be two partially ordered sets. A mapping f from the
poset P to the poset Q is called order preserving if for every two elements x and y of P, x �P y

implies f (x) �Q f (y). A poset Q is a subposet of P if Q ⊆ P, and �Q is the restriction of �P to
Q × Q. i.e., for a, b ∈ Q, a �Q b if and only if a �P b. Two posets P and Q are called isomorphic

if there is a one to one order preserving mapping Φ from the poset P onto the poset Q such
that for every two elements x and y of P, x �P y in P if and only if Φ(x) �Q Φ(y) in Q. The
poset Q is said to be embedded or contained in P, denoted by Q ⊑ P, if Q is isomorphic to a
subposet of P. Let R and S are two partial orders (with respect to �) on the same set X, we call
S an extension of R if R ⊆ S, i.e., x � y in R implies x � y in S for all x, y ∈ X. In particular
if S is a chain, then we call it as a linear extension of R. For convenience, let L : [x1, x2, . . . , xn]

denote linear order on {x1, x2, . . . , xn} in which x1 � x2 � · · · � xn.

Definition 1 ([8]). A set R = {L1, L2, . . . , Lk} of linear extensions of P is a realizer of P if for
every incomparable pair x, y ∈ P, there are Li, Lj ∈ R with x � y in Li and x � y in Lj for
1 ≤ i 6= j ≤ k. The dimension of P (denoted by dim(P)) is the minimum cardinality of a
realizer.

There are equivalent definitions for dim(P). It is defined as the minimum k for which there
are linear extensions L1, . . . , Lk such that P = L1 ∩L2 ∩ · · · ∩Lk, where the intersection is taken
over the sets of relations of Li, for 1 ≤ i ≤ k. Another characterization of dimension, in terms
of coordinates, is obtained by using an embedding of P into Rt (called t-dimensional poset)
[11]. Let Rt denotes the poset of all t-tuples of real numbers, partially ordered by inequality in
each coordinate: (a1, a2, . . . , at) ≤ (b1, b2, . . . , bt) if and only if ai ≤ bi, for i = 1, 2, . . . , t. Then
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the dimension of a poset P is the minimum number t such that P is embedded in Rt, denoted
as P ⊑ Rt. For more results on dimension of poset one may see [7, 9, 12, 13].

A poset (L,�) is a lattice if every pair of elements x, y ∈ L, has a least upper bound (lub),
denoted by x ∨ y (called join), and a greatest lower bound (glb), denoted by x ∧ y (called meet). In
general, a lattice is denoted by (L,�). Throughout this paper lattice (and poset) means lattice
(and poset) under set inclusion ⊆. Unless otherwise mentioned, for all the terminology in
graph theory and lattice theory, the reader is asked to refer, respectively [5, 6].

This paper initiates a study on the dimension of vertex labeling of k-uniform dcsl of k-
uniform caterpillar, and prove that dim(F ) ≤ δk(P+k

n ), where F is the range of a k-uniform
dcsl of the k-uniform caterpillar, denoted by P+k

n (n ≥ 1, k ≥ 1) on ‘n(k + 1)’ vertices that
forms a poset under set inclusion ⊆.

Following are the definitions and results used in this paper.

Definition 2 ([10]). The height-2 poset Hn on 2n elements a1, . . . , an, b1, . . . , bn is the poset of
height two consisting of two antichains A = {a1, . . . , an} and B = {b1, . . . , bn} such that bi � aj

in Hn exactly if i = j, and j = i − 1.

Proposition 1 ([10]). For n ≥ 2, dim(Hn) = 2.

Proposition 2 ([10]). Let F be the range of a vertex labeling of 1-uniform dcsl path Pn(n > 2),
which is embedded in Hn, then dim(F ) = 2.

Definition 3 ([10]). A width-2 poset Wn is the poset ({a1, . . . , an, b1, . . . , bn},�) of width two
consisting of two chains A = {a1, . . . , an} and B = {b1, . . . , bn} such that ai−1 � ai for 2 ≤ i ≤

n, bi � bi+1 for 1 ≤ i ≤ n − 1, a1 � bi for 1 ≤ i ≤ n, and for 2 ≤ i ≤ n and 1 ≤ j ≤ n, ai || bj.

Proposition 3 ([10]). For n ≥ 2, dim(Wn) = 2.

Proposition 4 ([10]). Let F be the range of a vertex labeling of 1-uniform dcsl path Pn(n > 2),
which is embedded in Wn, then dim(F ) = 2.

Lemma 1 ([3]). δd(Pn) = n − 1, for n > 2.

Lemma 2 ([10]). δk(Pn) = k(n − 1), for n > 2.

1 MAIN RESULTS

Since the existence of vertex labeling of 1-uniform dcsl graph is not unique, the problem
of determining posets which embeds the vertex labeling of 1-uniform dcsl of k-uniform cater-
pillar is same as determining the existence of different vertex labels f of 1-uniform dcsl of
k-uniform caterpillar whose corresponding range, say F = Range( f ) forms a poset under
set inclusion ⊆. Thus, there is a one to one correspondence between the vertex labeling f

of 1-uniform dcsl of k-uniform caterpillar and its corresponding poset F . Thus, it is always
possible to find a 1-uniform dcsl f of a graph G so that F = Range( f ) forms a poset under
set inclusion ⊆. Hence, F contains the vertex labeling f of 1-uniform dcsl graph G as an em-
bedding of itself. Hence, the problem of determining the 1-uniform dcsl vertex labeling f of
a graph G is equivalent in determining the poset F which embeds the 1-uniform dcsl vertex
labeling f of the same graph G.
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Definition 4. Let P = ({a1, . . . , an},�) be a poset. We define k-uniform extended poset or,
simply, k-extended poset of P, denoted by Pk as

({a1, a1
1, a2

1, . . . , ak
1, a2, a1

2, a2
2, ak

2, . . . , an, a1
n, a2

n, . . . , ak
n},�),

which is an extension of P, and for 1 ≤ i ≤ n, each k(≥ 1) elements a1
i , a2

i , . . . , ak
i of Pk

covers only ai. We call P as an underline poset of Pk.

Remark 1. It is interesting to note the following in a k-extended posets.

(i) If there exist any two distinct elements which belong to the same level in Pk, then they
are incomparable.

