VASYLYSHYn T.V.

CONTINUOUS BLOCK-SYMMETRIC POLYNOMIALS OF DEGREE AT MOST TWO ON THE SPACE $\left(L_{\infty}\right)^{2}$

We introduce block-symmetric polynomials on $\left(L_{\infty}\right)^{2}$ and prove that every continuous blocksymmetric polynomial of degree at most two on $\left(L_{\infty}\right)^{2}$ can be uniquely represented by some "elementary" block-symmetric polynomials.

Key words and phrases: block-symmetric polynomial, symmetric function on L_{∞}.

[^0]
INTRODUCTION

Firstly symmetric functions of infinite number of variables were studied by Nemirovski and Semenov in [5]. Authors considered functions on ℓ_{p} and L_{p} spaces. Some of their results were generalized by González, Gonzalo and Jaramillo [2] to real separable rearrangement-invariant function spaces. In [3] Kravtsiv and Zagorodnyuk considered block-symmetric polynomials on ℓ_{1}-sum of copies of Banach space. In the joint paper of the author with Galindo and Zagorodnyuk [1] the algebra of symmetric analytic functions of bounded type on the complex space L_{∞} is studied in detail and its spectrum is described.

A map $P: X \rightarrow \mathbb{C}$, where X is a complex Banach space, is called an n-homogeneous polynomial if there exists an n-linear symmetric form $A_{P}: X^{n} \rightarrow \mathbb{C}$, such that $P(x)=A_{P}(x, . n, x)$ for every $x \in X$. Here "symmetric" means that

$$
A_{P}\left(x_{\tau(1)}, \ldots, x_{\tau(n)}\right)=A_{P}\left(x_{1}, \ldots, x_{n}\right)
$$

for every permutation $\tau:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$. Note that A_{P} is called the symmetric n linear form associated with P. It is known (see e.g. [4], Theorem 1.10) that A_{P} can be recovered from P by means of the so-called Polarization Formula:

$$
\begin{equation*}
A_{P}\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{n!2^{n}} \sum_{\varepsilon_{1}, \ldots, \varepsilon_{n}= \pm 1} \varepsilon_{1} \ldots \varepsilon_{n} P\left(\varepsilon_{1} x_{1}+\ldots+\varepsilon_{n} x_{n}\right) . \tag{1}
\end{equation*}
$$

In the case $n=2$ formula (1) can be written as

$$
\begin{equation*}
A_{P}\left(x_{1}, x_{2}\right)=\frac{1}{4}\left(P\left(x_{1}+x_{2}\right)-P\left(x_{1}-x_{2}\right)\right) . \tag{2}
\end{equation*}
$$

It is also convenient to define 0 -homogeneous polynomials as constant mappings.

[^1]A mapping $P: X \rightarrow \mathbb{C}$ is called a polynomial of degree at most m if it can be represented as

$$
P=P_{0}+P_{1}+\ldots+P_{m}
$$

where P_{j} is a j-homogeneous polynomial for $j=0, \ldots, m$.
Let L_{∞} be the complex Banach space of all Lebesgue measurable essentially bounded comp-lex-valued functions x on $[0,1]$ with norm

$$
\|x\|_{\infty}=\operatorname{ess}_{\sup }^{t \in[0,1]} \text { }|x(t)| .
$$

Let Ξ be the set of all measurable bijections of $[0,1]$ that preserve the measure. A function $F: L_{\infty} \rightarrow \mathbb{C}$ is called Ξ-symmetric (or just symmetric when the context is clear) if for every $x \in L_{\infty}$ and for every $\sigma \in \Xi$

$$
F(x \circ \sigma)=F(x) .
$$

The functions $R_{n}: L_{\infty} \rightarrow \mathbb{C}$ defined by

$$
R_{n}(x)=\int_{0}^{1} x^{n}(t) d t
$$

for every $n \in \mathbb{N} \cup\{0\}$ are called the elementary symmetric polynomials. In [1] it is shown that for each continuous Ξ-symmetric polynomial $P: L_{\infty} \rightarrow \mathbb{C}$ of degree at most m there is a unique finitely many variables polynomial q such that

