Khoroshchak V.S., Khrystiyanyn A.Ya., Lukivska D.V.

A CLASS OF JULIA EXCEPTIONAL FUNCTIONS

The class of p-loxodromic functions (meromorphic functions, satisfying the condition $f(q z)=p f(z)$ for some $q \in \mathbb{C} \backslash\{0\}$ and all $z \in \mathbb{C} \backslash\{0\})$ is studied. Each p-loxodromic function is Julia exceptional. The representation of these functions as well as their zero and pole distribution are investigated.

Key words and phrases: p-loxodromic function, the Schottky-Klein prime function, Julia exceptionality.

Ivan Franko National University, 1 Universytetska str., 79000, Lviv, Ukraine
E-mail: v.khoroshchak@gmail.com(Khoroshchak V.S.), khrystiyanyn@ukr.net (Khrystiyanyn A.Ya.), d.lukivska@gmail.com(Lukivska D.V.)

INTRODUCTION

Denote $\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$, and let $q, p \in \mathbb{C}^{*},|q|<1$.
Definition 1. A meromorphic in \mathbb{C}^{*} function f is said to be p-loxodromic of multiplicator q if for every $z \in \mathbb{C}^{*}$

$$
\begin{equation*}
f(q z)=p f(z) \tag{1}
\end{equation*}
$$

Let $\mathcal{L}_{q p}$ denotes the class of p-loxodromic functions of multiplicator q.
The case $p=1$ has been studied earlier in the works of O. Rausenberger [9], G. Valiron [11] and Y. Hellegouarch [5]. In his work [3, p. 133] which A. Ostrowski [8] called "besonders schöne und überraschende" G. Julia gave an example of a meromorphic in the punctured plane \mathbb{C}^{*} function satisfying (1) with $p=1$ for some non-zero $q,|q| \neq 1$, and all $z \in \mathbb{C}^{*}$. He noted that the family $\left\{f_{n}(z)\right\}, f_{n}(z)=f\left(q^{n} z\right)$ is normal [7] in \mathbb{C}^{*} because $f_{n}(z)=f(z)$ for all $z \in \mathbb{C}^{*}$.

If $p=1$ the function f is called loxodromic. Loxodromic functions of multiplicator q form a field, which is denoted by \mathcal{L}_{q}. The set $\mathcal{L}_{q p}$ forms an Abelian group with respect to addition.

It is obvious that a ratio of two functions from $\mathcal{L}_{q p}$ is a loxodromic function, and the derivative of the loxodromic function is p-loxodromic with $p=\frac{1}{q}$.
Remark 1. Every $f \equiv$ const belongs to \mathcal{L}_{q}, but the unique constant function belonging to $\mathcal{L}_{q p}$ is $f \equiv 0$.

If $f \in \mathcal{L}_{q p}$ and a is a zero of f, then $a q^{n}, n \in \mathbb{Z}$, are as well. That is, in the case of nonpositive q the zeros of f lay on a logarithmic spiral. Let $a=|a| e^{i \alpha}, q=|q| e^{i \gamma}$. Then the logarithmic spiral in polar coordinates (r, φ) takes the form

$$
\log r-\log |a|=k(\varphi-\alpha),
$$

У $\Delta \mathrm{K} 517.53$
2010 Mathematics Subject Classification: 30D30, 30D45.
where $k=\frac{\log |q|}{\gamma}$. The same concerns the poles of f. The image of a logarithmic spiral on the Riemann sphere by the stereographic projection intersects each meridian at the same angle and is called loxodromic curve ($\lambda o \xi \sigma \zeta$ - oblique, $\delta \rho o \mu \rho \zeta$ - way). That is why we call (following G. Valiron) the function from \mathcal{L}_{q} loxodromic.

Remark 2. If $f \in \mathcal{L}_{q}$ and z is its a-point, $a \in \mathbb{C} \cup\{\infty\}$, then $q^{n} z, n \in \mathbb{Z}$, are its a-points too. In the case, $f \in \mathcal{L}_{q p}$, the previous considerations are valid only for the zeros and the poles of f.