(ii) For each k(≥ 1) elements a1
i , a2

i , . . . , ak
i of Pk covers only ai, where 1 ≤ i ≤ n. This

implies that there exist no element in Pk that covers any one of the k elements a1
i , a2

i , . . . ,
ak

i . Hence, the k elements a1
i , a2

i , . . . , ak
i are maximal elements of Pk. Thus, they are the nk

maximal elements, namely, a
j
i in Pk, 1 ≤ i ≤ n and 1 ≤ j ≤ k.

Proposition 5. For any poset P (finite and connected) of size greater than 1, the k-extended
poset Pk(k ≥ 1) of P, does not form a lattice.

Proof. If possible let, Pk forms a lattice, then Pk has unique glb and unique lub, say g and l

respectively. Since l is the lub of Pk, x � l, for every x ∈ Pk, which in turn implies one of the
element from the maximal elements a1

n, a2
n, . . . , ak

n of Pk should be equal to l, say, a1
n. Hence for

2 ≤ i ≤ n, we have ai
n � l which is a contradiction as remarked in Remark 1.

Proposition 6. Let P be a linear order as of the form: ai−1 � ai, for 2 ≤ i ≤ n, then the
dimension of k-extended poset Pk(k ≥ 1) of P is 2.

Proof. Let R = {L1, L2} be linear extensions of Pk, where
L1 : [a1, a1

1, . . . , ak
1, a2, a1

2, . . . , ak
2, . . . , an, a1

n, . . . , ak
n] and

L2: [a1, . . . , an, ak
n, . . . , a1

n, ak
n−1, . . . , a1

n−1, . . . , ak
1, . . . , a1

1].
Then R is a realizer of Pk, and hence dim(Pk) ≤ 2. We prove that there is no proper subset

S of R which realizes Pk. For, if there is a proper subset S of R which realizes Pk, then, the only
one member in S give rise to the poset Pk, and hence, all the elements of Pk are comparable,
which is a contradiction. Hence dim(Pk) = 2.

Since the graph P+k
n is the extension of Pn, the k-extended poset can embed the vertex

labeling of a 1-uniform dcsl k-uniform caterpillar only when its corresponding underline poset
embed the vertex labeling of a 1-uniform dcsl path.

Now, we aim to determine the dimension of k-extended posets which embeds the vertex
labeling of a 1-uniform dcsl of a k-uniform caterpillar.

Proposition 7. Let P be a linear order as ai−1 � ai, for 2 ≤ i ≤ n, then the k-extended poset Pk

embeds the vertex labeling of a 1-uniform dcsl of the k-uniform caterpillar.

Proof. Let G = P+k
n be the k-uniform caterpillar with n(k+ 1) vertices, where n ≥ 2 and k ≥ 1.

Let V(G) = {vi, v
j
i | 1 ≤ i ≤ n, 1 ≤ j ≤ k}, where vi are the internal vertices and v

j
i are the

pendant vertices which are adjacent to vi.
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First we claim that there exist a vertex labeling f of a 1-uniform dcsl of the k-uniform cater-
pillar, whose range is suitable for the embedding of k-extended poset Pk. Let
X = {1, 2, . . . , n(k + 1) − 1}. Define f : V(G) → 2X such that f (v1) = ∅ and f (vj) =

{1, 2, . . . , j − 1}, 2 ≤ j ≤ n. For, 1 ≤ i ≤ n and 1 ≤ j ≤ k,

f (v
j
i) = f (vi) ∪ {(n − 1) + (i − 1)k + j} = {1, 2, . . . , i − 1, (n − 1) + (i − 1)k + j}.

Case 1: When u = vl and v = vm, l = 1 and 2 ≤ m ≤ n. Then,

| f (vl )⊕ f (vm)| =| ∅⊕ {1, 2, . . . , m − 1} |=| {1, 2, . . . , m − 1} |= m − l = d(vl , vm).

Case 2: When u = vl and v = vm, l 6= m, 2 ≤ l, m ≤ n. Then,

| f (vl )⊕ f (vm)| =| {1, 2, . . . , l − 1} ⊕ {1, 2, . . . , m − 1} |

=| {l, l + 1, . . . , m − 1} |= m − l = d(vl , vm), 2 ≤ l < m ≤ n.

Case 3: When u = vl and v = v
j
m, l = 1, 2 ≤ m ≤ n and 1 ≤ j ≤ k. Then,

| f (vl )⊕ f (v
j
m)| =| ∅⊕ {1, 2, . . . , m − 1, (n − 1) + (m − 1)k + j} |

=| {1, 2, . . . , m − 1, (n − 1) + (m − 1)k + j} |= m = d(vl , v
j
m).

Case 4: When u = vl and v = v
j
m, l 6= m, 2 ≤ l, m ≤ n and 1 ≤ j ≤ k. Then,

| f (vl)⊕ f (v
j
m)| =| {1, 2, . . . , l − 1} ⊕ {1, 2, . . . , m − 1, (n − 1) + (m − 1)k + j} |

=| {l, l + 1, . . . , m − 1, (n − 1) + (m − 1)k + j} |

= m − l + 1 = d(vl , v
j
m), 2 ≤ l < m ≤ n and 1 ≤ j ≤ k.

Case 5: When u = vi
l and v = v

j
m, l = 1, 2 ≤ m ≤ n and 1 ≤ i, j ≤ k. Then,

| f (vi
l)⊕ f (v

j
m)| =| {(n − 1) + (l − 1)k + i}

⊕ {1, . . . , m − 1, (n − 1) + (m − 1)k + j} |

=| {1, . . . , m − 1, (n − 1) + (m − 1)k + j, (n − 1) + (l − 1)k + i} |= m + 1 = d(vi
l , v

j
m).

Case 6: When u = vi
l and v = v

j
m, l 6= m, 2 ≤ l, m ≤ n and 1 ≤ i, j ≤ k. Then,

f (vi
l)⊕ f (v

j
m)| =| {1, . . . , l − 1, (n − 1) + (l − 1)k + i}

⊕ {1, . . . , m − 1, (n − 1) + (m − 1)k + j} |

=| {(n − 1) + (l − 1)k + i, l, l + 1, ., m − 1, (n − 1) + (m − 1)k + j} |

= m − l + 2 = d(vi
l , v

j
m), 2 ≤ l < m ≤ n and 1 ≤ i ≤ j ≤ k.

Hence, for any distinct u, v ∈ V(G), | f (u) ⊕ f (v)| = d(u, v). Thus, f is a 1-uniform dcsl of
G.