$$
P(x)=q\left(R_{0}(x), \ldots, R_{m}(x)\right)
$$

for every $x \in L_{\infty}$.
Let $\left(L_{\infty}\right)^{2}$ be the Cartesian square of the space L_{∞}, endowed with norm $\|(x, y)\|=\max \left\{\|x\|_{\infty},\|y\|_{\infty}\right\}$. Clearly, $\left(L_{\infty}\right)^{2}$ is a complex Banach space. A function $F:\left(L_{\infty}\right)^{2} \rightarrow \mathbb{C}$ we call block-symmetric if for every $(x, y) \in\left(L_{\infty}\right)^{2}$ and for every $\sigma \in \Xi$

$$
F((x \circ \sigma, y \circ \sigma))=F((x, y)) .
$$

We restrict our attention to continuous block-symmetric polynomials of degree at most two on $\left(L_{\infty}\right)^{2}$. In Section 1 we prove that every such a polynomial can be uniquely represented as an algebraic combination of the polynomials

$$
\begin{aligned}
& R_{0}((x, y))=1, \quad R_{10}((x, y))=R_{1}(x), \quad R_{01}((x, y))=R_{1}(y) \\
& R_{20}((x, y))=R_{2}(x), \quad R_{11}((x, y))=\int_{0}^{1} x(t) y(t) d t, \quad R_{02}((x, y))=R_{2}(y)
\end{aligned}
$$

which we call the elementary block-symmetric polynomials of degree at most two.

1 The Main Result

By $\mathbf{1}_{E}$ we denote the characteristic function of a set $E \subset[0,1]$. We also define functions $\mathbf{1}=\mathbf{1}_{[0,1]}$ and $\mathbf{r}=\mathbf{1}_{\left[0, \frac{1}{2}\right]}-\mathbf{1}_{\left[\frac{1}{2}, 1\right]}$.

Theorem 1. Every continuous block-symmetric polynomial $P=P_{0}+P_{1}+P_{2}$, where P_{j} is a j-homogeneous polynomial for $j=0,1,2$, can be represented as

$$
P=a_{0} R_{00}+a_{10} R_{10}+a_{01} R_{01}+a_{20} R_{20}+a_{11} R_{11}+a_{02} R_{02}+a_{1010} R_{10}^{2}+a_{1001} R_{10} R_{01}+a_{0101} R_{01}^{2}
$$

where

$$
\begin{aligned}
& a_{0}=P_{0}, \quad a_{10}=P_{1}((\mathbf{1}, 0)), \quad a_{01}=P_{1}((0, \mathbf{1})), \\
& a_{20}=P_{2}((\mathbf{r}, 0)), \quad a_{11}=A_{P_{2}}((\mathbf{r}, 0),(0, \mathbf{r})), \quad a_{02}=P_{2}((0, \mathbf{r})), \\
& a_{1010}=P_{2}((\mathbf{1}, 0))-P_{2}((\mathbf{r}, 0)), \quad a_{1001}=A_{P_{2}}((\mathbf{1}, 0),(0, \mathbf{1}))-A_{P_{2}}((\mathbf{r}, 0),(0, \mathbf{r})), \\
& a_{0101}=P_{2}((0, \mathbf{1}))-P_{2}((0, \mathbf{r})) .
\end{aligned}
$$

Here we denote by $A_{P_{2}}$ the symmetric bilinear form, associated with P_{2}.
Proof. It can be easily checked that

$$
\begin{aligned}
& P_{0}((x, y))=P((0,0)), \quad P_{1}((x, y))=\frac{1}{2}(P((x, y))-P((-x,-y))), \\
& P_{2}((x, y))=P((x, y))-P_{1}((x, y))-P_{0}((x, y))
\end{aligned}
$$

for every $(x, y) \in\left(L_{\infty}\right)^{2}$. This implies that P_{0}, P_{1} and P_{2} are continuous and block-symmetric.
By the linearity of P_{1}