It is easy to verify, that $\mathcal{L}_{q p}$ forms the linear spaces over the fields \mathbb{C} and \mathcal{L}_{q}. Also it is clear that $\mathcal{L}_{q p}$ has the following properties.

Proposition. The linear space $\mathcal{L}_{q p}$ has the following properties.

1. The map $D: f(z) \mapsto z f^{\prime}(z)$ maps $\mathcal{L}_{q p}$ to $\mathcal{L}_{q p}$.
2. The map $D_{l}: f(z) \mapsto z \frac{f^{\prime}(z)}{f(z)}$ maps $\mathcal{L}_{q p}$ to \mathcal{L}_{q}.
3. $f(z) \in \mathcal{L}_{q p} \Rightarrow f\left(\frac{1}{z}\right) \in \mathcal{L}_{q \frac{1}{p}}$.

Let us give nontrivial example of p-loxodromic function of multiplicator q. Put

$$
h(z)=\prod_{n=1}^{\infty}\left(1-q^{n} z\right), \quad 0<|q|<1 .
$$

Definition 2. The function

$$
P(z)=(1-z) h(z) h\left(\frac{1}{z}\right)=(1-z) \prod_{n=1}^{\infty}\left(1-q^{n} z\right)\left(1-\frac{q^{n}}{z}\right)
$$

is called the Schottky-Klein prime function.
This function is holomorphic in \mathbb{C}^{*} with zero sequence $\left\{q^{n}\right\}, n \in \mathbb{Z}$. It was introduced by Schottky [10] and Klein [6] for the study of conformal mappings of doubly-connected domains, see also [2].

It is easy to obtain the following property of P

$$
\begin{equation*}
P(q z)=-\frac{1}{z} P(z) . \tag{2}
\end{equation*}
$$

Example 1. Consider the function

$$
f(z)=\frac{P\left(\frac{z}{p}\right)}{P(z)}
$$

Using (2), it is easy to show that $f \in \mathcal{L}_{q p}$.

1 The numbers of Zeros and poles of p-LOXODROMIC FUNCTIONS in an annulus

$$
\text { Let } A_{q}(R)=\{z \in \mathbb{C}:|q| R<|z| \leq R\}, R>0 \text { and } A_{q}=A_{q}(1) \text {. }
$$

Theorem 1. Let $f \in \mathcal{L}_{q p}$ and the boundary of $A_{q}(R)$ contains neither zeros nor poles of f. Then f has equal numbers of zeros and poles (counted according to their multiplicities) in every $A_{q}(R)$.

Proof. Let $\Gamma_{1}=\{z \in \mathbb{C}:|z|=|q| R\}$ and $\Gamma_{2}=\{z \in \mathbb{C}:|z|=R\}$ denote the circles bounding $A_{q}(R)$. Let $n(f)$ be the number of poles of f in $A_{q}(R)$.

By the argument principle, we have

$$
\begin{equation*}
n\left(\frac{1}{f}\right)-n(f)=\frac{1}{2 i \pi}\left(\int_{\Gamma_{2}^{+}} \frac{f^{\prime}(z)}{f(z)} d z-\int_{\Gamma_{1}^{+}} \frac{f^{\prime}(\xi)}{f(\xi)} d \xi\right) \tag{3}
\end{equation*}
$$

Setting $\xi=q z$ in the second integral of (3), we obtain

$$
\begin{equation*}
n\left(\frac{1}{f}\right)-n(f)=\frac{1}{2 i \pi} \int_{\Gamma_{2}^{+}}\left(\frac{f^{\prime}(z)}{f(z)}-q \frac{f^{\prime}(q z)}{f(q z)}\right) d z . \tag{4}
\end{equation*}
$$

Since $f \in \mathcal{L}_{q p}$, the relation (1) implies

$$
\begin{equation*}
f^{\prime}(q z)=\frac{p}{q} f^{\prime}(z) . \tag{5}
\end{equation*}
$$

Putting (1) and (5) in (4), we obtain the conclusion of the theorem.
Remark 3. Every non-constant loxodromic function of multiplicator q has at least two poles (and two zeros) in every annulus $A_{q}(R)$ [5]. As we see from Example 1, the p-loxodromic function f has the unique pole $z=1$ in A_{q}. This is an essential difference between loxodromic and p-loxodromic functions with $p \neq 1$.