Now, to prove, F ⊑ Pk, where F is the range of f which forms a poset under ‘⊆’ and P a
linear order as ai−1 � ai, 2 ≤ i ≤ n. Define Φ : F → Pk as follows.
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Case 1. On the internal vertices vi of V(G), define Φ( f (vi)) = ai.

Case 2. On the pendant vertices v
j
i of V(G), define Φ( f (v

j
i )) = a

j
i .

In Case 1, the corresponding vertex labels of a pair of internal vertices are comparable
where as in Case 2, for any pair of pendant vertices the corresponding vertex labels are incom-
parable. Hence, f (vi) ⊆ f (vj) in F if and only if ai � aj in Pk and f (vr

i ) ‖ f (vs
i ) in F if and

only if ar
i ‖ as

i in Pk. Also, f (vi) ⊆ f (v
j
i) in F if and only if ai � a

j
i in Pk and f (vi) ‖ f (vs

i−1) in
F if and only if ai ‖ as

i−1 in Pk. Therefore, F ⊑ Pk.

Using Proposition 6 and Proposition 7, we have the following result.

Proposition 8. Let F be the range of a 1-uniform dcsl of the k-uniform caterpillar such that
F ⊑ Pk, where P is a linear order of finite length. Then dim(F ) = 2.

Remark 2. From Proposition 2 and Proposition 4, we have seen that the height-2 poset, Hn

and width-2 poset, Wn on ‘ 2n ’ elements embeds the vertex labeling of a 1-uniform dcsl path.
Choosing these posets as underline posets defined on ‘ n ’ elements, the corresponding k-
extended posets embedding, restricted to height-2 poset and width-2 poset on n elements,
give two subposets, namely min height poset (denoted by Minn) and avg height poset(denoted
by Avgn), respectively. Further, the poset Minn end up with b⌈ n

2 ⌉
, when n is odd; a n

2
if n is

even. Hence, Minn ⊑ Hn. For the poset Avgn, Avgn ⊑ Wn. For, without loss of generality,
consider the poset as ({a1, . . . , a⌈ n

2 ⌉=h, b1, . . . , bn−h},�) of width two consisting of two chains
A = {a1, . . . , ah} and B = {b1, . . . , bn−h} such that ai−1 preceqai for 2 ≤ i ≤ h, bi � bi+1 for
1 ≤ i ≤ n − h − 1, a1 � bi for 1 ≤ i ≤ n − h, and for 2 ≤ i ≤ h and 1 ≤ j ≤ n − h, ai || bj.
In particular, if the underline poset is of linear order, then it posses maximum height and by
Proposition 6, the k-extended poset of it has dimension 2.

Proposition 9. For a k-extended poset Minn, dim(Mink
n) = 2.

Proof. We define the linear extensions L1 and L2 of Mink
n, in two cases.

Case 1: When n is even. Consider,

L1 : [b1, b1
1, . . . , bk

1, b2, b1
2, . . . , bk

2, . . . , b n
2
, b1

n
2
, . . . , bk

n
2
, a1, a1

1, . . . , ak
1, a2, a1

2, . . . , ak
2, . . . ,

a n
2
, a1

n
2
, . . . , ak

n
2
] and

L2 : [b n
2
, a n

2
, b n

2−1, a n
2−1, . . . , b1, a1, ak

n
2
, . . . , a1

n
2
, ak

n
2−1, . . . , a1

n
2−1, . . . , ak

1, . . . , a1
1, bk

n
2
, . . . ,

b1
n
2
, bk

n
2 −1, . . . , b1

n
2−1, . . . , bk

1, . . . , b1
1].

Since, these extensions intersect to yield the partial order on Mink
n, dim(Mink

n) ≤ 2.
Case 2: When n is odd. Consider,

L1 : [b⌈ n
2 ⌉

, b1
⌈ n

2 ⌉
, . . . , bk

⌈ n
2 ⌉

, b⌈ n
2 ⌉−1, b1

⌈ n
2 ⌉−1, . . . , bk

⌈ n
2 ⌉−1, . . . , b1, b1

1, . . . , bk
1, a⌈ n

2 ⌉−1, a1
⌈ n

2 ⌉−1, . . . ,

ak
⌈ n

2 ⌉−1, . . . , a1, a1
1, . . . , ak

1] and

L2 : [b1, a1, b2, a2, . . . , b⌈ n
2 ⌉−1, a⌈ n

2 ⌉−1, b⌈ n
2 ⌉

, ak
1, . . . , a1

1, ak
2, . . . , a1

2, . . . , ak
⌈ n

2 ⌉−1, . . . , a1
⌈ n

2 ⌉−1,

bk
1, . . . , b1

1, bk
2, . . . , b1

2, . . . , bk
⌈ n

2 ⌉
, . . . , b1

⌈ n
2 ⌉
].
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Clearly, these extensions produces a realizer of Mink
n, hence dim(Mink

n) ≤ 2. Following as
in the proof of Proposition 6, the dimension cannot be less than 2. Therefore, dim(Mink

n) =

2.

Proposition 10. The k-extended poset Mink
n embeds the vertex labeling of a 1-uniform dcsl of

the k-uniform caterpillar.

Proof. Let V(Pk
n) = {v1, v1

1, . . . , vk
1, v2, v1

2, . . . , vk
2 . . . , vn, v1

n, . . . , vk
n}, where vi are the internal ver-

tices and v
j
i are the pendant vertices which are adjacent to vi.

Let X = {1, 2, . . . , w, . . . , n, . . . , m = n(k + 1)− 1}, where w = ⌈ |V(Pn)|
2 ⌉.

We claim that there exists a poset F which can be obtained from a vertex labeling of 1-
uniform dcsl caterpillar, that suits for the embedding of Mink

n.
Define f : V(Pk

n) → 2X, on internal vertices, by

f (v1) = {1, 2, . . . , w − 1}, f (v2) = {1, 2, . . . , w − 1, w}, f (v3) = {2, . . . , w − 1, w},

f (v4) = {2, . . . , w − 1, w, w + 1}, f (v5) = {3, . . . , w, w + 1}, . . . , f (vn) = {w, w + 1, . . . , n − 1},

when n is odd; otherwise, f (vn) = {w, w + 1, . . . , n}. In general, for 1 ≤ i ≤ n,

f (vi) =

{

{ i+1
2 , i+1

2 + 1, . . . , i+1
2 + w − 2 }, if i is odd

{ i
2 , i

2 + 1, . . . , i
2 + w − 1 }, otherwise,

and on pendant vertices, vertex labeling is same, as in Proposition 7.
Case 1: When u = vi and v = vi+1, where i is odd. Then,

| f (vi)⊕ f (vi+1)| =| {
i + 1

2
, . . . ,

i + 1

2
+ w − 2} ⊕ {

i + 1

2
, . . . ,

i + 1

2
+ w − 1} |

=| {
i + 1

2
+ w − 1} |= 1 = d(vi , vi+1).

