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CONTINUOUS BLOCK-SYMMETRIC POLYNOMIALS OF DEGREE AT MOST TWO

ON THE SPACE (L∞)2

We introduce block-symmetric polynomials on (L∞)2 and prove that every continuous block-

symmetric polynomial of degree at most two on (L∞)2 can be uniquely represented by some “ele-

mentary” block-symmetric polynomials.
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INTRODUCTION

Firstly symmetric functions of infinite number of variables were studied by Nemirovski and

Semenov in [5]. Authors considered functions on ℓp and Lp spaces. Some of their results were

generalized by González, Gonzalo and Jaramillo [2] to real separable rearrangement-invariant

function spaces. In [3] Kravtsiv and Zagorodnyuk considered block-symmetric polynomials on

ℓ1-sum of copies of Banach space. In the joint paper of the author with Galindo and Zagorod-

nyuk [1] the algebra of symmetric analytic functions of bounded type on the complex space

L∞ is studied in detail and its spectrum is described.

A map P : X → C, where X is a complex Banach space, is called an n-homogeneous poly-

nomial if there exists an n-linear symmetric form AP : Xn → C, such that P(x) = AP(x, n. . ., x)

for every x ∈ X. Here “symmetric” means that

AP(xτ(1), . . . , xτ(n)) = AP(x1, . . . , xn)

for every permutation τ : {1, . . . , n} → {1, . . . , n}. Note that AP is called the symmetric n-

linear form associated with P. It is known (see e.g. [4], Theorem 1.10) that AP can be recovered

from P by means of the so-called Polarization Formula:

AP(x1, . . . , xn) =
1

n!2n ∑
ε1,...,εn=±1

ε1 . . . εnP(ε1x1 + . . . + εnxn). (1)

In the case n = 2 formula (1) can be written as

AP(x1, x2) =
1

4

(
P(x1 + x2)− P(x1 − x2)

)
. (2)

It is also convenient to define 0-homogeneous polynomials as constant mappings.

УДК 517.98
2010 Mathematics Subject Classification: 46J20, 46E15.

c©Vasylyshyn T.V., 2016



CONTINUOUS BLOCK-SYMMETRIC POLYNOMIALS ON (L∞)2 39

A mapping P : X → C is called a polynomial of degree at most m if it can be represented

as

P = P0 + P1 + . . . + Pm,

where Pj is a j-homogeneous polynomial for j = 0, . . . , m.

Let L∞ be the complex Banach space of all Lebesgue measurable essentially bounded comp-

lex-valued functions x on [0, 1] with norm

‖x‖∞ = ess supt∈[0,1]|x(t)|.

Let Ξ be the set of all measurable bijections of [0, 1] that preserve the measure. A function

F : L∞ → C is called Ξ-symmetric (or just symmetric when the context is clear) if for every

x ∈ L∞ and for every σ ∈ Ξ

F(x ◦ σ) = F(x).

The functions Rn : L∞ → C defined by

Rn(x) =
∫ 1

0
xn(t) dt

for every n ∈ N ∪ {0} are called the elementary symmetric polynomials. In [1] it is shown that for

each continuous Ξ-symmetric polynomial P : L∞ → C of degree at most m there is a unique

finitely many variables polynomial q such that

P(x) = q(R0(x), . . . , Rm(x))

for every x ∈ L∞.

Let (L∞)2 be the Cartesian square of the space L∞, endowed with norm

‖(x, y)‖ = max{‖x‖∞, ‖y‖∞}. Clearly, (L∞)2 is a complex Banach space. A function

F : (L∞)2 → C we call block-symmetric if for every (x, y) ∈ (L∞)2 and for every σ ∈ Ξ

F((x ◦ σ, y ◦ σ)) = F((x, y)).

We restrict our attention to continuous block-symmetric polynomials of degree at most two on

(L∞)2. In Section 1 we prove that every such a polynomial can be uniquely represented as an

algebraic combination of the polynomials

R0((x, y)) = 1, R10((x, y)) = R1(x), R01((x, y)) = R1(y),

R20((x, y)) = R2(x), R11((x, y)) =
∫ 1

0
x(t)y(t) dt, R02((x, y)) = R2(y),

which we call the elementary block-symmetric polynomials of degree at most two.

