ISSN 2075-9827 e-ISSN 2313-0210 Carpathian Math. Publ. 2016, 8 (1), 38–43 doi:10.15330/cmp.8.1.38-43

VASYLYSHYN T.V.

CONTINUOUS BLOCK-SYMMETRIC POLYNOMIALS OF DEGREE AT MOST TWO ON THE SPACE $(L_{\infty})^2$

We introduce block-symmetric polynomials on $(L_{\infty})^2$ and prove that every continuous blocksymmetric polynomial of degree at most two on $(L_{\infty})^2$ can be uniquely represented by some "elementary" block-symmetric polynomials.

Key words and phrases: block-symmetric polynomial, symmetric function on L_{∞} .

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine E-mail: taras.v.vasylyshyn@gmail.com

INTRODUCTION

Firstly symmetric functions of infinite number of variables were studied by Nemirovski and Semenov in [5]. Authors considered functions on ℓ_p and L_p spaces. Some of their results were generalized by González, Gonzalo and Jaramillo [2] to real separable rearrangement-invariant function spaces. In [3] Kravtsiv and Zagorodnyuk considered block-symmetric polynomials on ℓ_1 -sum of copies of Banach space. In the joint paper of the author with Galindo and Zagorodnyuk [1] the algebra of symmetric analytic functions of bounded type on the complex space L_{∞} is studied in detail and its spectrum is described.

A map $P : X \to \mathbb{C}$, where X is a complex Banach space, is called an *n*-homogeneous polynomial if there exists an *n*-linear symmetric form $A_P : X^n \to \mathbb{C}$, such that $P(x) = A_P(x, .^n, ., x)$ for every $x \in X$. Here "symmetric" means that

$$A_P(x_{\tau(1)},\ldots,x_{\tau(n)})=A_P(x_1,\ldots,x_n)$$

for every permutation $\tau : \{1, ..., n\} \rightarrow \{1, ..., n\}$. Note that A_P is called the symmetric *n*-linear form *associated* with *P*. It is known (see e.g. [4], Theorem 1.10) that A_P can be recovered from *P* by means of the so-called Polarization Formula:

$$A_P(x_1,\ldots,x_n) = \frac{1}{n!2^n} \sum_{\varepsilon_1,\ldots,\varepsilon_n=\pm 1} \varepsilon_1 \ldots \varepsilon_n P(\varepsilon_1 x_1 + \ldots + \varepsilon_n x_n).$$
(1)

In the case n = 2 formula (1) can be written as

$$A_P(x_1, x_2) = \frac{1}{4} \Big(P(x_1 + x_2) - P(x_1 - x_2) \Big).$$
⁽²⁾

It is also convenient to define 0-homogeneous polynomials as constant mappings.

УДК 517.98

2010 Mathematics Subject Classification: 46J20, 46E15.

C Vasylyshyn T.V., 2016

A mapping $P : X \to \mathbb{C}$ is called a polynomial of degree at most *m* if it can be represented as

$$P = P_0 + P_1 + \ldots + P_m,$$

where P_j is a *j*-homogeneous polynomial for j = 0, ..., m.

Let L_{∞} be the *complex* Banach space of all Lebesgue measurable essentially bounded complex-valued functions *x* on [0, 1] with norm

$$\|x\|_{\infty} = \operatorname{ess\,sup}_{t \in [0,1]} |x(t)|$$

Let Ξ be the set of all measurable bijections of [0,1] that preserve the measure. A function $F : L_{\infty} \to \mathbb{C}$ is called Ξ -symmetric (or just symmetric when the context is clear) if for every $x \in L_{\infty}$ and for every $\sigma \in \Xi$

$$F(x \circ \sigma) = F(x).$$

The functions $R_n : L_\infty \to \mathbb{C}$ defined by

$$R_n(x) = \int_0^1 x^n(t) \, dt$$

for every $n \in \mathbb{N} \cup \{0\}$ are called the *elementary symmetric polynomials*. In [1] it is shown that for each continuous Ξ -symmetric polynomial $P : L_{\infty} \to \mathbb{C}$ of degree at most *m* there is a unique finitely many variables polynomial *q* such that

$$P(x) = q(R_0(x), \ldots, R_m(x))$$

for every $x \in L_{\infty}$.