Case 2: When u = vi+1 and v = vi, where i is even. Then,

| f (vi+1)⊕ f (vi)| =| {
i + 2

2
, . . . ,

i + 2

2
+ w − 2} ⊕ {

i

2
, . . . ,

i

2
+ w − 1} |

=| {
i

2
} |= 1 = d(vi+1, vi).

Case 3: When u = vl and v = vm, l 6= m, 1 ≤ l, m ≤ n and both l and m are odd. Then,

| f (vl )⊕ f (vm)| =| {
l + 1

2
, . . . ,

l + 1

2
+ w − 2} ⊕ {

m + 1

2
, . . . ,

m + 1

2
+ w − 2} |

=| {
l + 1

2
, . . . ,

m + 1

2
+ w − 2} |= m − l = d(vl , vm), 1 ≤ l < m ≤ n.

Case 4: When u = vl and v = vm, l 6= m, 1 ≤ l, m ≤ n and both l and m are even. Then,

| f (vl )⊕ f (vm)| =| {
l

2
, . . . ,

l

2
+ w − 1} ⊕ {

m

2
, . . . ,

m

2
+ w − 1} |

=| {
l

2
, . . . ,

m

2
+ w − 1} |= m − l = d(vl , vm), 1 ≤ l < m ≤ n.

Case 5: When u = vi and v = v
j
i , 1 ≤ i ≤ n and 1 ≤ j ≤ k. Then,

| f (vi)⊕ f (v
j
i)| =| {n + (i − 1)k + (j − 1)} |= 1 = d(vi, v

j
i).
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Case 6: When u = vi and v = v
j
i+1, 1 ≤ j ≤ k and i is odd. Then,

| f (vi)⊕ f (v
j
i+1)| =| {

i + 1

2
, . . . ,

i + 1

2
+ w − 2}

⊕ {
i + 1

2
, . . . ,

i + 1

2
+ w − 1, n + (i)k + (j − 1)} |

=| {
i + 1

2
+ w − 1, n + (i)k + (j − 1)} |= 2 = d(vi, v

j
i+1).

Case 7: u = vi+1 and v = v
j
i , 1 ≤ j ≤ k and i is even. Then,

| f (vi+1)⊕ f (vi)| =| {
i + 2

2
,

i + 2

2
+ 1, . . . ,

i + 2

2
+ w − 2}

⊕ {
i

2
,

i

2
+ 1, . . . ,

i

2
+ w − 1, n + (i − 1)k + (j − 1)} |

=| {
i

2
, n + (i − 1)k + (j − 1)} |= 2 = d(vi+1, v

j
i).

Case 8: When u = vl and v = v
j
m, l 6= m, 1 ≤ l, m ≤ n, 1 ≤ j ≤ k and both l and m are odd.

Then,

| f (vl)⊕ f (v
j
m)| =| {

l + 1

2
,

l + 1

2
+ 1, . . . ,

l + 1

2
+ w − 2}

⊕ {
m + 1

2
,

m + 1

2
+ 1, . . . ,

m + 1

2
+ w − 2, n + (m − 1)k + (j − 1)} |

=| {
l + 1

2
, . . . ,

m + 1

2
+ w − 2, n + (m − 1)k + (j − 1)} |= m − l + 1 = d(vl , v

j
m),

1 ≤ l < m ≤ n and 1 ≤ j ≤ k.

Case 9: When u = vl and v = v
j
m, l 6= m, 1 ≤ l, m ≤ n, 1 ≤ j ≤ k and both l and m are even.

Then,

| f (vl)⊕ f (v
j
m)| =| {

l

2
,

l

2
+ 1, . . . ,

l

2
+ w − 1}

⊕ {
m

2
,

m

2
+ 1, . . . ,

m

2
+ w − 1, n + (m − 1)k + (j − 1)} |

=| {{
l

2
, . . . ,

m

2
+ w − 1, n + (m − 1)k + (j − 1)} |= m − l + 1 = d(vl , v

j
m),

1 ≤ l < m ≤ n and 1 ≤ j ≤ k.

Case 10: When u = vr
i and v = vs

i+1, 1 ≤ r, s ≤ k and i is odd. Then,

| f (vr
i )⊕ f (vs

i+1)| =| {
i + 1

2
, . . . ,

i + 1

2
+ w − 2, n + (i − 1)k + (r − 1)}

⊕ {
i + 1

2
, . . . ,

i + 1

2
+ w − 1, n + (i)k + (s − 1)} |

=| {n + (i − 1)k + (r − 1),
i + 1

2
+ w − 1, n + (i)k + (s − 1)} |= 3 = d(vr

i , vs
i+1).
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Case 11: u = vr
i+1 and v = vs

i , 1 ≤ r, s ≤ k and i is even. Then,

| f (vr
i+1)⊕ f (vs

i )| =| {
i + 2

2
, . . . ,

i + 2

2
+ w − 2, n + (i)k + (r − 1)}

⊕ {
i

2
, . . . ,

i

2
+ w − 1, n + (i − 1)k + (j − 1)} |

=| {
i

2
, n + (i)k + (r − 1), n + (i − 1)k + (s − 1)} |= 3 = d(vr

i+1, vs
i ).

Case 12: When u = vi
l and v = v

j
m, l 6= m, 1 ≤ l, m ≤ n, 1 ≤ i, j ≤ k and both l and m are

odd. Then,

| f (vi
l)⊕ f (v

j
m)| =| {

l + 1

2
, . . . ,

l + 1

2
+ w − 2, n + (l − 1)k + (i − 1)}

⊕ {
m + 1

2
, . . . ,

m + 1

2
+ w − 2, n + (m − 1)k + (j − 1)} |

=| {{
l + 1

2
, . . . ,

m + 1

2
+ w − 2, n + (l − 1)k + (i − 1), n + (m − 1)k + (j − 1)} |

= m − l + 2 = d(vi
l , v

j
m), 1 ≤ l < m ≤ n and 1 ≤ i, j ≤ k.