2 REPRESENTATION OF p-LOXODROMIC FUNCTIONS

The representation of loxodromic functions from \mathcal{L}_{q} was given in [11], [5]. The following theorem gives the representation of a function from $\mathcal{L}_{q p}$.

Let a_{1}, \ldots, a_{m} and b_{1}, \ldots, b_{m} be the zeros and the poles of $f \in \mathcal{L}_{q p}$ in A_{q} respectively. Denote

$$
\begin{equation*}
\lambda=\frac{a_{1} \cdot \ldots \cdot a_{m}}{b_{1} \cdot \ldots \cdot b_{m}} . \tag{6}
\end{equation*}
$$

Theorem 2. The non-identical zero meromorphic in \mathbb{C}^{*} function f belongs to $\mathcal{L}_{q p}, p \neq 1$, if and only if there exists $v \in \mathbb{Z}$ such that $\lambda=\frac{p}{q^{v}}$ and f has the form

$$
\begin{equation*}
f(z)=c z^{v} \frac{P\left(\frac{z}{a_{1}}\right) \cdot \ldots \cdot P\left(\frac{z}{a_{m}}\right)}{P\left(\frac{z}{b_{1}}\right) \cdot \ldots \cdot P\left(\frac{z}{b_{m}}\right)} \tag{7}
\end{equation*}
$$

where c is a constant.
Proof. Firstly, denote

$$
M(z)=\frac{P\left(\frac{z}{a_{1}}\right) \cdot \ldots \cdot P\left(\frac{z}{a_{m}}\right)}{P\left(\frac{z}{b_{1}}\right) \cdot \ldots \cdot P\left(\frac{z}{b_{m}}\right)}
$$

and consider the function

$$
g(z)=\frac{f(z)}{M(z)} .
$$

Since the functions f and M have the same zeros and poles, it follows that their ratio g is holomorphic in \mathbb{C}^{*} function. Let $g(z)=\sum_{n=-\infty}^{+\infty} c_{n} z^{n}$ be the Laurant expansion of g in \mathbb{C}^{*}. Using relation (1) and the equality (2), we obtain

$$
\begin{equation*}
\lambda g(q z)=p g(z) \tag{8}
\end{equation*}
$$

According to (8), we obtain

$$
\lambda \sum_{n=-\infty}^{+\infty} c_{n} q^{n} z^{n}=p \sum_{n=-\infty}^{+\infty} c_{n} z^{n}
$$

for any $z \in \mathbb{C}^{*}$. This implies $\lambda c_{n} q^{n}=p c_{n}$ or $c_{n}\left(\lambda q^{n}-p\right)=0$. Then there exists at least one $c_{v} \neq 0, v \in \mathbb{Z}$, such that

$$
\begin{equation*}
c_{v}\left(\lambda q^{v}-p\right)=0 . \tag{9}
\end{equation*}
$$

Hence, the relation (9) implies $q^{v}=\frac{p}{\lambda}$. We see also that $c_{n}=0$ if $n \neq v$, so we have $g(z)=c_{v} z^{v}$. Thus, we can conclude

$$
f(z)=g(z) M(z)=c z^{v} M(z)
$$

where c is a constant.
Secondly, we have $f(z)=c z^{v} M(z), v \in \mathbb{Z}$. Show that it belongs to $\mathcal{L}_{q p}$. Thus, $f(q z)=$ $c q^{v} z^{v} M(q z)$. Indeed, using (2), we obtain

$$
f(q z)=c q^{v} z^{v} \lambda M(z)=p f(z) .
$$

This completes the proof.

Corollary 1. Assume $f \in \mathcal{L}_{q p}$, if f is holomorphic in \mathbb{C}^{*}, then $f(z) \equiv 0$ or there exists $k \in$ $\mathbb{Z} \backslash\{0\}$ such that $p=q^{k}$ and $f(z)=c z^{k}$, where c is a constant. Conversely, a holomorphic in \mathbb{C}^{*} function of the form $f(z)=c z^{k}$, where $k \in \mathbb{Z} \backslash\{0\}, c$ is a constant, belongs to $\mathcal{L}_{q p}$.