Let $(L_{\infty})^2$ be the Cartesian square of the space L_{∞} , endowed with norm $||(x,y)|| = \max\{||x||_{\infty}, ||y||_{\infty}\}$. Clearly, $(L_{\infty})^2$ is a complex Banach space. A function $F: (L_{\infty})^2 \to \mathbb{C}$ we call *block-symmetric* if for every $(x,y) \in (L_{\infty})^2$ and for every $\sigma \in \Xi$

$$F((x \circ \sigma, y \circ \sigma)) = F((x, y)).$$

We restrict our attention to continuous block-symmetric polynomials of degree at most two on $(L_{\infty})^2$. In Section 1 we prove that every such a polynomial can be uniquely represented as an algebraic combination of the polynomials

$$R_0((x,y)) = 1, \quad R_{10}((x,y)) = R_1(x), \quad R_{01}((x,y)) = R_1(y),$$

$$R_{20}((x,y)) = R_2(x), \quad R_{11}((x,y)) = \int_0^1 x(t)y(t) \, dt, \quad R_{02}((x,y)) = R_2(y),$$

which we call the elementary block-symmetric polynomials of degree at most two.

1 THE MAIN RESULT

By $\mathbf{1}_E$ we denote the characteristic function of a set $E \subset [0, 1]$. We also define functions $\mathbf{1} = \mathbf{1}_{[0,1]}$ and $\mathbf{r} = \mathbf{1}_{[0,\frac{1}{2}]} - \mathbf{1}_{[\frac{1}{2},1]}$.

Theorem 1. Every continuous block-symmetric polynomial $P = P_0 + P_1 + P_2$, where P_j is a *j*-homogeneous polynomial for j = 0, 1, 2, can be represented as

$$P = a_0 R_{00} + a_{10} R_{10} + a_{01} R_{01} + a_{20} R_{20} + a_{11} R_{11} + a_{02} R_{02} + a_{1010} R_{10}^2 + a_{1001} R_{10} R_{01} + a_{0101} R_{01}^2,$$

where

$$a_{0} = P_{0}, \quad a_{10} = P_{1}((\mathbf{1}, 0)), \quad a_{01} = P_{1}((0, \mathbf{1})),$$

$$a_{20} = P_{2}((\mathbf{r}, 0)), \quad a_{11} = A_{P_{2}}((\mathbf{r}, 0), (0, \mathbf{r})), \quad a_{02} = P_{2}((0, \mathbf{r})),$$

$$a_{1010} = P_{2}((\mathbf{1}, 0)) - P_{2}((\mathbf{r}, 0)), \quad a_{1001} = A_{P_{2}}((\mathbf{1}, 0), (0, \mathbf{1})) - A_{P_{2}}((\mathbf{r}, 0), (0, \mathbf{r})),$$

$$a_{0101} = P_{2}((0, \mathbf{1})) - P_{2}((0, \mathbf{r})).$$

Here we denote by A_{P_2} the symmetric bilinear form, associated with P_2 . *Proof.* It can be easily checked that

$$P_0((x,y)) = P((0,0)), \quad P_1((x,y)) = \frac{1}{2} \Big(P((x,y)) - P((-x,-y)) \Big),$$

$$P_2((x,y)) = P((x,y)) - P_1((x,y)) - P_0((x,y))$$

for every $(x, y) \in (L_{\infty})^2$. This implies that P_0 , P_1 and P_2 are continuous and block-symmetric. By the linearity of P_1

$$P_1((x,y)) = P_1((x,0) + (0,y)) = P_1((x,0)) + P_1((0,y)).$$

Let $f_1(x) = P_1((x, 0))$ for $x \in L_\infty$. Clearly, f_1 is a continuous linear Ξ -symmetric functional on L_∞ . It is known (see [1, 6]) that every such a functional f can be represented as

$$f(x) = f(1)R_1(x).$$
 (3)

Therefore $f_1(x) = f_1(1)R_1(x)$, i. e. $P_1((x,0)) = P_1((1,0))R_1(x)$. Analogously, $P_1((0,y)) = P_1((0,1))R_1(y)$. Thus

$$P_1((x,y)) = P_1((\mathbf{1},0))R_1(x) + P_1((0,\mathbf{1}))R_1(y) = a_{10}R_{10}((x,y)) + a_{01}R_{01}((x,y)).$$