Case 13: When u = vi
l and v = v

j
m, l 6= m, 1 ≤ l, m ≤ n, 1 ≤ i, j ≤ k and both l and m are

even. Then,

| f (vi
l)⊕ f (v

j
m)| =| {

l

2
, . . . ,

l

2
+ w − 1, n + (l − 1)k + (i − 1)}

⊕ {
m

2
, . . . ,

m

2
+ w − 1, n + (m − 1)k + (j − 1)} |

=| {{
l

2
, . . . ,

m

2
+ w − 1, n + (l − 1)k + (i − 1), n + (m − 1)k + (j − 1)} |

= m − l + 2 = d(vi
l , v

j
m), 1 ≤ l < m ≤ n and 1 ≤ i, j ≤ k.

Thus, for any distinct u, v ∈ V(Pk
n), | f (u) ⊕ f (v)| = d(u, v) and hence f admits 1-uniform

dcsl. Also, to prove F ⊑ Mink
n, where F is the range of f , which forms a poset, we define

Φ : F → Mink
n as follows in two different cases.

Case 1. On the internal vertices vi of V(Pk
n). Φ( f (vi)) =







a i
2
, if i is even,

b⌈ i
2 ⌉

, otherwise.

Case 2. On the pendant vertices v
j
i of V(Pk

n). Φ( f (v
j
i )) =







a
j
i
2
, if i is even,

b
j

⌈ i
2 ⌉

, otherwise.

In Case 1, the internal vertex labeling of V(Pk
n), exhibits the embedding of F into the un-

derline poset of Mink
n; and in Case 2, the pendent vertex labeling of V(Pk

n), exhibits the em-
bedding of F into the outermost labeling of an underline set of Mink

n. Thus, all together, we
get F ⊑ Mink

n.

Analogously, from Proposition 9 and Proposition 10, we have.
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Proposition 11. Let F be the range of a 1-uniform dcsl of the k-uniform caterpillar such that
F ⊑ Mink

n. Then dim(F ) = 2.

Proposition 12. For the k-extended poset Avgk
n , dim(Avgk

n) = 2.

Proof. Let us take the linear extensions of Avgk
n as

L1 :[a1, a1
1, . . . , ak

1, a2, a1
2, . . . , ak

2, . . . , ah, a1
h, . . . , ak

h, b1, b1
1, . . . , bk

1, b2, b1
2, . . . , bk

2, . . . , bn−h,

b1
n−h, . . . , bk

n−h] and

L2 :[a1, b1, b2, . . . , bn−h, a2, . . . , ah, bk
n−h, . . . , b1

n−h, bk
n−h−1, . . . , b1

n−h−1, . . . , bk
1, . . . , b1

1,

ak
h, . . . , a1

h, ak
h−1, . . . , a1

h−1, . . . , ak
1, . . . , a1

1].

Then dimension of Avgk
n is at most 2. Again, as in Proposition 6 the dimension cannot be

less than 2. Hence dim(Avgk
n) = 2.

Proposition 13. The k-extended poset Avgk
n embeds the vertex labeling of a 1-uniform dcsl of

the k-uniform caterpillar.

Proof. Let v1, v1
1, . . . , vk

1, v2, v1
2, . . . , vk

2, . . . , vn, v1
n, . . . , and vk

n be the vertices of V(Pk
n).

Let X = {1, 2, . . . , h, . . . , n, . . . , m = n(k + 1) − 1}, where h = ⌈ |V(Pn)|
2 ⌉. To prove the ex-

istence of a poset F from a vertex labeling of 1-uniform dcsl of the k-uniform caterpillar, that
suits for the embedding of Avgk

n , define f : V(Pk
n) → 2X, on internal vertices, by

f (vj) = {1, . . . , n − h − (j − 1)}, 1 ≤ j ≤ n − h, f (vn−h+1) = ∅,

f (vn−h+i) = {n − h + 1, . . . , n − h + (i − 1)}, 2 ≤ i ≤ h

and we consider the vertex labeling on pendant vertices which is same as mentioned in
Proposition 7.

Case 1: When u = vl and v = vm, l 6= m, 1 ≤ l ≤ n − h and m = n − h + 1. Then,

| f (vl)⊕ f (vm)| =| {1, . . . , n − h − (l − 1)} ⊕∅ |

=| {1, . . . , n − h − (l − 1)} |= n − h − (l − 1) = d(vl , vm).

Case 2: When u = vl and v = vm, l 6= m, n − h + 2 ≤ l ≤ n and m = n − h + 1. Then,

| f (vl )⊕ f (vm)| =| {n − h + 1, . . . , l − 1} ⊕∅ |

=| {n − h + 1, . . . , l − 1 = n − h + (l − m)} |= l − m = d(vl , vm).

Case 3: When u = vl and v = vm, l 6= m, 1 ≤ l ≤ n − h and n − h + 2 ≤ m ≤ n. Then,

| f (vl)⊕ f (vm)| =| {1, . . . , n − h − (l − 1)} ⊕ {n − h + 1, . . . , m − 1} |

=| {1, . . . , n − h − (l − 1), n − h + 1, . . . , m − 1} |= m − l = d(vl , vm).

Case 4: When u = vl and v = v
j
m, l 6= m, 1 ≤ l ≤ n − h, m = n − h + 1 and 1 ≤ j ≤ k. Then,

| f (vl )⊕ f (v
j
m)| =| {1, . . . , n − h − (l − 1)} ⊕ {n − 1 + (m − 1)k + j} |

=| {1, . . . , n − h − (l − 1), n − 1 + (m − 1)k + j} |= m − l + 1 = d(vl , v
j
m).
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Case 5: When u = vl and v = v
j
m, l 6= m, n − h + 2 ≤ l ≤ n, m = n − h + 1 and 1 ≤ j ≤ k.

Then,

| f (vl)⊕ f (v
j
m)| =| {n − h + 1, . . . , l − 1} ⊕ {n − 1 + (m − 1)k + j} |

=| {n − h + 1, . . . , l − 1, n − 1 + (m − 1)k + j} |= l − m + 1 = d(vl , v
j
m).

Case 6: When u = vl and v = v
j
m, l 6= m, 1 ≤ l ≤ n − h, n − h + 2 ≤ m ≤ n and 1 ≤ j ≤ k.

Then,

| f (vl)⊕ f (v
j
m)| =| {1, . . . , n − h − (l − 1)} ⊕ {n − h + 1, . . . , m − 1, n − 1 + (m − 1)k + j} |

=| {1, . . . , n − h − (l − 1), n − h + 1, . . . , m − 1, n − 1 + (m − 1)k + j} |

= m − l + 1 = d(vl , v
j
m).

