ISSN 2075-9827 e-ISSN 2313-0210 Carpathian Math. Publ. 2016, 8 (1), 172–180 doi:10.15330/cmp.8.1.172-180

KHOROSHCHAK V.S., KHRYSTIYANYN A.YA., LUKIVSKA D.V.

A CLASS OF JULIA EXCEPTIONAL FUNCTIONS

The class of *p*-loxodromic functions (meromorphic functions, satisfying the condition f(qz) = pf(z) for some $q \in \mathbb{C} \setminus \{0\}$ and all $z \in \mathbb{C} \setminus \{0\}$) is studied. Each *p*-loxodromic function is Julia exceptional. The representation of these functions as well as their zero and pole distribution are investigated.

Key words and phrases: p-loxodromic function, the Schottky-Klein prime function, Julia exceptionality.

Ivan Franko National University, 1 Universytetska str., 79000, Lviv, Ukraine

E-mail: v.khoroshchak@gmail.com(Khoroshchak V.S.), khrystiyanyn@ukr.net(Khrystiyanyn A.Ya.), d.lukivska@gmail.com(Lukivska D.V.)

INTRODUCTION

Denote $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$, and let $q, p \in \mathbb{C}^*$, |q| < 1.

Definition 1. A meromorphic in \mathbb{C}^* function f is said to be *p*-loxodromic of multiplicator q if for every $z \in \mathbb{C}^*$

$$f(qz) = pf(z). \tag{1}$$

Let \mathcal{L}_{qp} denotes the class of *p*-loxodromic functions of multiplicator *q*.

The case p = 1 has been studied earlier in the works of O. Rausenberger [9], G. Valiron [11] and Y. Hellegouarch [5]. In his work [3, p. 133] which A. Ostrowski [8] called "besonders schöne und überraschende" G. Julia gave an example of a meromorphic in the punctured plane \mathbb{C}^* function satisfying (1) with p = 1 for some non-zero q, $|q| \neq 1$, and all $z \in \mathbb{C}^*$. He noted that the family $\{f_n(z)\}, f_n(z) = f(q^n z)$ is normal [7] in \mathbb{C}^* because $f_n(z) = f(z)$ for all $z \in \mathbb{C}^*$.

If p = 1 the function f is called loxodromic. Loxodromic functions of multiplicator q form a field, which is denoted by \mathcal{L}_q . The set \mathcal{L}_{qp} forms an Abelian group with respect to addition.

It is obvious that a ratio of two functions from \mathcal{L}_{qp} is a loxodromic function, and the derivative of the loxodromic function is *p*-loxodromic with $p = \frac{1}{q}$.

Remark 1. Every $f \equiv const$ belongs to \mathcal{L}_q , but the unique constant function belonging to \mathcal{L}_{qp} is $f \equiv 0$.

If $f \in \mathcal{L}_{qp}$ and a is a zero of f, then aq^n , $n \in \mathbb{Z}$, are as well. That is, in the case of nonpositive q the zeros of f lay on a logarithmic spiral. Let $a = |a|e^{i\alpha}$, $q = |q|e^{i\gamma}$. Then the logarithmic spiral in polar coordinates (r, φ) takes the form

$$\log r - \log |a| = k(\varphi - \alpha),$$

УДК 517.53

2010 Mathematics Subject Classification: 30D30, 30D45.

where $k = \frac{\log |q|}{\gamma}$. The same concerns the poles of f. The image of a logarithmic spiral on the Riemann sphere by the stereographic projection intersects each meridian at the same angle and is called loxodromic curve ($\lambda o\xi o\zeta$ - oblique, $\delta \rho o\mu o\zeta$ - way). That is why we call (following G. Valiron) the function from \mathcal{L}_q loxodromic.

Remark 2. If $f \in \mathcal{L}_q$ and z is its *a*-point, $a \in \mathbb{C} \cup \{\infty\}$, then $q^n z, n \in \mathbb{Z}$, are its *a*-points too. In the case, $f \in \mathcal{L}_{qp}$, the previous considerations are valid only for the zeros and the poles of f.

It is easy to verify, that \mathcal{L}_{qp} forms the linear spaces over the fields \mathbb{C} and \mathcal{L}_{q} . Also it is clear that \mathcal{L}_{qp} has the following properties.

Proposition. The linear space \mathcal{L}_{qp} has the following properties.