Since A_{P_2} is bilinear and symmetric, it follows that

$$P_2((x,y)) = A_{P_2}((x,0),(x,0)) + 2A_{P_2}((x,0),(0,y)) + A_{P_2}((0,y),(0,y)).$$

We define following bilinear forms:

$$B_{I}(x_{1}, x_{2}) = A_{P_{2}}((x_{1}, 0), (x_{2}, 0)), \quad B_{II}(x_{1}, x_{2}) = A_{P_{2}}((x_{1}, 0), (0, x_{2})), B_{III}(x_{1}, x_{2}) = A_{P_{2}}((0, x_{1}), (0, x_{2})),$$
(4)

where $x_1, x_2 \in L_{\infty}$. Note that B_I and B_{III} are symmetric. By the formula (2)

$$A_{P_2}((x_1, y_1), (x_2, y_2)) = \frac{1}{4} \Big(P_2((x_1 + x_2, y_1 + y_2)) - P_2((x_1 - x_2, y_1 - y_2)) \Big).$$

Therefore by the symmetry of P_2

$$A_{P_2}((x_1 \circ \sigma, y_1 \circ \sigma), (x_2 \circ \sigma, y_2 \circ \sigma)) = A_{P_2}((x_1, y_1), (x_2, y_2))$$
(5)

for every $\sigma \in \Xi$ and $(x_1, y_1), (x_2, y_2) \in (L_{\infty})^2$. By (5) we have that

$$B_i(x_1 \circ \sigma, x_2 \circ \sigma) = B_i(x_1, x_2), \tag{6}$$

for every $j \in \{I, II, III\}$, $x_1, x_2 \in L_{\infty}$ and $\sigma \in \Xi$.

Let Q_I be the restriction of B_I to the diagonal. By the continuity of B_I and by (6) we have that Q_I is a continuous 2-homogeneous Ξ -symmetric polynomial. It is known (see [1]) that every continuous 2-homogeneous Ξ -symmetric polynomial Q on L_{∞} can be represented as

$$Q = \alpha R_1^2 + \beta R_2. \tag{7}$$

It can be easily checked that $\alpha = Q(\mathbf{1}) - Q(\mathbf{r})$ and $\beta = Q(\mathbf{r})$. Note that

$$Q_I(x) = A_{P_2}((x,0), (x,0)) = P_2((x,0)).$$

Thus

$$A_{P_2}((x,0),(x,0)) = \left(P_2((\mathbf{1},0)) - P_2((\mathbf{r},0))\right) R_1^2(x) + P_2((\mathbf{r},0)) R_2(x)$$

= $a_{1010} R_{10}^2((x,y)) + a_{20} R_{20}((x,y)).$

Analogously

$$A_{P_2}((0,y),(0,y)) = a_{0101}R_{10}^2((x,y)) + a_{02}R_{20}((x,y))$$

The bilinear form B_{II} can be represented as the sum of the symmetric and the antisymmetric forms

$$B_{II}^{s}(x_{1}, x_{2}) = \frac{1}{2} \Big(B_{II}(x_{1}, x_{2}) + B_{II}(x_{2}, x_{1}) \Big)$$

and

$$B_{II}^{a}(x_{1}, x_{2}) = \frac{1}{2} \Big(B_{II}(x_{1}, x_{2}) - B_{II}(x_{2}, x_{1}) \Big)$$

respectively. Let us prove that $B_{II}^a(x_1, x_2) = 0$ for every $x_1, x_2 \in L_{\infty}$.