Case 7: When u = vi
l and v = v

j
m, l 6= m, 1 ≤ l ≤ n − h, m = n − h + 1 and 1 ≤ i, j ≤ k.

Then,

| f (vi
l)⊕ f (v

j
m)| =| {1, . . . , n − h − (l − 1), n − 1 + (l − 1)k + i} ⊕ {n − 1 + (m − 1)k + j} |

=| {1, . . . , n − h − (l − 1), n − 1 + (l − 1)k + i, n − 1 + (m − 1)k + j} |

= m − l + 2 = d(vi
l , v

j
m).

Case 8: When u = vi
l and v = v

j
m, l 6= m, n − h + 2 ≤ l ≤ n, m = n − h + 1 and 1 ≤ i, j ≤ k.

Then,

| f (vi
l )⊕ f (v

j
m)| =| {n − h + 1, . . . , l − 1, n − 1 + (l − 1)k + i} ⊕ {n − 1 + (m − 1)k + j} |

=| {n − h + 1, . . . , l − 1, n − 1 + (l − 1)k + i, n − 1 + (m − 1)k + j} |= l − m + 2 = d(vi
l , v

j
m).

Case 9: When u = vi
l and v = v

j
m, l 6= m, 1 ≤ l ≤ n − h, n − h + 2 ≤ m ≤ n and 1 ≤ j ≤ k.

Then,

| f (vi
l)⊕ f (v

j
m)| =| {1, . . . , n − h − (l − 1), n − 1 + (l − 1)k + i}

⊕ {n − h + 1, . . . , m − 1, n − 1 + (m − 1)k + j} |

=| {1, . . . , n − h − (l − 1), n − 1 + (l − 1)k + i, n − h + 1, . . . , m − 1, n − 1 + (m − 1)k + j} |

= m − l + 2 = d(vi
l , v

j
m).

Thus, for any distinct vertices u, v ∈ V(Pk
n), | f (u) ⊕ f (v)| = d(u, v), and hence f admits

1-uniform dcsl.
Finally, to prove F ⊑ Avgk

n, where F is the range of f , which forms a poset, define Ψ : F →

Avgk
n as follows.

Case 1. On the internal vertices vi of V(Pk
n). Ψ( f (vi)) =

{

bi, when 1 ≤ i ≤ n − h,

ai−(n−h), otherwise.

Case 2. On the pendant vertices v
j
i of V(Pk

n). Φ( f (v
j
i )) =

{

b
j
i , when 1 ≤ i ≤ n − h,

a
j

i−(n−h)
, otherwise.

In Case 1, we can identify the internal vertex labeling of V(Pk
n), as the embedding of F

into the underline poset of Avgk
n . In Case 2, the pendent vertex labeling of V(Pk

n), list the
embedding of F into the outermost labeling of an underline set of Avgk

n. Thus, from Case 1
and Case 2, we get F ⊑ Avgk

n .
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The following result follows from Proposition 12 and Proposition 13.

Proposition 14. Let F be the range of vertex labeling of a 1-uniform dcsl k-uniform caterpillar
such that F ⊑ Avgk

n . Then dim(F ) = 2.

Theorem 1 ([7]). If T is a tree1, then dim(T) ≤ 2 unless T contains one or more of the trees J1

and J2 or their duals as subposets.

Theorem 2. Let F be the poset. Then there exists a 1-uniform dcsl f (the vertex labeling of a
k-uniform caterpillar) such that F = Range( f ) = { f (v) | v ∈ V(Pk

n)}, where n > 2 and k ≥ 1,
and dim(F ) = 2.

Proof. Let f be a vertex labeling of 1-uniform dcsl k-uniform caterpillar on ‘n(k + 1)’ vertices,
where n > 2 and k ≥ 1, other than the labeling which is mentioned in Proposition 7, Proposi-
tion 10 and Proposition 13, respectively, and let F be the range of f . Hence, F = Range( f ) =

{ f (v) | v ∈ V(Pk
n)}, is a poset.

We prove that dim(F ) = 2.
Since the Hasse diagram of F is a tree, from Theorem 1, we have dim(F ) ≤ 2. But, dim(F )

is never less than 2. For, if it is of dimension 1, then the Hasse diagram of it resembles a path,
which is not possible. Hence, dim(F ) = 2.

Recall that [3] the minimum cardinality of the underlying set X such that G admits a 1-
uniform dcsl is called the 1-uniform dcsl index δd(G) of G. Following discussion is an attempt
to establish the relationship between the 1-uniform dscl index of a k-uniform caterpillar and
the dimension of the poset F = Range( f ) = { f (v) | v ∈ V(Pk

n)}, where n ≥ 1 and k ≥ 1.

Lemma 3. The 1-uniform dcsl index of Pk
n (n ≥ 1, k ≥ 1) is n(k + 1)− 1.

Proof. Let V(Pk
n) = {v1, v1

1, . . . , vk
1, v2, v1

2, . . . , vk
2, . . . , vn, v1

n, . . . , vk
n}, and let f be the dcsl label-

ing of Pk
n with the underlying set as X. First, we claim that | X |≥ n(k + 1)− 1. By Lemma 1,

the 1-uniform dcsl index of Pn is n − 1, and hence for the internal vertices of Pk
n, the dcsl index

is n − 1. For the remaining ‘nk’ vertices (pendant vertices), we need to have atleast ‘nk’ subsets
of X other than the subsets which has already been labeled for the internal vertices. Hence, the
cardinality of X is atleast nk + n − 1. By Proposition 7, the vertex labeling of 1-uniform dcsl of
Pk

n with underlying set X is of cardinality n(k + 1)− 1. Hence, δd(Pk
n) = n(k + 1)− 1.

In Propositions 7, 10 and 13, the existence of different vertex labeling of 1-uniform dcsl of
k-uniform caterpillar and their embedding in respective posets have been established.

In the following theorem we determine the bounds of the poset F , where
F = Range( f ) = { f (v) | v ∈ V(Pk

n)}.

Theorem 3. Let F be the poset which is the range of a 1-uniform dcsl of the k-uniform cater-
pillar, with respect to set inclusion ‘⊆’. Then, dim(F ) ≤ δd(Pk

n).

Proof. Let f be a 1-uniform dcsl of Pk
n(n ≥ 1, k ≥ 1), such that F = { f (v) | v ∈ V(Pk

n)} forms
a poset with respect to set inclusion ‘⊆’. Depending on the number of vertices of V(Pk

n), we
prove the theorem for the following four cases.