$$
P_{1}((x, y))=P_{1}((x, 0)+(0, y))=P_{1}((x, 0))+P_{1}((0, y)) .
$$

Let $f_{1}(x)=P_{1}((x, 0))$ for $x \in L_{\infty}$. Clearly, f_{1} is a continuous linear Ξ-symmetric functional on L_{∞}. It is known (see $[1,6]$) that every such a functional f can be represented as

$$
\begin{equation*}
f(x)=f(\mathbf{1}) R_{1}(x) \tag{3}
\end{equation*}
$$

Therefore $f_{1}(x)=f_{1}(\mathbf{1}) R_{1}(x)$, i. e. $P_{1}((x, 0))=P_{1}((\mathbf{1}, 0)) R_{1}(x)$. Analogously, $P_{1}((0, y))=$ $P_{1}((0, \mathbf{1})) R_{1}(y)$. Thus

$$
P_{1}((x, y))=P_{1}((\mathbf{1}, 0)) R_{1}(x)+P_{1}((0, \mathbf{1})) R_{1}(y)=a_{10} R_{10}((x, y))+a_{01} R_{01}((x, y))
$$

Since $A_{P_{2}}$ is bilinear and symmetric, it follows that

$$
P_{2}((x, y))=A_{P_{2}}((x, 0),(x, 0))+2 A_{P_{2}}((x, 0),(0, y))+A_{P_{2}}((0, y),(0, y)) .
$$

We define following bilinear forms:

$$
\begin{align*}
& B_{I}\left(x_{1}, x_{2}\right)=A_{P_{2}}\left(\left(x_{1}, 0\right),\left(x_{2}, 0\right)\right), \quad B_{I I}\left(x_{1}, x_{2}\right)=A_{P_{2}}\left(\left(x_{1}, 0\right),\left(0, x_{2}\right)\right), \\
& B_{I I I}\left(x_{1}, x_{2}\right)=A_{P_{2}}\left(\left(0, x_{1}\right),\left(0, x_{2}\right)\right), \tag{4}
\end{align*}
$$

where $x_{1}, x_{2} \in L_{\infty}$. Note that B_{I} and $B_{I I I}$ are symmetric. By the formula (2)

$$
A_{P_{2}}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\frac{1}{4}\left(P_{2}\left(\left(x_{1}+x_{2}, y_{1}+y_{2}\right)\right)-P_{2}\left(\left(x_{1}-x_{2}, y_{1}-y_{2}\right)\right)\right) .
$$

Therefore by the symmetry of P_{2}

$$
\begin{equation*}
A_{P_{2}}\left(\left(x_{1} \circ \sigma, y_{1} \circ \sigma\right),\left(x_{2} \circ \sigma, y_{2} \circ \sigma\right)\right)=A_{P_{2}}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \tag{5}
\end{equation*}
$$

for every $\sigma \in \Xi$ and $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in\left(L_{\infty}\right)^{2}$. By (5) we have that

$$
\begin{equation*}
B_{j}\left(x_{1} \circ \sigma, x_{2} \circ \sigma\right)=B_{j}\left(x_{1}, x_{2}\right) \tag{6}
\end{equation*}
$$

for every $j \in\{I, I I, I I I\}, x_{1}, x_{2} \in L_{\infty}$ and $\sigma \in \Xi$.
Let Q_{I} be the restriction of B_{I} to the diagonal. By the continuity of B_{I} and by (6) we have that Q_{I} is a continuous 2-homogeneous Ξ-symmetric polynomial. It is known (see [1]) that every continuous 2-homogeneous Ξ-symmetric polynomial Q on L_{∞} can be represented as

$$
\begin{equation*}
Q=\alpha R_{1}^{2}+\beta R_{2} \tag{7}
\end{equation*}
$$

It can be easily checked that $\alpha=Q(\mathbf{1})-Q(\mathbf{r})$ and $\beta=Q(\mathbf{r})$. Note that

$$
Q_{I}(x)=A_{P_{2}}((x, 0),(x, 0))=P_{2}((x, 0))
$$

Thus

$$
\begin{aligned}
A_{P_{2}}((x, 0),(x, 0)) & =\left(P_{2}((\mathbf{1}, 0))-P_{2}((\mathbf{r}, 0))\right) R_{1}^{2}(x)+P_{2}((\mathbf{r}, 0)) R_{2}(x) \\
& =a_{1010} R_{10}^{2}((x, y))+a_{20} R_{20}((x, y))
\end{aligned}
$$