1 THE MAIN RESULT

By 1E we denote the characteristic function of a set E ⊂ [0, 1]. We also define functions

1 = 1[0,1] and r = 1[0, 1
2 ]
− 1[ 1

2 ,1].
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Theorem 1. Every continuous block-symmetric polynomial P = P0 + P1 + P2, where Pj is a

j-homogeneous polynomial for j = 0, 1, 2, can be represented as

P = a0R00 + a10R10 + a01R01 + a20R20 + a11R11 + a02R02 + a1010R2
10 + a1001R10R01 + a0101R2

01,

where

a0 = P0, a10 = P1((1, 0)), a01 = P1((0, 1)),

a20 = P2((r, 0)), a11 = AP2
((r, 0), (0, r)), a02 = P2((0, r)),

a1010 = P2((1, 0))− P2((r, 0)), a1001 = AP2
((1, 0), (0, 1)) − AP2

((r, 0), (0, r)),

a0101 = P2((0, 1))− P2((0, r)).

Here we denote by AP2
the symmetric bilinear form, associated with P2.

Proof. It can be easily checked that

P0((x, y)) = P((0, 0)), P1((x, y)) =
1

2

(
P((x, y))− P((−x,−y))

)
,

P2((x, y)) = P((x, y)) − P1((x, y))− P0((x, y))

for every (x, y) ∈ (L∞)2. This implies that P0, P1 and P2 are continuous and block-symmetric.

By the linearity of P1

P1((x, y)) = P1((x, 0) + (0, y)) = P1((x, 0)) + P1((0, y)).

Let f1(x) = P1((x, 0)) for x ∈ L∞. Clearly, f1 is a continuous linear Ξ-symmetric functional on

L∞. It is known (see [1, 6]) that every such a functional f can be represented as

f (x) = f (1)R1(x). (3)

Therefore f1(x) = f1(1)R1(x), i. e. P1((x, 0)) = P1((1, 0))R1(x). Analogously, P1((0, y)) =

P1((0, 1))R1(y). Thus

P1((x, y)) = P1((1, 0))R1(x) + P1((0, 1))R1(y) = a10R10((x, y)) + a01R01((x, y)).

Since AP2
is bilinear and symmetric, it follows that

P2((x, y)) = AP2
((x, 0), (x, 0)) + 2AP2

((x, 0), (0, y)) + AP2
((0, y), (0, y)).

We define following bilinear forms:

BI(x1, x2) = AP2
((x1, 0), (x2, 0)), BI I(x1, x2) = AP2

((x1, 0), (0, x2)),

BI I I(x1, x2) = AP2
((0, x1), (0, x2)),

(4)

where x1, x2 ∈ L∞. Note that BI and BI I I are symmetric. By the formula (2)

AP2
((x1, y1), (x2, y2)) =

1

4

(
P2((x1 + x2, y1 + y2))− P2((x1 − x2, y1 − y2))

)
.

Therefore by the symmetry of P2

AP2
((x1 ◦ σ, y1 ◦ σ), (x2 ◦ σ, y2 ◦ σ)) = AP2

((x1, y1), (x2, y2)) (5)
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for every σ ∈ Ξ and (x1, y1), (x2, y2) ∈ (L∞)2. By (5) we have that

Bj(x1 ◦ σ, x2 ◦ σ) = Bj(x1, x2), (6)

for every j ∈ {I, I I, I I I}, x1, x2 ∈ L∞ and σ ∈ Ξ.

Let QI be the restriction of BI to the diagonal. By the continuity of BI and by (6) we have

that QI is a continuous 2-homogeneous Ξ-symmetric polynomial. It is known (see [1]) that

every continuous 2-homogeneous Ξ-symmetric polynomial Q on L∞ can be represented as

Q = αR2
1 + βR2. (7)

It can be easily checked that α = Q(1)− Q(r) and β = Q(r). Note that

QI(x) = AP2
((x, 0), (x, 0)) = P2((x, 0)).

Thus

AP2
((x, 0), (x, 0)) =

(
P2((1, 0))− P2((r, 0))

)
R2

1(x) + P2((r, 0))R2(x)

= a1010R2
10((x, y)) + a20R20((x, y)).