Lemma 1. $B^a_{II}(\mathbf{1}_{[0,\frac{1}{2}]},\mathbf{1}_{[\frac{1}{2},1]})=0.$

Proof. Let $\sigma(t) = 1 - t$. By (6) $B_{II}^{a}(\mathbf{1}_{[0,\frac{1}{2}]}, \mathbf{1}_{[\frac{1}{2},1]}) = B_{II}^{a}(\mathbf{1}_{[0,\frac{1}{2}]} \circ \sigma, \mathbf{1}_{[\frac{1}{2},1]} \circ \sigma) = B_{II}^{a}(\mathbf{1}_{[\frac{1}{2},1]}, \mathbf{1}_{[0,\frac{1}{2}]})$. On the other hand, since B_{II}^{a} is antisymmetric, it follows that

$$B^{a}_{II}(\mathbf{1}_{[0,\frac{1}{2}]},\mathbf{1}_{[\frac{1}{2},1]}) = -B^{a}_{II}(\mathbf{1}_{[\frac{1}{2},1]},\mathbf{1}_{[0,\frac{1}{2}]}).$$

Therefore $B^a_{II}(\mathbf{1}_{[0,\frac{1}{2}]},\mathbf{1}_{[\frac{1}{2},1]}) = 0.$

Lemma 2. $B_{II}^a(\mathbf{1}_E, \mathbf{1}_F) = 0$ for every measurable sets $E \subset [0, \frac{1}{2}]$ and $F \subset [\frac{1}{2}, 1]$.

Proof. For every $x \in L_{\infty}$ we define $\hat{x} \in L_{\infty}$ by

$$\widehat{x}(t) = \begin{cases} x(2t), & \text{if } t \in [0, \frac{1}{2}], \\ 0, & \text{if } t \in (\frac{1}{2}, 1]. \end{cases}$$

Let $z \in L_{\infty}$ be such that its restriction to $[0, \frac{1}{2})$ is constant. Let $f_z(x) = B_{II}^a(\hat{x}, z)$, where $x \in L_{\infty}$. Clearly, f_z is a continuous linear functional on L_{∞} . Let us prove that f_z is Ξ -symmetric. For every $\sigma \in \Xi$ let

$$\widetilde{\sigma}(t) = \begin{cases} \frac{1}{2}\sigma(2t), & \text{if } t \in [0, \frac{1}{2}], \\ t, & \text{if } t \in (\frac{1}{2}, 1]. \end{cases}$$

Clearly, $\tilde{\sigma} \in \Xi$ and $z \circ \tilde{\sigma} = z$. It can be checked that $\widehat{x \circ \sigma} = \hat{x} \circ \tilde{\sigma}$. Therefore by (6)

$$f_z(x \circ \sigma) = B^a_{II}(\widehat{x \circ \sigma}, z) = B^a_{II}(\widehat{x} \circ \widetilde{\sigma}, z \circ \widetilde{\sigma}) = B^a_{II}(\widehat{x}, z) = f_z(x).$$

Thus f_z is Ξ -symmetric. By (3) $f_z(x) = f_z(\mathbf{1})R_1(x)$, i. e. $B_{II}^a(\widehat{x}, z) = B_{II}^a(\widehat{\mathbf{1}}, z)R_1(x)$. Since $\widehat{\mathbf{1}} = \mathbf{1}_{[0,\frac{1}{2}]}, \widehat{\mathbf{1}_{2E}} = \mathbf{1}_E$ and $R_1(\mathbf{1}_{2E}) = 2\mu(E)$, where $2E = \{2t : t \in E\}$, it follows that

$$B_{II}^{a}(\mathbf{1}_{E},z) = B_{II}^{a}(\mathbf{1}_{[0,\frac{1}{2}]},z)2\mu(E).$$

Analogously it can be proven that $B^a_{II}(u, \mathbf{1}_F) = B^a_{II}(u, \mathbf{1}_{[\frac{1}{2},1]}) 2\mu(F)$, where $u \in L_{\infty}$ such that its restriction to $(\frac{1}{2}, 1]$ is constant. Therefore

$$B_{II}^{a}(\mathbf{1}_{E},\mathbf{1}_{F}) = B_{II}^{a}(\mathbf{1}_{[0,\frac{1}{2}]},\mathbf{1}_{F})2\mu(E) = B_{II}^{a}(\mathbf{1}_{[0,\frac{1}{2}]},\mathbf{1}_{[\frac{1}{2},1]})4\mu(E)\mu(F) = 0$$

by Lemma 1.

Lemma 3. $B_{II}^a(\mathbf{1}_E, \mathbf{1}_F) = 0$ for disjoint measurable sets $E, F \subset [0, 1]$ such that $\mu(E) \leq \frac{1}{2}$ and $\mu(F) \leq \frac{1}{2}$.