Analogously

$$
A_{P_{2}}((0, y),(0, y))=a_{0101} R_{10}^{2}((x, y))+a_{02} R_{20}((x, y))
$$

The bilinear form $B_{I I}$ can be represented as the sum of the symmetric and the antisymmetric forms

$$
B_{I I}^{s}\left(x_{1}, x_{2}\right)=\frac{1}{2}\left(B_{I I}\left(x_{1}, x_{2}\right)+B_{I I}\left(x_{2}, x_{1}\right)\right)
$$

and

$$
B_{I I}^{a}\left(x_{1}, x_{2}\right)=\frac{1}{2}\left(B_{I I}\left(x_{1}, x_{2}\right)-B_{I I}\left(x_{2}, x_{1}\right)\right)
$$

respectively. Let us prove that $B_{I I}^{a}\left(x_{1}, x_{2}\right)=0$ for every $x_{1}, x_{2} \in L_{\infty}$.
Lemma 1. $B_{I I}^{a}\left(\mathbf{1}_{\left[0, \frac{1}{2}\right]}, \mathbf{1}_{\left[\frac{1}{2}, 1\right]}\right)=0$.
Proof. Let $\sigma(t)=1-t$. By (6) $B_{I I}^{a}\left(\mathbf{1}_{\left[0, \frac{1}{2}\right]}, \mathbf{1}_{\left[\frac{1}{2}, 1\right]}\right)=B_{I I}^{a}\left(\mathbf{1}_{\left[0, \frac{1}{2}\right]} \circ \sigma, \mathbf{1}_{\left[\frac{1}{2}, 1\right]} \circ \sigma\right)=B_{I I}^{a}\left(\mathbf{1}_{\left[\frac{1}{2}, 1\right]}, \mathbf{1}_{\left[0, \frac{1}{2}\right]}\right)$. On the other hand, since $B_{I I}^{a}$ is antisymmetric, it follows that

$$
B_{I I}^{a}\left(\mathbf{1}_{\left[0, \frac{1}{2}\right]}, \mathbf{1}_{\left[\frac{1}{2}, 1\right]}\right)=-B_{I I}^{a}\left(\mathbf{1}_{\left[\frac{1}{2}, 1\right]}, \mathbf{1}_{\left[0, \frac{1}{2}\right]}\right)
$$

Therefore $B_{I I}^{a}\left(\mathbf{1}_{\left[0, \frac{1}{2}\right]}, \mathbf{1}_{\left[\frac{1}{2}, 1\right]}\right)=0$.
Lemma 2. $B_{I I}^{a}\left(\mathbf{1}_{E}, \mathbf{1}_{F}\right)=0$ for every measurable sets $E \subset\left[0, \frac{1}{2}\right]$ and $F \subset\left[\frac{1}{2}, 1\right]$.
Proof. For every $x \in L_{\infty}$ we define $\widehat{x} \in L_{\infty}$ by

$$
\widehat{x}(t)= \begin{cases}x(2 t), & \text { if } t \in\left[0, \frac{1}{2}\right] \\ 0, & \text { if } t \in\left(\frac{1}{2}, 1\right]\end{cases}
$$

Let $z \in L_{\infty}$ be such that its restriction to $\left[0, \frac{1}{2}\right)$ is constant. Let $f_{z}(x)=B_{I I}^{a}(\widehat{x}, z)$, where $x \in L_{\infty}$. Clearly, f_{z} is a continuous linear functional on L_{∞}. Let us prove that f_{z} is Ξ-symmetric. For every $\sigma \in \Xi$ let

$$
\widetilde{\sigma}(t)= \begin{cases}\frac{1}{2} \sigma(2 t), & \text { if } t \in\left[0, \frac{1}{2}\right] \\ t, & \text { if } t \in\left(\frac{1}{2}, 1\right]\end{cases}
$$