- 1. The map $D : f(z) \mapsto zf'(z)$ maps \mathcal{L}_{qp} to \mathcal{L}_{qp} . 2. The map $D_l : f(z) \mapsto z \frac{f'(z)}{f(z)}$ maps \mathcal{L}_{qp} to \mathcal{L}_q .
- 3. $f(z) \in \mathcal{L}_{qp} \Rightarrow f(\frac{1}{z}) \in \mathcal{L}_{q\frac{1}{p}}.$

Let us give nontrivial example of *p*-loxodromic function of multiplicator *q*. Put

$$h(z) = \prod_{n=1}^{\infty} (1 - q^n z), \quad 0 < |q| < 1.$$

Definition 2. The function

$$P(z) = (1-z)h(z)h\left(\frac{1}{z}\right) = (1-z)\prod_{n=1}^{\infty}(1-q^n z)(1-\frac{q^n}{z})$$

is called the Schottky-Klein prime function.

This function is holomorphic in \mathbb{C}^* with zero sequence $\{q^n\}$, $n \in \mathbb{Z}$. It was introduced by Schottky [10] and Klein [6] for the study of conformal mappings of doubly-connected domains, see also [2].

It is easy to obtain the following property of *P*

$$P(qz) = -\frac{1}{z}P(z).$$
(2)

Example 1. Consider the function

$$f(z) = \frac{P\left(\frac{z}{p}\right)}{P(z)}.$$

Using (2), it is easy to show that $f \in \mathcal{L}_{qp}$.

1 THE NUMBERS OF ZEROS AND POLES OF *p*-LOXODROMIC FUNCTIONS IN AN ANNULUS

Let $A_q(R) = \{z \in \mathbb{C} : |q|R < |z| \le R\}$, R > 0 and $A_q = A_q(1)$.

Theorem 1. Let $f \in \mathcal{L}_{qp}$ and the boundary of $A_q(R)$ contains neither zeros nor poles of f. Then f has equal numbers of zeros and poles (counted according to their multiplicities) in every $A_q(R)$. *Proof.* Let $\Gamma_1 = \{z \in \mathbb{C} : |z| = |q|R\}$ and $\Gamma_2 = \{z \in \mathbb{C} : |z| = R\}$ denote the circles bounding $A_q(R)$. Let n(f) be the number of poles of f in $A_q(R)$.

By the argument principle, we have

$$n\left(\frac{1}{f}\right) - n(f) = \frac{1}{2i\pi} \left(\int_{\Gamma_2^+} \frac{f'(z)}{f(z)} dz - \int_{\Gamma_1^+} \frac{f'(\xi)}{f(\xi)} d\xi \right).$$
(3)

Setting $\xi = qz$ in the second integral of (3), we obtain

$$n\left(\frac{1}{f}\right) - n(f) = \frac{1}{2i\pi} \int\limits_{\Gamma_2^+} \left(\frac{f'(z)}{f(z)} - q\frac{f'(qz)}{f(qz)}\right) dz.$$
(4)

Since $f \in \mathcal{L}_{qp}$, the relation (1) implies

$$f'(qz) = \frac{p}{q}f'(z).$$
(5)

Putting (1) and (5) in (4), we obtain the conclusion of the theorem.

Remark 3. Every non-constant loxodromic function of multiplicator q has at least two poles (and two zeros) in every annulus $A_q(R)$ [5]. As we see from Example 1, the *p*-loxodromic function f has the unique pole z = 1 in A_q . This is an essential difference between loxodromic and *p*-loxodromic functions with $p \neq 1$.

2 REPRESENTATION OF *p*-LOXODROMIC FUNCTIONS

The representation of loxodromic functions from \mathcal{L}_q was given in [11], [5]. The following theorem gives the representation of a function from \mathcal{L}_{qp} .

Let $a_1, ..., a_m$ and $b_1, ..., b_m$ be the zeros and the poles of $f \in \mathcal{L}_{qp}$ in A_q respectively. Denote

$$\lambda = \frac{a_1 \cdot \dots \cdot a_m}{b_1 \cdot \dots \cdot b_m}.$$
(6)

Theorem 2. The non-identical zero meromorphic in \mathbb{C}^* function f belongs to \mathcal{L}_{qp} , $p \neq 1$, if and only if there exists $\nu \in \mathbb{Z}$ such that $\lambda = \frac{p}{q^{\nu}}$ and f has the form

$$f(z) = cz^{\nu} \frac{P\left(\frac{z}{a_1}\right) \cdot \dots \cdot P\left(\frac{z}{a_m}\right)}{P\left(\frac{z}{b_1}\right) \cdot \dots \cdot P\left(\frac{z}{b_m}\right)},\tag{7}$$

where c is a constant.