3 Zero and pole distribution

Let $\left\{a_{j}\right\},\left\{b_{j}\right\}, j \in \mathbb{Z}$ be a couple of sequences in $\mathbb{C}^{*}, p \neq 1$. Put

$$
\mu(r)=[\log r / \log |q|]-1 .
$$

Note that $\mu(r)=0$ if $|q| \leq r<1$. Denote

Theorem 3. The zero sequence $\left\{a_{j}\right\}$ and the pole sequence $\left\{b_{j}\right\}$ of a non-identical zero meromorphic p-loxodromic function of multiplicator q satisfy the following conditions:
(i) the number of a_{j} and b_{j} in every annulus of the form $\{z: r<|z|<2 r\}, r>0$ is bounded by an absolute constant;
(ii) the difference between the numbers of a_{j} and b_{k} in every annulus $\left\{z: r_{1}<|z|<r_{2}\right\}$, $0<r_{1}<r_{2}<+\infty$ is bounded by an absolute constant;
(iii) there exists $C_{1}>0$ such that $\left|\frac{a_{j}}{b_{k}}-1\right|>C_{1}$ for every $j, k \in \mathbb{Z}$;
(iv) the function $\mathfrak{M}_{v}(r)$, where $v \in \mathbb{Z}$ such that $\lambda=\frac{p}{q^{\nu}}$, and λ is given by (6), is bounded for $r>0$.

Proof. Let f be a p-loxodromic of multiplicator q function. If f is holomorphic then by Corollary 1 there exists $k \in \mathbb{Z} \backslash\{0\}$ such that $f(z)=c z^{k}$, and c is a constant. Hence, f has no zeros in \mathbb{C}^{*}. So there is nothing to prove.

Let f be meromorphic. Then by Remark 2 and Theorem 1 it has infinitely many zeros and poles.
(i) First we remark that there exists a unique $n_{0} \in \mathbb{Z}_{+}$such that $\frac{1}{|q|^{n_{0}}} \leq 2<\frac{1}{|q|^{n_{0}+1}}$. This n_{0} is equal to $\left[\frac{\log 2}{\log \frac{1}{|q|}}\right]$.

Since every annulus $\left\{z: \frac{r}{|q|^{k}}<|z| \leq \frac{r}{|q|^{k+1}}\right\}$, where $k \in \mathbb{Z}$, contains the same number of zeros of f, say m, and

$$
(r, 2 r]=\left(\bigcup_{k=0}^{n_{0}-1}\left(\frac{r}{|q|^{k}}, \frac{r}{|q|^{k+1}}\right]\right) \cup\left(\frac{r}{|q|^{n_{0}}}, 2 r\right]
$$

it follows that the annulus $\{z: r<|z| \leq 2 r\}$ contains at least $n_{0} m$ and less than $\left(n_{0}+1\right) m$ zeros of f. The same is true about the poles of f.
(ii) Similarly as in (i) we can find unique $n_{1}, n_{2} \in \mathbb{Z}$ such that

$$
|q|^{n_{1}+1}<r_{1} \leq|q|^{n_{1}}<|q|^{n_{2}}<r_{2} \leq|q|^{n_{2}-1} .
$$

Hence

$$
\left(r_{1}, r_{2}\right)=\left(r_{1},|q|^{n_{1}}\right] \cup\left(\bigcup_{k=n_{1}}^{n_{2}-1}\left(|q|^{k},|q|^{k+1}\right]\right) \cup\left(|q|^{n_{2}}, r_{2}\right)
$$

Every annulus of the form $\left\{z:|q|^{k+1}<|z| \leq|q|^{k}\right\}$, where $k \in \mathbb{Z}$, contains equal amount of zeros and poles of f counted according to their multiplicities (we have denoted this number by m). Therefore the difference between the numbers of zeros and poles of f in the annulus $\left\{z: r_{1}<|z|<r_{2}\right\}$ is no greater than $2 m$ because of the choice of n_{1}, n_{2}.
(iii) Let $a_{1}, a_{2}, \ldots, a_{m}$ and $b_{1}, b_{2}, \ldots, b_{m}$ be the zeros and the poles of f in $\{z:|q|<|z| \leq 1\}$ respectively. Then all the zeros of f have the form $\alpha_{\mu, k}=a_{k} q^{\mu}$, where $\mu \in \mathbb{Z}, k=1,2, \ldots, m$.