Analogously

AP2
((0, y), (0, y)) = a0101R2

10((x, y)) + a02R20((x, y)).

The bilinear form BI I can be represented as the sum of the symmetric and the antisymmet-

ric forms

Bs
I I(x1, x2) =

1

2

(
BI I(x1, x2) + BI I(x2, x1)

)

and

Ba
I I(x1, x2) =

1

2

(
BI I(x1, x2)− BI I(x2, x1)

)

respectively. Let us prove that Ba
I I(x1, x2) = 0 for every x1, x2 ∈ L∞.

Lemma 1. Ba
I I(1[0, 1

2 ]
, 1[ 1

2 ,1]) = 0.

Proof. Let σ(t) = 1 − t. By (6) Ba
I I(1[0, 1

2 ]
, 1[ 1

2 ,1]) = Ba
I I(1[0, 1

2 ]
◦ σ, 1[ 1

2 ,1] ◦ σ) = Ba
I I(1[ 1

2 ,1], 1[0, 1
2 ]
). On

the other hand, since Ba
I I is antisymmetric, it follows that

Ba
I I(1[0, 1

2 ]
, 1[ 1

2 ,1]) = −Ba
I I(1[ 1

2 ,1], 1[0, 1
2 ]
).

Therefore Ba
I I(1[0, 1

2 ]
, 1[ 1

2 ,1]) = 0.

Lemma 2. Ba
I I(1E, 1F) = 0 for every measurable sets E ⊂ [0, 1

2 ] and F ⊂ [1
2 , 1].

Proof. For every x ∈ L∞ we define x̂ ∈ L∞ by

x̂(t) =

{
x(2t), if t ∈ [0, 1

2 ],

0, if t ∈ (1
2 , 1].

Let z ∈ L∞ be such that its restriction to [0, 1
2) is constant. Let fz(x) = Ba

I I(x̂, z), where x ∈ L∞.

Clearly, fz is a continuous linear functional on L∞. Let us prove that fz is Ξ-symmetric. For

every σ ∈ Ξ let

σ̃(t) =

{ 1
2 σ(2t), if t ∈ [0, 1

2 ],

t, if t ∈ (1
2 , 1].
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Clearly, σ̃ ∈ Ξ and z ◦ σ̃ = z. It can be checked that x̂ ◦ σ = x̂ ◦ σ̃. Therefore by (6)

fz(x ◦ σ) = Ba
I I(x̂ ◦ σ, z) = Ba

I I(x̂ ◦ σ̃, z ◦ σ̃) = Ba
I I(x̂, z) = fz(x).

Thus fz is Ξ-symmetric. By (3) fz(x) = fz(1)R1(x), i. e. Ba
I I(x̂, z) = Ba

I I(1̂, z)R1(x). Since

1̂ = 1[0, 1
2 ]

, 1̂2E = 1E and R1(12E) = 2µ(E), where 2E = {2t : t ∈ E}, it follows that

Ba
I I(1E, z) = Ba

I I(1[0, 1
2 ]

, z)2µ(E).

Analogously it can be proven that Ba
I I(u, 1F) = Ba

I I(u, 1[ 1
2 ,1])2µ(F), where u ∈ L∞ such that its

restriction to (1
2 , 1] is constant. Therefore

Ba
I I(1E, 1F) = Ba

I I(1[0, 1
2 ]

, 1F)2µ(E) = Ba
I I(1[0, 1

2 ]
, 1[ 1

2 ,1])4µ(E)µ(F) = 0

by Lemma 1.

Lemma 3. Ba
I I(1E, 1F) = 0 for disjoint measurable sets E, F ⊂ [0, 1] such that µ(E) ≤ 1

2 and

µ(F) ≤ 1
2 .

Proof. By [1, Proposition 1.2] there exists σE,F ∈ Ξ such that 1E = 1[0,a] ◦ σE,F and 1F = 1[a,a+b] ◦

σE,F, where a = µ(E) and b = µ(F). Let

σ1(t) =





t − a + 1
2 , if t ∈ [a, a + b],

t − 1
2 + a, if t ∈ [1

2 , 1
2 + b],

t, otherwise.