Proof. By [1, Proposition 1.2] there exists $\sigma_{E,F} \in \Xi$ such that $\mathbf{1}_E = \mathbf{1}_{[0,a]} \circ \sigma_{E,F}$ and $\mathbf{1}_F = \mathbf{1}_{[a,a+b]} \circ \sigma_{E,F}$, where $a = \mu(E)$ and $b = \mu(F)$. Let

$$\sigma_1(t) = \begin{cases} t - a + \frac{1}{2}, & \text{if } t \in [a, a + b], \\ t - \frac{1}{2} + a, & \text{if } t \in [\frac{1}{2}, \frac{1}{2} + b], \\ t, & \text{otherwise.} \end{cases}$$

Clearly, $\sigma_1 \in \Xi$, $\mathbf{1}_{[0,a]} = \mathbf{1}_{[0,a]} \circ \sigma_1$ and $\mathbf{1}_{[a,a+b]} = \mathbf{1}_{[\frac{1}{2},\frac{1}{2}+b]} \circ \sigma_1$. Therefore $\mathbf{1}_E = \mathbf{1}_{[0,a]} \circ \sigma_1 \circ \sigma_{E,F}$ and $\mathbf{1}_F = \mathbf{1}_{[\frac{1}{2},\frac{1}{2}+b]} \circ \sigma_1 \circ \sigma_{E,F}$. By (6) and by Lemma 2

$$B_{II}^{a}(\mathbf{1}_{E},\mathbf{1}_{F}) = B_{II}^{a}(\mathbf{1}_{[0,a]} \circ \sigma_{1} \circ \sigma_{E,F},\mathbf{1}_{[\frac{1}{2},\frac{1}{2}+b]} \circ \sigma_{1} \circ \sigma_{E,F}) = B_{II}^{a}(\mathbf{1}_{[0,a]},\mathbf{1}_{[\frac{1}{2},\frac{1}{2}+b]}) = 0.$$

Lemma 4. $B_{II}^{a}(\mathbf{1}_{E},\mathbf{1}_{F}) = 0$ for every disjoint measurable sets $E, F \subset [0,1]$.

Proof. If $\mu(E) = \mu(F)$, then $\mu(E)$ and $\mu(F)$ cannot be greater than $\frac{1}{2}$ and $B_{II}^a(\mathbf{1}_E, \mathbf{1}_F) = 0$ by Lemma 3. Note that $B_{II}^a(\mathbf{1}_E, \mathbf{1}_F) = 0$ if $\mu(E) = 0$ or $\mu(F) = 0$. Let $\mu(E) > \mu(F) > 0$. Let $N = \left\lfloor \frac{\mu(E)}{\mu(F)} \right\rfloor$. We can choose disjoint measurable subsets $E_1, \ldots, E_N \subset E$ such that $\mu(E_1) = \ldots = \mu(E_N) = \mu(F)$. Set $E_0 = E \setminus \bigcup_{j=1}^N E_j$. Then

$$B_{II}^{a}(\mathbf{1}_{E},\mathbf{1}_{F}) = \sum_{j=0}^{N} B_{II}^{a}(\mathbf{1}_{E_{j}},\mathbf{1}_{F}) = B_{II}^{a}(\mathbf{1}_{E_{0}},\mathbf{1}_{F}).$$

Since $\mu(E_0) < \mu(F) < \frac{1}{2}$, it follows that $B^a_{II}(\mathbf{1}_{E_0}, \mathbf{1}_F) = 0$ by Lemma 3.

Lemma 5. $B_{II}^{a}(\mathbf{1}_{E},\mathbf{1}_{F}) = 0$ for every measurable sets $E, F \subset [0,1]$.

Proof. Note that $E = (E \setminus F) \sqcup (E \cap F)$ and $F = (F \setminus E) \sqcup (E \cap F)$. Therefore

$$B_{II}^{a}(\mathbf{1}_{E},\mathbf{1}_{F})=B_{II}^{a}(\mathbf{1}_{E\setminus F},\mathbf{1}_{F\setminus E})+B_{II}^{a}(\mathbf{1}_{E\setminus F},\mathbf{1}_{E\cap F})+B_{II}^{a}(\mathbf{1}_{E\cap F},\mathbf{1}_{F\setminus E})+B_{II}^{a}(\mathbf{1}_{E\cap F},\mathbf{1}_{E\cap F})=0$$

by Lemma 4 and by the antisymmetry of B_{II}^a .