Clearly, $\widetilde{\sigma} \in \Xi$ and $z \circ \widetilde{\sigma}=z$. It can be checked that $\widehat{x \circ \sigma}=\widehat{x} \circ \widetilde{\sigma}$. Therefore by (6)

$$
f_{z}(x \circ \sigma)=B_{I I}^{a}(\widehat{x \circ \sigma}, z)=B_{I I}^{a}(\widehat{x} \circ \widetilde{\sigma}, z \circ \widetilde{\sigma})=B_{I I}^{a}(\widehat{x}, z)=f_{z}(x) .
$$

Thus f_{z} is Ξ-symmetric. By (3) $f_{z}(x)=f_{z}(\mathbf{1}) R_{1}(x)$, i. e. $B_{I I}^{a}(\widehat{x}, z)=B_{I I}^{a}(\widehat{\mathbf{1}}, z) R_{1}(x)$. Since $\widehat{\mathbf{1}}=\mathbf{1}_{\left[0, \frac{1}{2}\right]}, \widehat{\mathbf{1}_{2 E}}=\mathbf{1}_{E}$ and $R_{1}\left(\mathbf{1}_{2 E}\right)=2 \mu(E)$, where $2 E=\{2 t: t \in E\}$, it follows that

$$
B_{I I}^{a}\left(\mathbf{1}_{E}, z\right)=B_{I I}^{a}\left(\mathbf{1}_{\left[0, \frac{1}{2}\right]}, z\right) 2 \mu(E) .
$$

Analogously it can be proven that $B_{I I}^{a}\left(u, \mathbf{1}_{F}\right)=B_{I I}^{a}\left(u, \mathbf{1}_{\left[\frac{1}{2}, 1\right]}\right) 2 \mu(F)$, where $u \in L_{\infty}$ such that its restriction to $\left(\frac{1}{2}, 1\right]$ is constant. Therefore

$$
B_{I I}^{a}\left(\mathbf{1}_{E}, \mathbf{1}_{F}\right)=B_{I I}^{a}\left(\mathbf{1}_{\left[0, \frac{1}{2}\right]}, \mathbf{1}_{F}\right) 2 \mu(E)=B_{I I}^{a}\left(\mathbf{1}_{\left[0, \frac{1}{2}\right]}, \mathbf{1}_{\left[\frac{1}{2}, 1\right]}\right) 4 \mu(E) \mu(F)=0
$$

by Lemma 1.
Lemma 3. $B_{I I}^{a}\left(\mathbf{1}_{E}, \mathbf{1}_{F}\right)=0$ for disjoint measurable sets $E, F \subset[0,1]$ such that $\mu(E) \leq \frac{1}{2}$ and $\mu(F) \leq \frac{1}{2}$.

Proof. By [1, Proposition 1.2] there exists $\sigma_{E, F} \in \Xi$ such that $\mathbf{1}_{E}=\mathbf{1}_{[0, a]} \circ \sigma_{E, F}$ and $\mathbf{1}_{F}=\mathbf{1}_{[a, a+b]} \circ$ $\sigma_{E, F}$, where $a=\mu(E)$ and $b=\mu(F)$. Let

$$
\sigma_{1}(t)= \begin{cases}t-a+\frac{1}{2}, & \text { if } t \in[a, a+b] \\ t-\frac{1}{2}+a, & \text { if } t \in\left[\frac{1}{2}, \frac{1}{2}+b\right] \\ t, & \text { otherwise }\end{cases}
$$

Clearly, $\sigma_{1} \in \Xi, \mathbf{1}_{[0, a]}=\mathbf{1}_{[0, a]} \circ \sigma_{1}$ and $\mathbf{1}_{[a, a+b]}=\mathbf{1}_{\left[\frac{1}{2}, \frac{1}{2}+b\right]} \circ \sigma_{1}$. Therefore $\mathbf{1}_{E}=\mathbf{1}_{[0, a]} \circ \sigma_{1} \circ \sigma_{E, F}$ and $\mathbf{1}_{F}=\mathbf{1}_{\left[\frac{1}{2}, \frac{1}{2}+b\right]} \circ \sigma_{1} \circ \sigma_{E, F}$. By (6) and by Lemma 2