Proof. Firstly, denote

$$M(z) = \frac{P\left(\frac{z}{a_1}\right) \cdot \dots \cdot P\left(\frac{z}{a_m}\right)}{P\left(\frac{z}{b_1}\right) \cdot \dots \cdot P\left(\frac{z}{b_m}\right)}$$

and consider the function

$$g(z) = \frac{f(z)}{M(z)}.$$

Since the functions f and M have the same zeros and poles, it follows that their ratio g is holomorphic in \mathbb{C}^* function. Let $g(z) = \sum_{n=-\infty}^{+\infty} c_n z^n$ be the Laurant expansion of g in \mathbb{C}^* . Using relation (1) and the equality (2), we obtain

$$\lambda g(qz) = pg(z). \tag{8}$$

According to (8), we obtain

$$\lambda \sum_{n=-\infty}^{+\infty} c_n q^n z^n = p \sum_{n=-\infty}^{+\infty} c_n z^n$$

for any $z \in \mathbb{C}^*$. This implies $\lambda c_n q^n = pc_n$ or $c_n(\lambda q^n - p) = 0$. Then there exists at least one $c_\nu \neq 0, \nu \in \mathbb{Z}$, such that

$$c_{\nu}(\lambda q^{\nu} - p) = 0. \tag{9}$$

Hence, the relation (9) implies $q^{\nu} = \frac{p}{\lambda}$. We see also that $c_n = 0$ if $n \neq \nu$, so we have $g(z) = c_{\nu} z^{\nu}$. Thus, we can conclude

$$f(z) = g(z)M(z) = cz^{\nu}M(z),$$

where *c* is a constant.

Secondly, we have $f(z) = cz^{\nu}M(z)$, $\nu \in \mathbb{Z}$. Show that it belongs to \mathcal{L}_{qp} . Thus, $f(qz) = cq^{\nu}z^{\nu}M(qz)$. Indeed, using (2), we obtain

$$f(qz) = cq^{\nu}z^{\nu}\lambda M(z) = pf(z)$$

This completes the proof.

Corollary 1. Assume $f \in \mathcal{L}_{qp}$, if f is holomorphic in \mathbb{C}^* , then $f(z) \equiv 0$ or there exists $k \in \mathbb{Z} \setminus \{0\}$ such that $p = q^k$ and $f(z) = cz^k$, where c is a constant. Conversely, a holomorphic in \mathbb{C}^* function of the form $f(z) = cz^k$, where $k \in \mathbb{Z} \setminus \{0\}$, c is a constant, belongs to \mathcal{L}_{qp} .

3 ZERO AND POLE DISTRIBUTION

Let $\{a_i\}, \{b_i\}, j \in \mathbb{Z}$ be a couple of sequences in $\mathbb{C}^*, p \neq 1$. Put

$$\mu(r) = \left[\log r / \log |q|\right] - 1.$$

Note that $\mu(r) = 0$ if $|q| \le r < 1$. Denote

Theorem 3. The zero sequence $\{a_j\}$ and the pole sequence $\{b_j\}$ of a non-identical zero meromorphic *p*-loxodromic function of multiplicator *q* satisfy the following conditions:

- (*i*) the number of a_j and b_j in every annulus of the form $\{z : r < |z| < 2r\}$, r > 0 is bounded by an absolute constant;
- (*ii*) the difference between the numbers of a_j and b_k in every annulus $\{z : r_1 < |z| < r_2\}$, $0 < r_1 < r_2 < +\infty$ is bounded by an absolute constant;
- (*iii*) there exists $C_1 > 0$ such that $\left| \frac{a_j}{b_k} 1 \right| > C_1$ for every $j, k \in \mathbb{Z}$;
- (*iv*) the function $\mathfrak{M}_{\nu}(r)$, where $\nu \in \mathbb{Z}$ such that $\lambda = \frac{p}{q^{\nu}}$, and λ is given by (6), is bounded for r > 0.

Proof. Let *f* be a *p*-loxodromic of multiplicator *q* function. If *f* is holomorphic then by Corollary 1 there exists $k \in \mathbb{Z} \setminus \{0\}$ such that $f(z) = cz^k$, and *c* is a constant. Hence, *f* has no zeros in \mathbb{C}^* . So there is nothing to prove.

Let *f* be meromorphic. Then by Remark 2 and Theorem 1 it has infinitely many zeros and poles.