1 we call a poset is a tree if its Hasse diagram is a tree in the graph theoretic sense.
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Case 1: When n = 1 and k = 1. In this case, the poset F is isomorphic to a poset which
is a chain of length 1, and hence dim(F ) = 1. But by Lemma 3, δd(P1

1 ) = 1. Thus, we have
dim(F ) = δd(Pk

n).
Case 2: When n = 2 and k = 1. By Lemma 3, we have δd(P1

2 ) = 3. Also F is isomorphic
to any of the four posets namely, a poset which is a chain of length 3, poset Avg4, poset ˆAvg4

or poset P1, where P is a chain of length 1. If F is isomorphic to chain of length 3, then
dim(F ) = 1, and hence dim(F ) < δd(Pk

n). If F ∼= Avg4, then by Proposition 14, dim(F ) = 2,
and hence dim(F ) < δd(Pk

n). Since, for a poset P, dim(P) = dim(P̂) (see [7]), so if F ∼= ˆAvg4,
then dim(F ) = dim(F̂ ) = dim(Avg4) = 2. Thus, dim(F ) < δd(Pk

n). If F ∼= P1, where P is a
chain of length 1, then by Proposition 8, dim(F ) = 2, and hence, dim(F ) < δd(Pk

n).
Case 3: When n ≥ 3 and k ≥ 1. In this case, we prefer k-extended posets that embeds F , as

it is not easy to predict all the variations of the poset F . Thus, based on the underline posets
of the k-extended posets, since by Lemma 3, δd(Pk

n) = n(k + 1)− 1, it is enough to consider the
following subcases under Case 3.

Case 3.1: If the underline poset is a linear order of finite length, say L : ai−1 � ai, for
2 ≤ i ≤ n, then by Proposition 8, dim(F ) = 2. Hence δd(Pk

n) > dim(F ).
Case 3.2: If the underline poset is isomorphic to Minn, then by Proposition 11, dim(F ) = 2.

Hence dim(F ) < δd(Pk
n).

Case 3.3: If the underline poset is isomorphic to Avgn, then by Proposition 14, dim(F ) = 2.
Hence dim(F ) < δd(Pk

n).
Case 4: When the poset F is not isomorphic to either Pk, Mink

n or Avgk
n . We have from

Theorem 2, dim(F ) = 2 and, by Lemma 3, δd(Pk
n) = n(k + 1) − 1, hence dim(F ) < δd(Pk

n).
Thus in all the cases we get dim(F ) ≤ δd(Pk

n).

Theorem 4. The k-uniform caterpillar Pk
n admits a k-uniform dcsl.

Proof. Consider G = Pk
n with n(k + 1) vertices, say v1, v1

1, . . . , vk
1, v2, v1

2, . . . , vk
2, . . . , vn, v1

n, . . . ,
and vk

n. Let X = {1, 2, . . . , h, . . . , n, . . . , n(k + 1)− 1, . . . , k(n(k + 1)− 1)}.
Define f : V(G) → 2X by f (v1) = ∅, f (vi) = {1, 2, . . . , (i − 1)k} for 2 ≤ i ≤ n, and for

1 ≤ i ≤ k,

f (vi
1) = f (v1) ∪ {(n − 1)k + (i − 1)k + 1, . . . , (n − 1)k + (i − 1)k + k},

f (vi
2) = f (v2) ∪ {(n − 1)k + k2 + (i − 1)k + 1, . . . , (n − 1)k + k2 + (i − 1)k + k} and

f (vi
n) = f (vn)∪

{(n − 1)k + (n − 1)k2 + (i − 1)k + 1, . . . , (n − 1)k + (n − 1)k2 + (i − 1)k + k}.

In general, for 1 ≤ i ≤ n and 1 ≤ j ≤ k,

f (v
j
i) = f (vi)∪ {(n − 1)k+ (i − 1)k2 + (j − 1)k+ 1, . . . , (n − 1)k+ (i − 1)k2 + (j − 1)k+ k}.

Case 1: When u = vl and v = vm, l = 1 and 2 ≤ m ≤ n. Then,

| f (vl )⊕ f (vm)| =| ∅⊕ {1, 2, . . . , (m − 1)k} |

=| {1, 2, . . . , (m − 1)k} |= (m − 1)k = kd(vl , vm).

Case 2: When u = vl and v = vm, l 6= m, 2 ≤ l, m ≤ n. Then,

| f (vl)⊕ f (vm)| =| {1, 2, . . . , (l − 1)k} ⊕ {1, 2, . . . , (m − 1)k} |

=| {(l − 1)k + 1, . . . , (m − 1)k} |= (m − l)k = kd(vl , vm), 2 ≤ l < m ≤ n.
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Case 3: When u = vl and v = v
j
m, l = 1, 2 ≤ m ≤ n and 1 ≤ j ≤ k. Then,

| f (vl)⊕ f (v
j
m)|

=| ∅⊕ {1, 2, . . . , (m − 1)k, (n + j − 2)k + (m − 1)k2 + 1, . . . , (n + j − 2)k + (m − 1)k2 + k} |

=| {1, 2, . . . , (m − 1)k, (n + j − 2)k + (m − 1)k2 + 1, . . . , (n + j − 2)k + (m − 1)k2 + k} |

= (m − l + 1)k = kd(vl , v
j
m).

Case 4: When u = vl and v = v
j
m, l 6= m, 2 ≤ l, m ≤ n and 1 ≤ j ≤ k. Then,

| f (vl)⊕ f (v
j
m)|

=| {1, 2, . . . , (l − 1)k} ⊕ {1, 2, . . . , (m − 1)k, (n + j − 2)k + (m − 1)k2 + 1, . . . ,

(n + j − 2)k + (m − 1)k2 + k} |

=| {(l − 1)k + 1, . . . , (m − 1)k, (n + j − 2)k + (m − 1)k2 + 1, . . . ,

(n + j − 2)k + (m − 1)k2 + k} |

= (m − l + 1)k = kd(vl , v
j
m), 2 ≤ l < m ≤ n and 1 ≤ j ≤ k.