The same is true about the poles of f, namely $\beta_{v, k}=b_{k} q^{v}$, where $v \in \mathbb{Z}, k=1,2, \ldots, m$. So, $\frac{\alpha_{\mu, j}}{\beta_{v, k}}=\frac{a_{j}}{b_{k}} q^{l}$, where $l \in \mathbb{Z}$.

It is necessary to show that there exists $C>0$ such that the inequality

$$
\left|\frac{a_{j}}{b_{k}} q^{l}-1\right|>C
$$

holds for all $j, k \in\{1,2, \ldots, m\}$, and $l \in \mathbb{Z}$.
Suppose that for any $\varepsilon>0$ there exist $j, k \in\{1,2, \ldots, m\}$, and $l \in \mathbb{Z}$ such that

$$
\begin{equation*}
\left|\frac{a_{j}}{b_{k}} q^{l}-1\right| \leq \varepsilon . \tag{10}
\end{equation*}
$$

Without loss of generality we can assume that $|l| \leq 2$. Indeed, taking into account where a_{j}, b_{k} belong to, we have

$$
\left|\frac{a_{j}}{b_{k}} q^{l}\right| \leq \frac{1}{|q|}|q|^{l} \leq|q|, \quad l \geq 2
$$

Similarly,

$$
\left|\frac{a_{j}}{b_{k}} q^{l}\right| \geq|q||q|^{l} \geq \frac{1}{|q|^{\prime}}, \quad l \leq-2
$$

So, for all $j, k \in\{1,2, \ldots, m\}$, and $l \geq 2$

$$
\left|\frac{a_{j}}{b_{k}} q^{l}-1\right| \geq 1-|q|,
$$

and for $l \leq-2$

$$
\left|\frac{a_{j}}{b_{k}} q^{l}-1\right| \geq \frac{1}{|q|}-1 .
$$

Let now $|l|<2$. Choose

$$
\varepsilon=\frac{1}{2} \min \left\{\left|a_{j} q^{l}-b_{k}\right|: j, k \in\{1,2, \ldots, m\},-1 \leq l \leq 1\right\}
$$

Then (10) implies

$$
\left|a_{j} q^{l}-b_{k}\right| \leq \varepsilon\left|b_{k}\right| \leq \varepsilon .
$$

That is

$$
\left|a_{j} q^{l}-b_{k}\right| \leq \frac{1}{2} \min \left\{\left|a_{j} q^{l}-b_{k}\right|: j, k \in\{1,2, \ldots, m\},-1 \leq l \leq 1\right\}
$$

which gives a contradiction.
(iv) We remind that f has representation (7). It can be rewritten as follows

$$
\begin{equation*}
f(z)=c z^{v} \prod_{k=1}^{m} \frac{\prod_{n=0}^{+\infty}\left(1-\frac{q^{n} z}{a_{k}}\right) \prod_{n=1}^{+\infty}\left(1-\frac{q^{n} a_{k}}{z}\right)}{\prod_{n=0}^{+\infty}\left(1-\frac{q^{n} z}{b_{k}}\right) \prod_{n=1}^{+\infty}\left(1-\frac{q^{n} b_{k}}{z}\right)}, \quad z \in \mathbb{C}^{*} \tag{11}
\end{equation*}
$$

Clearly, we can assume $c \neq 0$. Consider the integral means $I(r)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(r e^{i \theta}\right)\right| d \theta$, $r>0$.