(*i*) First we remark that there exists a unique $n_0 \in \mathbb{Z}_+$ such that $\frac{1}{|q|^{n_0}} \le 2 < \frac{1}{|q|^{n_0+1}}$. This

n_0 is equal to $\left[\frac{\log 2}{\log \frac{1}{|q|}}\right]$.

Since every annulus $\{z : \frac{r}{|q|^k} < |z| \le \frac{r}{|q|^{k+1}}\}$, where $k \in \mathbb{Z}$, contains the same number of zeros of *f*, say *m*, and

$$(r,2r] = \left(\bigcup_{k=0}^{n_0-1} \left(\frac{r}{|q|^k}, \frac{r}{|q|^{k+1}}\right]\right) \cup \left(\frac{r}{|q|^{n_0}}, 2r\right]$$

it follows that the annulus $\{z : r < |z| \le 2r\}$ contains at least n_0m and less than $(n_0 + 1)m$ zeros of f. The same is true about the poles of f.

(*ii*) Similarly as in (*i*) we can find unique $n_1, n_2 \in \mathbb{Z}$ such that

$$|q|^{n_1+1} < r_1 \le |q|^{n_1} < |q|^{n_2} < r_2 \le |q|^{n_2-1}.$$

Hence

$$(r_1, r_2) = (r_1, |q|^{n_1}] \cup \left(\bigcup_{k=n_1}^{n_2-1} (|q|^k, |q|^{k+1}]\right) \cup (|q|^{n_2}, r_2).$$

Every annulus of the form $\{z : |q|^{k+1} < |z| \le |q|^k\}$, where $k \in \mathbb{Z}$, contains equal amount of zeros and poles of f counted according to their multiplicities (we have denoted this number by m). Therefore the difference between the numbers of zeros and poles of f in the annulus $\{z : r_1 < |z| < r_2\}$ is no greater than 2m because of the choice of n_1, n_2 .

(*iii*) Let $a_1, a_2, ..., a_m$ and $b_1, b_2, ..., b_m$ be the zeros and the poles of f in $\{z : |q| < |z| \le 1\}$ respectively. Then all the zeros of f have the form $\alpha_{\mu,k} = a_k q^{\mu}$, where $\mu \in \mathbb{Z}, k = 1, 2, ..., m$.

The same is true about the poles of *f*, namely $\beta_{\nu,k} = b_k q^{\nu}$, where $\nu \in \mathbb{Z}$, k = 1, 2, ..., m. So, $\frac{\alpha_{\mu,j}}{\beta_{\nu,k}} = \frac{a_j}{b_k} q^l$, where $l \in \mathbb{Z}$. It is necessary to show that there exists C > 0 such that the inequality

$$\left|\frac{a_j}{b_k}q^l - 1\right| > C$$

holds for all $j, k \in \{1, 2, ..., m\}$, and $l \in \mathbb{Z}$.

Suppose that for any $\varepsilon > 0$ there exist $j, k \in \{1, 2, ..., m\}$, and $l \in \mathbb{Z}$ such that

$$\left|\frac{a_j}{b_k}q^l - 1\right| \le \varepsilon. \tag{10}$$

Without loss of generality we can assume that $|l| \leq 2$. Indeed, taking into account where a_i, b_k belong to, we have

$$\left|rac{a_j}{b_k}q^l
ight|\leq rac{1}{|q|}|q|^l\leq |q|, \qquad l\geq 2.$$

Similarly,

$$\left|\frac{a_j}{b_k}q^l\right| \ge |q||q|^l \ge \frac{1}{|q|}, \qquad l \le -2$$

So, for all $j, k \in \{1, 2, ..., m\}$, and $l \ge 2$

$$\left|\frac{a_j}{b_k}q^l - 1\right| \ge 1 - |q|,$$

and for $l \leq -2$

$$\left|\frac{a_j}{b_k}q^l - 1\right| \ge \frac{1}{|q|} - 1$$

Let now |l| < 2. Choose

$$\varepsilon = \frac{1}{2} \min\{|a_j q^l - b_k| : j, k \in \{1, 2, ..., m\}, -1 \le l \le 1\}.$$

Then (10) implies

$$|a_jq^l-b_k|\leq \varepsilon|b_k|\leq \varepsilon.$$

That is

$$|a_jq^l - b_k| \le \frac{1}{2} \min\{|a_jq^l - b_k| : j, k \in \{1, 2, ..., m\}, -1 \le l \le 1\}$$

which gives a contradiction.