Case 5: When u = vi
l and v = v

j
m, l = 1, 2 ≤ m ≤ n and 1 ≤ i, j ≤ k. Then,

| f (vi
l)⊕ f (v

j
m)|

=| {(n − 1)k + (i − 1)k + 1, . . . , (n − 1)k + (i − 1)k + k} ⊕ {1, . . . , (m − 1)k,

(n − 1)k + (m − 1)k2 + (j − 1)k + 1, . . . , (n − 1)k + (m − 1)k2 + (j − 1)k + k} |

=| {1, . . . , (m − 1)k, (n − 1)k + (m − 1)k2 + (j − 1)k + 1, . . . ,

(n − 1)k + (m − 1)k2 + (j − 1)k + k, (n − 1)k + (i − 1)k + 1, . . . , (n − 1)k + (i − 1)k + k} |

= (m − l + 2)k = kd(vi
l , v

j
m).

Case 6: When u = vi
l and v = v

j
m, l 6= m, 2 ≤ l, m ≤ n and 1 ≤ i, j ≤ k. Then,

| f (vi
l)⊕ f (v

j
m)|

=| {1, . . . , (l − 1)k, (n − 1)k + (l − 1)k2 + (i − 1)k + 1, . . . ,

(n − 1)k + (l − 1)k2 + (i − 1)k + k} ⊕ {1, . . . , (m − 1)k, (n − 1)k + (m − 1)k2+

(j − 1)k + 1, . . . , (n − 1)k + (m − 1)k2 + (j − 1)k + k} |

=| {(n − 1)k + (l − 1)k2 + (i − 1)k + 1, . . . , (n − 1)k + (l − 1)k2 + (i − 1)k + k,

(l − 1)k + 1, . . . , (m − 1)k, (n − 1)k + (m − 1)k2 + (j − 1)k + 1, . . . ,

(n − 1)k + (m − 1)k2 + (j − 1)k + k} |

= (m − l + 2)k = kd(vi
l , v

j
m), 2 ≤ l < m ≤ n and 1 ≤ i ≤ j ≤ k.

Hence, for any distinct u, v ∈ V(G), | f (u) ⊕ f (v)| = kd(u, v). Which shows that f admits
k-uniform dcsl.

Lemma 4. For n ≥ 1, k ≥ 1, δk(Pk
n) = k(n(k + 1)− 1).
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Proof. Let V(Pk
n) = {v1, v1

1, . . . , vk
1, v2, v1

2, . . . , vk
2, . . . , vn, v1

n, . . . , vk
n}, and let f be the dcsl label-

ing of Pk
n with the underlying set as X. By Lemma 2, the 1-uniform dcsl index of Pn is k(n − 1),

which implies that for internal vertices of Pk
n, the required dcsl index is k(n − 1), where as for

remaining ‘nk’ vertices (pendant vertices), we need at least ‘k2n’ subsets of X other than the
subsets which has already been labeled. Hence the cardinality of X is atleast k2n + k(n − 1).
Since by Theorem 4, Pk

n is a k-uniform dcsl with underlying set X of cardinality k(n(k+ 1)− 1),
thus we have, δk(Pk

n) = k(n(k + 1)− 1).

Theorem 5 ([4]). If G is k-uniform dcsl, and m is a positive integer, then G is mk-uniform dcsl.

It has been already established in [4] that path admits arbitrary k-uniform dcsl labeling and
k-uniform dcsl index, δk(Pn) is k times that of 1-uniform dcsl index. In this paper, this result
is extended to a k-uniform caterpillar, and we prove that the k-uniform dcsl index, δk(Pk

n) is k

times that of the 1-uniform dcsl index of k-uniform caterpillar. It is interesting to note that the
range of any arbitrary k-uniform dcsl of a k-uniform caterpillar, Pk

n need not form a connected
poset. However, there always exists a k-uniform dcsl of Pk

n, whose range is a connected poset.
Hence, the Hasse diagram (or poset) which embeds the vertex labeling of 1-uniform dcsl Pk

n,
can also embed the vertex labeling of k-uniform dcsl Pk

n. Hence, for such postes the dimension
corresponding to 1-uniform dcsl Pk

n and the dimension corresponding to k-uniform dcsl Pk
n are

same. Thus, we have the following theorem.

Theorem 6. If F is the range of a k-uniform dcsl of the k-uniform caterpillar Pk
n (n ≥ 1, k ≥ 1),

that forms a poset with respect to set inclusion ‘⊆’, then, dim(F ) ≤ δk(Pk
n).

Proof. Proof is immediate from Theorem 5, Lemma 4 and Theorem 3.

Acnowledgement. The authors would also like to thank the referee for the valuable com-
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Наґесвара Рао К., Ґермiна К.А., Шаiнi П. Про розмiрнiсть маркування вершин k-однорiдного dcsl

k-однорiдного графа // Карпатськi матем. публ. — 2016. — Т.8, №1. — C. 134–149.

Сумiсне з вiдстанню множинне маркування (dcsl) зв’язного графа G є iн’єктивним вiдобра-
женням f : V(G) → 2X, де X є непорожною базовою множиною такою, що вiдповiдна iнду-
кована функцiя f ⊕ : E(G) → 2X \ {∅}, задана рiвнiстю f ⊕(uv) = f (u) ⊕ f (v), задовольняє

| f ⊕(uv) |= k
f
(u,v)

dG(u, v) для довiльної пари рiзних вершин u, v ∈ V(G), де dG(u, v) позначає

вiдстань мiж u i v та k
f
(u,v) є числом, не обов’язково цiлим. Сумiсне з вiдстанню множинне мар-

кування f графа G є k-однорiдним, якщо всi коефiцiєнти пропорцiйностi вiдносно f рiвнi k,
i якщо G допускає таке маркування, то G називають k-однорiдним dcsl графом. k-однорiдний

dcsl iндекс графа G, що позначається δk(G), є мiнiмальним серед потужностей X, де X пробiгає
всi k-однорiднi dcsl-множини графа G. Лiнiйне розширення L часткового порядку P = (P,�)

є лiнiйним порядком на елементах iз P таким, що з x � y в P слiдує, що x � y в L для всiх
x, y ∈ P. Розмiрнiсть множини P, яка позначається dim(P), є мiнiмальним числом лiнiйних
розширень на P, перетин яких є ‘�’. У цiй статтi ми доводимо, що dim(F ) ≤ δk(P+k

n ), де F є
образом k-однорiдного dcsl k-однорiдного графа, позначеного P+k

n (n ≥ 1, k ≥ 1) на ‘n(k + 1)’
вершинах.

Ключовi слова i фрази: k-однорiдний dcsl iндекс, розмiрнiсть множини з частковим поряд-
ком, решiтка.