Clearly, σ1 ∈ Ξ, 1[0,a] = 1[0,a] ◦ σ1 and 1[a,a+b] = 1[ 1
2 , 1

2+b] ◦ σ1. Therefore 1E = 1[0,a] ◦ σ1 ◦ σE,F and

1F = 1[ 1
2 , 1

2+b] ◦ σ1 ◦ σE,F. By (6) and by Lemma 2

Ba
I I(1E, 1F) = Ba

I I(1[0,a] ◦ σ1 ◦ σE,F, 1[ 1
2 , 1

2+b] ◦ σ1 ◦ σE,F) = Ba
I I(1[0,a], 1[ 1

2 , 1
2+b]) = 0.

Lemma 4. Ba
I I(1E, 1F) = 0 for every disjoint measurable sets E, F ⊂ [0, 1].

Proof. If µ(E) = µ(F), then µ(E) and µ(F) cannot be greater than 1
2 and Ba

I I(1E, 1F) = 0

by Lemma 3. Note that Ba
I I(1E, 1F) = 0 if µ(E) = 0 or µ(F) = 0. Let µ(E) > µ(F) >

0. Let N =
⌊

µ(E)
µ(F)

⌋
. We can choose disjoint measurable subsets E1, . . . , EN ⊂ E such that

µ(E1) = . . . = µ(EN) = µ(F). Set E0 = E \ ∪N
j=1Ej. Then

Ba
I I(1E, 1F) =

N

∑
j=0

Ba
I I(1Ej

, 1F) = Ba
I I(1E0

, 1F).

Since µ(E0) < µ(F) < 1
2 , it follows that Ba

I I(1E0
, 1F) = 0 by Lemma 3.

Lemma 5. Ba
I I(1E, 1F) = 0 for every measurable sets E, F ⊂ [0, 1].

Proof. Note that E = (E \ F) ⊔ (E ∩ F) and F = (F \ E) ⊔ (E ∩ F). Therefore

Ba
I I(1E, 1F) = Ba

I I(1E\F, 1F\E) + Ba
I I(1E\F, 1E∩F) + Ba

I I(1E∩F , 1F\E) + Ba
I I(1E∩F, 1E∩F) = 0

by Lemma 4 and by the antisymmetry of Ba
I I.
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Proof of the Theorem 1 (continuation). For the simple measurable functions x1, x2 ∈ L∞ we have

Ba
I I(x1, x2) = 0 by the bilinearity of Ba

I I. Since the set of simple measurable functions is dense

in L∞, the continuity of Ba
I I leads to Ba

I I(x1, x2) = 0 for every x1, x2 ∈ L∞. Thus BI I = Bs
I I, i.

e. BI I is symmetric. Let QI I be the restriction of BI I to the diagonal. QI I is a continuous 2-

homogeneous Ξ-symmetric polynomial. Therefore by (7) QI I(x) = (QI I(1) − QI I(r))R2
1(x) +

QI I(r)R2(x).

By (2) BI I(x, y) = 1
4

(
QI I(x + y)− QI I(x − y)

)
. Since

BI I(x, y) = AP2
((x, 0), (0, y)), QI I(1) = AP2

((1, 0), (0, 1)), QI I(r) = AP2
((r, 0), (0, r)),

R2
1(x + y)− R2

1(x − y) = 4R1(x)R1(y), R2(x + y)− R2(x − y) = 4
∫ 1

0
x(t)y(t) dt,

it follows that

AP2
((x, 0), (0, y)) = (AP2

((1, 0), (0, 1)) − AP2
((r, 0), (0, r))) R1(x)R1(y)

+ AP2
((r, 0), (0, r))

∫ 1

0
x(t)y(t) dt = a1001R10((x, y))R01((x, y)) + a11R11((x, y)).
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Василишин Т.В. Неперервнi блочно-симетричнi полiноми степеня щонайбiльше два на просторi

(L∞)2 // Карпатськi матем. публ. — 2016. — Т.8, №1. — C. 38–43.

Введено поняття блочно-симетричного полiнома на просторi (L∞)2 i показано, що кожен

неперервний блочно-симетричний полiном степеня щонайбiльше два на просторi (L∞)2 мо-

жна єдиним чином виразити через деякi “елементарнi” блочно-симетричнi полiноми.

Ключовi слова i фрази: блочно-симетричний полiном, симетрична функцiя на L∞.