Let $z=r e^{i \theta}$. We have for $r>1[4, \mathrm{p} .8]$

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|1-\frac{z}{a_{j}}\right| d \theta=\log ^{+} \frac{r}{\left|a_{j}\right|}
$$

and, if $\left|a_{j}\right| \leq 1$

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|1-\frac{a_{j}}{z}\right| d \theta=0
$$

The same is true for b_{j}.
Since for every $k \in\{1,2, \ldots, m\}$ we have $\left|c_{k} q^{-n}\right|>1$ for $n \in \mathbb{N}$, and $\left|c_{k} q^{n}\right| \leq 1$ for $n \in$ $\mathbb{N} \cup\{0\}$, where c_{k} is a zero or pole of f, then (11) implies

$$
I(r)=v \log r+\sum_{\left|a_{j}\right|>1} \log ^{+} \frac{r}{\left|a_{j}\right|}-\sum_{\left|b_{j}\right|>1} \log ^{+} \frac{r}{\left|b_{j}\right|}+\log |c|, \quad r>1 .
$$

Similarly, for $0<r \leq 1$ we obtain

$$
I(r)=v \log r+\sum_{\left|a_{j}\right| \leq 1} \log ^{+} \frac{\left|a_{j}\right|}{r}-\sum_{\left|b_{j}\right| \leq 1} \log ^{+} \frac{\left|b_{j}\right|}{r}+\log |c| .
$$

Hence,

$$
\mathfrak{M}_{v}(r)=\frac{1}{|p|^{\mu(r)}} \frac{1}{|c|} \exp I(r)=\frac{1}{|c|} \exp \{I(r)-\mu(r) \log |p|\}, \quad r>0
$$

Since $I(r)$ is convex with respect to $\log r$ and consequently continuous, $I(r)$ is bounded on $[|q|, 1]$. It follows from the definition of a p-loxodromic function of multiplicator q that

$$
I\left(|q|^{k} r\right)=I(r)+k \log |p|
$$

for every $k \in \mathbb{Z}$. On the other hand

$$
\mu\left(|q|^{k} r\right)=\left[\frac{k \log |q|+\log r}{\log |q|}\right]-1=k, \quad|q| \leq r<1 .
$$

That is

$$
\mathfrak{M}_{v}\left(|q|^{k} r\right)=\mathfrak{M}_{v}(r), \quad|q| \leq r<1
$$

for all $k \in \mathbb{Z}$. Then we conclude that $\mathfrak{M}_{v}(r)$ remains bounded for all $r>0$ which completes the proof.

4 JULIA EXCEPTIONALITY

Definition 3. Let $f_{n}, n \in \mathbb{N}$, be meromorphic functions in a domain G. A sequence $\left\{f_{n}(z)\right\}$ is said to be uniformly convergent to $f(z)$ on G in the Carathéodory-Landau sense [1] if for any point $z_{0} \in G$ there exists a disk $K\left(z_{0}\right)$ centered at this point such that $K\left(z_{0}\right) \subset G$ and

$$
(\forall \varepsilon>0)\left(\exists n_{0} \in \mathbb{N}\right)\left(\forall n>n_{0}\right)\left(\forall z \in K\left(z_{0}\right)\right):\left|f_{n}(z)-f(z)\right|<\varepsilon,
$$

whenever $f\left(z_{0}\right) \neq \infty$, or

$$
\left|\frac{1}{f_{n}(z)}-\frac{1}{f(z)}\right|<\varepsilon
$$

whenever $f\left(z_{0}\right)=\infty$.

Note that this convergence is equivalent to the convergence in the spherical metric.
Definition 4. A family \mathcal{F} of meromorphic in \mathbb{C}^{*} functions is said to be normal if every sequence $\left\{f_{n}\right\} \subseteq \mathcal{F}$ contains a subsequence which converges uniformly in the Carathéodory-Landau sense.

Definition 5. A meromorphic in \mathbb{C}^{*} function f is called Julia exceptional (see [7]) if for some q, $0<|q|<1$, the family $\left\{f_{n}(z)\right\}, n \in \mathbb{Z}$, where $f_{n}(z)=f\left(q^{n} z\right)$, is normal in \mathbb{C}^{*}.

In \mathbb{C} there are few simple examples of Julia exceptional functions. But in \mathbb{C}^{*} we have the following.