Proof of the Theorem 1 (continuation). For the simple measurable functions $x_1, x_2 \in L_{\infty}$ we have $B_{II}^a(x_1, x_2) = 0$ by the bilinearity of B_{II}^a . Since the set of simple measurable functions is dense in L_{∞} , the continuity of B_{II}^a leads to $B_{II}^a(x_1, x_2) = 0$ for every $x_1, x_2 \in L_{\infty}$. Thus $B_{II} = B_{II}^s$, i. e. B_{II} is symmetric. Let Q_{II} be the restriction of B_{II} to the diagonal. Q_{II} is a continuous 2-homogeneous Ξ -symmetric polynomial. Therefore by (7) $Q_{II}(x) = (Q_{II}(\mathbf{1}) - Q_{II}(\mathbf{r}))R_1^2(x) + Q_{II}(\mathbf{r})R_2(x)$.

By (2)
$$B_{II}(x,y) = \frac{1}{4} \Big(Q_{II}(x+y) - Q_{II}(x-y) \Big)$$
. Since
 $B_{II}(x,y) = A_{P_2}((x,0), (0,y)), \quad Q_{II}(\mathbf{1}) = A_{P_2}((\mathbf{1},0), (0,\mathbf{1})), \quad Q_{II}(\mathbf{r}) = A_{P_2}((\mathbf{r},0), (0,\mathbf{r})),$
 $R_1^2(x+y) - R_1^2(x-y) = 4R_1(x)R_1(y), \quad R_2(x+y) - R_2(x-y) = 4\int_0^1 x(t)y(t) dt,$

it follows that

$$A_{P_2}((x,0),(0,y)) = (A_{P_2}((\mathbf{1},0),(0,\mathbf{1})) - A_{P_2}((\mathbf{r},0),(0,\mathbf{r}))) R_1(x)R_1(y) + A_{P_2}((\mathbf{r},0),(0,\mathbf{r})) \int_0^1 x(t)y(t) dt = a_{1001}R_{10}((x,y))R_{01}((x,y)) + a_{11}R_{11}((x,y)).$$

References

- [1] Galindo P., Vasylyshyn T., Zagorodnyuk A. *The algebra of symmetric analytic functions on* L_{∞} . Proc. Roy. Soc. Edinburgh Sect. A (to appear).
- [2] González M., Gonzalo R., Jaramillo J.A. Symmetric polynomials on rearrangement invariant function spaces. J. London Math. Soc. 1999, 59 (2), 681–697. doi:10.1112/S0024610799007164
- [3] Kravtsiv V.V., Zagorodnyuk A.V. On algebraic bases of algebras of block-symmetric polynomials on Banach spaces. Mat. Studii. 2012, **37** (1), 109–112.
- [4] Mujica J. Complex Analysis in Banach Spaces. North Holland, 1986.
- [5] Nemirovskii A.S., Semenov S.M. On polynomial approximation of functions on Hilbert space. Mat. USSR Sbornik. 1973, 21, 255–277. doi:10.1070/SM1973v021n02ABEH002016
- [6] Vasylyshyn T.V. Symmetric continuous linear functionals on complex space L_∞. Carpathian Math. Publ. 2014, 6 (1), 8–10. doi:10.15330/cmp.6.1.8-10

Received 21.04.2016

Василишин Т.В. Неперервні блочно-симетричні поліноми степеня щонайбільше два на просторі $(L_{\infty})^2$ // Карпатські матем. публ. — 2016. — Т.8, №1. — С. 38-43.

Введено поняття блочно-симетричного полінома на просторі $(L_{\infty})^2$ і показано, що кожен неперервний блочно-симетричний поліном степеня щонайбільше два на просторі $(L_{\infty})^2$ можна єдиним чином виразити через деякі "елементарні" блочно-симетричні поліноми.

Ключові слова і фрази: блочно-симетричний поліном, симетрична функція на *L*_∞.