$$
B_{I I}^{a}\left(\mathbf{1}_{E}, \mathbf{1}_{F}\right)=B_{I I}^{a}\left(\mathbf{1}_{[0, a]} \circ \sigma_{1} \circ \sigma_{E, F}, \mathbf{1}_{\left[\frac{1}{2}, \frac{1}{2}+b\right]} \circ \sigma_{1} \circ \sigma_{E, F}\right)=B_{I I}^{a}\left(\mathbf{1}_{[0, a]}, \mathbf{1}_{\left[\frac{1}{2}, \frac{1}{2}+b\right]}\right)=0 .
$$

Lemma 4. $B_{I I}^{a}\left(\mathbf{1}_{E}, \mathbf{1}_{F}\right)=0$ for every disjoint measurable sets $E, F \subset[0,1]$.
Proof. If $\mu(E)=\mu(F)$, then $\mu(E)$ and $\mu(F)$ cannot be greater than $\frac{1}{2}$ and $B_{I I}^{a}\left(\mathbf{1}_{E}, \mathbf{1}_{F}\right)=0$ by Lemma 3. Note that $B_{I I}^{a}\left(\mathbf{1}_{E}, \mathbf{1}_{F}\right)=0$ if $\mu(E)=0$ or $\mu(F)=0$. Let $\mu(E)>\mu(F)>$ 0 . Let $N=\left\lfloor\frac{\mu(E)}{\mu(F)}\right\rfloor$. We can choose disjoint measurable subsets $E_{1}, \ldots, E_{N} \subset E$ such that $\mu\left(E_{1}\right)=\ldots=\mu\left(E_{N}\right)=\mu(F)$. Set $E_{0}=E \backslash \cup_{j=1}^{N} E_{j}$. Then

$$
B_{I I}^{a}\left(\mathbf{1}_{E}, \mathbf{1}_{F}\right)=\sum_{j=0}^{N} B_{I I}^{a}\left(\mathbf{1}_{E_{j}}, \mathbf{1}_{F}\right)=B_{I I}^{a}\left(\mathbf{1}_{E_{0}}, \mathbf{1}_{F}\right) .
$$

Since $\mu\left(E_{0}\right)<\mu(F)<\frac{1}{2}$, it follows that $B_{I I}^{a}\left(\mathbf{1}_{E_{0}}, \mathbf{1}_{F}\right)=0$ by Lemma 3 .
Lemma 5. $B_{I I}^{a}\left(\mathbf{1}_{E}, \mathbf{1}_{F}\right)=0$ for every measurable sets $E, F \subset[0,1]$.
Proof. Note that $E=(E \backslash F) \sqcup(E \cap F)$ and $F=(F \backslash E) \sqcup(E \cap F)$. Therefore

$$
B_{I I}^{a}\left(\mathbf{1}_{E}, \mathbf{1}_{F}\right)=B_{I I}^{a}\left(\mathbf{1}_{E \backslash F}, \mathbf{1}_{F \backslash E}\right)+B_{I I}^{a}\left(\mathbf{1}_{E \backslash F}, \mathbf{1}_{E \cap F}\right)+B_{I I}^{a}\left(\mathbf{1}_{E \cap F}, \mathbf{1}_{F \backslash E}\right)+B_{I I}^{a}\left(\mathbf{1}_{E \cap F}, \mathbf{1}_{E \cap F}\right)=0
$$

by Lemma 4 and by the antisymmetry of $B_{I I}^{a}$.