(iv) We remind that f has representation (7). It can be rewritten as follows

$$f(z) = cz^{\nu} \prod_{k=1}^{m} \frac{\prod_{n=0}^{+\infty} \left(1 - \frac{q^n z}{a_k}\right) \prod_{n=1}^{+\infty} \left(1 - \frac{q^n a_k}{z}\right)}{\prod_{n=0}^{+\infty} \left(1 - \frac{q^n z}{b_k}\right) \prod_{n=1}^{+\infty} \left(1 - \frac{q^n b_k}{z}\right)}, \qquad z \in \mathbb{C}^*.$$
 (11)

Clearly, we can assume $c \neq 0$. Consider the integral means $I(r) = \frac{1}{2\pi} \int_{0}^{2\pi} \log |f(re^{i\theta})| d\theta$, r > 0.

Let $z = re^{i\theta}$. We have for r > 1 [4, p. 8]

$$\frac{1}{2\pi}\int_{0}^{2\pi}\log\left|1-\frac{z}{a_{j}}\right|\,d\theta=\log^{+}\frac{r}{|a_{j}|}\,,$$

and, if $|a_j| \leq 1$

$$\frac{1}{2\pi}\int_{0}^{2\pi}\log\left|1-\frac{a_{j}}{z}\right|\,d\theta=0\,.$$

The same is true for b_i .

Since for every $k \in \{1, 2, ..., m\}$ we have $|c_k q^{-n}| > 1$ for $n \in \mathbb{N}$, and $|c_k q^n| \le 1$ for $n \in \mathbb{N} \cup \{0\}$, where c_k is a zero or pole of f, then (11) implies

$$I(r) = \nu \log r + \sum_{|a_j| > 1} \log^+ \frac{r}{|a_j|} - \sum_{|b_j| > 1} \log^+ \frac{r}{|b_j|} + \log |c|, \quad r > 1$$

Similarly, for $0 < r \le 1$ we obtain

$$I(r) = \nu \log r + \sum_{|a_j| \le 1} \log^+ \frac{|a_j|}{r} - \sum_{|b_j| \le 1} \log^+ \frac{|b_j|}{r} + \log |c|.$$

Hence,

$$\mathfrak{M}_{\nu}(r) = \frac{1}{|p|^{\mu(r)}} \frac{1}{|c|} \exp I(r) = \frac{1}{|c|} \exp\{I(r) - \mu(r) \log |p|\}, \quad r > 0.$$

Since I(r) is convex with respect to log r and consequently continuous, I(r) is bounded on [|q|, 1]. It follows from the definition of a p-loxodromic function of multiplicator q that

$$I(|q|^{k}r) = I(r) + k\log|p|$$

for every $k \in \mathbb{Z}$. On the other hand

$$\mu(|q|^k r) = \left[\frac{k \log |q| + \log r}{\log |q|}\right] - 1 = k, \qquad |q| \le r < 1.$$

That is

$$\mathfrak{M}_
u(|q|^k r) = \mathfrak{M}_
u(r), \qquad |q| \leq r < 1$$

for all $k \in \mathbb{Z}$. Then we conclude that $\mathfrak{M}_{\nu}(r)$ remains bounded for all r > 0 which completes the proof.

4 JULIA EXCEPTIONALITY

Definition 3. Let f_n , $n \in \mathbb{N}$, be meromorphic functions in a domain *G*. A sequence $\{f_n(z)\}$ is said to be uniformly convergent to f(z) on *G* in the Carathéodory-Landau sense [1] if for any point $z_0 \in G$ there exists a disk $K(z_0)$ centered at this point such that $K(z_0) \subset G$ and

$$(\forall \varepsilon > 0) (\exists n_0 \in \mathbb{N}) (\forall n > n_0) (\forall z \in K(z_0)) : |f_n(z) - f(z)| < \varepsilon_n$$

whenever $f(z_0) \neq \infty$, or

$$\left|\frac{1}{f_n(z)}-\frac{1}{f(z)}\right|<\varepsilon,$$

whenever $f(z_0) = \infty$.

Note that this convergence is equivalent to the convergence in the spherical metric.

Definition 4. A family \mathcal{F} of meromorphic in \mathbb{C}^* functions is said to be normal if every sequence $\{f_n\} \subseteq \mathcal{F}$ contains a subsequence which converges uniformly in the Carathéodory-Landau sense.