Let $f \in \mathcal{L}_{q p}$. We have

$$
f_{n}(z)=f\left(q^{n} z\right)=p^{n} f(z)
$$

for every $z \in \mathbb{C}^{*}$.
If $|p|>1$, then a limiting function of the family $\left\{f_{n}(z)\right\}, n \in \mathbb{Z}$, is ∞. Otherwise, if $|p|<1$, then a limiting function is 0 . If $|p|=1$, that is $p=e^{i \alpha}$, we have $f_{n}(z)=e^{i n \alpha} f(z)$. Hence, the set of limit functions depends on α. If $\alpha=\frac{\pi m}{k}$, where $m \in \mathbb{Z}, k \in \mathbb{N}$, the number of limiting functions is less than or equals to $2 k$. Otherwise, if $\alpha=\pi r$, where $r \in \mathbb{R} \backslash \mathbf{Q}$, the number of limiting functions is infinite.

Example 2. Let $f \in \mathcal{L}_{q}^{\alpha}$ with $\alpha=\frac{\pi}{4}$. Then

$$
f_{n}(z)=f\left(q^{n} z\right)=p^{n} f(z)=e^{i n \frac{\pi}{4}} f(z)
$$

Thus, we obtain eight limiting functions

$$
\pm f, \pm i f,\left(\frac{\sqrt{2}}{2} \pm i \frac{\sqrt{2}}{2}\right) f,\left(-\frac{\sqrt{2}}{2} \pm i \frac{\sqrt{2}}{2}\right) f
$$

Hence, f is Julia exceptional in \mathbb{C}^{*}.
These results can be summarized as follows.
Theorem 4. Each function $f \in \mathcal{L}_{q p}$ is Julia exceptional in \mathbb{C}^{*}.

References

[1] Carathéodory C., Landau E. Beiträge zur Konvergenz von Functionenfolgen. Sitzungsber. Kon. Preuss. Akad. Wiss 1911, 587-613.
[2] Crowdy D.G. Geometric function theory: a modern view of a classical subject. Nonlinearity 2008, 21 (10), T205T219. doi:10.1088/0951-7715/21/10/T04
[3] Julia G. Leçons sur les fonctions uniformes à point singulier essentiel isolé. Gauthier-Villars, Paris, 1924.
[4] Hayman W. K. Meromorphic functions. Clarendon Press, Oxford, 1975.
[5] Hellegouarch Y. Invitation to the Mathematics of Fermat-Wiles. Academic Press, 2002.
[6] Klein F. Zur Theorie der Abel'schen Functionen. Math. Ann. 1890, 36 (1), 1-83. doi:10.1007/BF01199432
[7] Montel P. Leçons sur les familles normales de fonctions analytiques at leurs applications. Gauthier-Villars, Paris, 1927.
[8] Ostrowski A. Über Folgen analytischer Funktionen und einige Verschärfungen des Picardschen Satzes. Mathematische Zeitschrift 1926, 24 (1), 215-258.
[9] Rausenberger O. Lehrbuch der Theorie der Periodischen Functionen Einer variabeln. Druck und Ferlag von B.G.Teubner, Leipzig, 1884.
[10] Schottky F. Über eine specielle Function welche bei einer bestimmten linearen Transformation ihres Arguments unverändert bleibt. J. Reine Angew. Math. 1887, 101, 227-272.
[11] Valiron G. Cours d'Analyse Mathematique. Theorie des fonctions. Masson et.Cie., Paris, 1947.

Хорощак В.С., Христіянин А.Я., Куківська Д.В. Один клас Жюліа виняткових функиій // Карпатські матем. публ. — 2016. — Т.8, №1. - С. 172-180.

Досліджується клас p-локсодромних функцій (мероморфних функцій, що задовольняють умову $f(q z)=p f(z)$ при деяких $q \in \mathbb{C} \backslash\{0\}$ для всіх $z \in \mathbb{C} \backslash\{0\})$. Доведено, що кожна p локсодромна функція є Жюліа винятковою. Подано зображення таких функцій та описано розподіл їх нулів та полюсів.

Ключові слова і фрази: р-локсодромна функція, первинна функція Шотткі-Кляйна, Жюліа винятковість.