Proof of the Theorem 1 (continuation). For the simple measurable functions $x_{1}, x_{2} \in L_{\infty}$ we have $B_{I I}^{a}\left(x_{1}, x_{2}\right)=0$ by the bilinearity of $B_{I I}^{a}$. Since the set of simple measurable functions is dense in L_{∞}, the continuity of $B_{I I}^{a}$ leads to $B_{I I}^{a}\left(x_{1}, x_{2}\right)=0$ for every $x_{1}, x_{2} \in L_{\infty}$. Thus $B_{I I}=B_{I I}^{s}, \mathrm{i}$. e. $B_{I I}$ is symmetric. Let $Q_{I I}$ be the restriction of $B_{I I}$ to the diagonal. $Q_{I I}$ is a continuous 2homogeneous Ξ-symmetric polynomial. Therefore by (7) $Q_{I I}(x)=\left(Q_{I I}(\mathbf{1})-Q_{I I}(\mathbf{r})\right) R_{1}^{2}(x)+$ $Q_{I I}(\mathbf{r}) R_{2}(x)$.

By (2) $B_{I I}(x, y)=\frac{1}{4}\left(Q_{I I}(x+y)-Q_{I I}(x-y)\right)$. Since

$$
\begin{aligned}
& B_{I I}(x, y)=A_{P_{2}}((x, 0),(0, y)), \quad Q_{I I}(\mathbf{1})=A_{P_{2}}((\mathbf{1}, 0),(0, \mathbf{1})), \quad Q_{I I}(\mathbf{r})=A_{P_{2}}((\mathbf{r}, 0),(0, \mathbf{r})), \\
& R_{1}^{2}(x+y)-R_{1}^{2}(x-y)=4 R_{1}(x) R_{1}(y), \quad R_{2}(x+y)-R_{2}(x-y)=4 \int_{0}^{1} x(t) y(t) d t,
\end{aligned}
$$

it follows that

$$
\begin{aligned}
& A_{P_{2}}((x, 0),(0, y))=\left(A_{P_{2}}((\mathbf{1}, 0),(0, \mathbf{1}))-A_{P_{2}}((\mathbf{r}, 0),(0, \mathbf{r}))\right) R_{1}(x) R_{1}(y) \\
& \quad+A_{P_{2}}((\mathbf{r}, 0),(0, \mathbf{r})) \int_{0}^{1} x(t) y(t) d t=a_{1001} R_{10}((x, y)) R_{01}((x, y))+a_{11} R_{11}((x, y)) .
\end{aligned}
$$

References

[1] Galindo P., Vasylyshyn T., Zagorodnyuk A. The algebra of symmetric analytic functions on L_{∞}. Proc. Roy. Soc. Edinburgh Sect. A (to appear).
[2] González M., Gonzalo R., Jaramillo J.A. Symmetric polynomials on rearrangement invariant function spaces. J. London Math. Soc. 1999, 59 (2), 681-697. doi:10.1112/S0024610799007164
[3] Kravtsiv V.V., Zagorodnyuk A.V. On algebraic bases of algebras of block-symmetric polynomials on Banach spaces. Mat. Studii. 2012, 37 (1), 109-112.
[4] Mujica J. Complex Analysis in Banach Spaces. North Holland, 1986.
[5] Nemirovskii A.S., Semenov S.M. On polynomial approximation of functions on Hilbert space. Mat. USSR Sbornik. 1973, 21, 255-277. doi:10.1070/SM1973v021n02ABEH002016
[6] Vasylyshyn T.V. Symmetric continuous linear functionals on complex space L_{∞}. Carpathian Math. Publ. 2014, 6 (1), 8-10. doi:10.15330/cmp.6.1.8-10

Received 21.04.2016

Василишин Т.В. Неперервні блочно-симетричні поліноми степеня щонайбільше два на просторі $\left(L_{\infty}\right)^{2} / /$ Карпатські матем. публ. — 2016. - Т.8, №1. - С. 38-43.

Введено поняття блочно-симетричного полінома на просторі $\left(L_{\infty}\right)^{2}$ і показано, що кожен неперервний блочно-симетричний поліном степеня щонайбільше два на просторі $\left(L_{\infty}\right)^{2}$ можна єдиним чином виразити через деякі "елементарні" блочно-симетричні поліноми.

Ключові слова і фрази: блочно-симетричний поліном, симетрична функція на L_{∞}.

[^0]: Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine
 E-mail: taras.v.vasylyshyn@gmail.com

[^1]: У $\Delta \mathrm{K} 517.98$
 2010 Mathematics Subject Classification: 46J20, 46E15.