Definition 5. A meromorphic in \mathbb{C}^* function f is called Julia exceptional (see [7]) if for some q, 0 < |q| < 1, the family $\{f_n(z)\}, n \in \mathbb{Z}$, where $f_n(z) = f(q^n z)$, is normal in \mathbb{C}^* .

In \mathbb{C} there are few simple examples of Julia exceptional functions. But in \mathbb{C}^* we have the following.

Let $f \in \mathcal{L}_{qp}$. We have

$$f_n(z) = f(q^n z) = p^n f(z)$$

for every $z \in \mathbb{C}^*$.

If |p| > 1, then a limiting function of the family $\{f_n(z)\}$, $n \in \mathbb{Z}$, is ∞ . Otherwise, if |p| < 1, then a limiting function is 0. If |p| = 1, that is $p = e^{i\alpha}$, we have $f_n(z) = e^{in\alpha}f(z)$. Hence, the set of limit functions depends on α . If $\alpha = \frac{\pi m}{k}$, where $m \in \mathbb{Z}$, $k \in \mathbb{N}$, the number of limiting functions is less than or equals to 2k. Otherwise, if $\alpha = \pi r$, where $r \in \mathbb{R} \setminus \mathbb{Q}$, the number of limiting functions is infinite.

Example 2. Let $f \in \mathcal{L}_q^{\alpha}$ with $\alpha = \frac{\pi}{4}$. Then

$$f_n(z) = f(q^n z) = p^n f(z) = e^{in\frac{\pi}{4}} f(z).$$

Thus, we obtain eight limiting functions

$$\pm f$$
, $\pm if$, $\left(\frac{\sqrt{2}}{2} \pm i\frac{\sqrt{2}}{2}\right)f$, $\left(-\frac{\sqrt{2}}{2} \pm i\frac{\sqrt{2}}{2}\right)f$.

Hence, f is Julia exceptional in \mathbb{C}^* .

These results can be summarized as follows.

Theorem 4. Each function $f \in \mathcal{L}_{qp}$ is Julia exceptional in \mathbb{C}^* .

References

- Carathéodory C., Landau E. Beiträge zur Konvergenz von Functionenfolgen. Sitzungsber. Kon. Preuss. Akad. Wiss 1911, 587–613.
- [2] Crowdy D.G. Geometric function theory: a modern view of a classical subject. Nonlinearity 2008, 21 (10), T205– T219. doi:10.1088/0951-7715/21/10/T04
- [3] Julia G. Leçons sur les fonctions uniformes à point singulier essentiel isolé. Gauthier-Villars, Paris, 1924.
- [4] Hayman W. K. Meromorphic functions. Clarendon Press, Oxford, 1975.
- [5] Hellegouarch Y. Invitation to the Mathematics of Fermat-Wiles. Academic Press, 2002.
- [6] Klein F. Zur Theorie der Abel'schen Functionen. Math. Ann. 1890, 36 (1), 1–83. doi:10.1007/BF01199432
- [7] Montel P. Leçons sur les familles normales de fonctions analytiques at leurs applications. Gauthier-Villars, Paris, 1927.

- [8] Ostrowski A. Über Folgen analytischer Funktionen und einige Verschärfungen des Picardschen Satzes. Mathematische Zeitschrift 1926, **24** (1), 215–258.
- [9] Rausenberger O. Lehrbuch der Theorie der Periodischen Functionen Einer variabeln. Druck und Ferlag von B.G.Teubner, Leipzig, 1884.
- [10] Schottky F. Über eine specielle Function welche bei einer bestimmten linearen Transformation ihres Arguments unverändert bleibt. J. Reine Angew. Math. 1887, **101**, 227–272.
- [11] Valiron G. Cours d'Analyse Mathematique. Theorie des fonctions. Masson et.Cie., Paris, 1947.

Received 07.04.2016 Revised 20.05.2016

Хорощак В.С., Христіянин А.Я., Луківська Д.В. *Один клас Жюліа виняткових функцій* // Карпатські матем. публ. — 2016. — Т.8, №1. — С. 172–180.

Досліджується клас *p*-локсодромних функцій (мероморфних функцій, що задовольняють умову f(qz) = pf(z) при деяких $q \in \mathbb{C} \setminus \{0\}$ для всіх $z \in \mathbb{C} \setminus \{0\}$). Доведено, що кожна *p*-локсодромна функція є Жюліа винятковою. Подано зображення таких функцій та описано розподіл їх нулів та полюсів.

Ключові слова і фрази: р-локсодромна функція, первинна функція Шотткі-Кляйна, Жюліа винятковість.