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CONTINUOUS APPROXIMATIONS OF CAPACITIES ON METRIC COMPACTA

A method of “almost optimal” continuous approximation of capacities on a metric compactum

with possibility measures, necessity measures, or with capacities on a closed subspace, is presented.
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INTRODUCTION

Capacities were introduced by Choquet [1] and found numerous applications in different

theories. Spaces of upper semicontinuous capacities on compacta were systematically studied

in [2]. In particular, in the latter paper functoriality of the construction of a space of capac-

ities was proved and Prokhorov-style and Kantorovich-Rubinstein-style metrics on the set of

capacities on a metric compactum were introduced. Needs of practice require that a capacity

can be approximated with capacities of simpler structure or with some convenient properties.

It was shown in[3] that each normalized capacity on a compactum is the value of a so-called

∪-capacity (or possibility measure) on the space of ∩-capacities (necessity measures) under

the multiplication mapping of the capacity monad. Nevertheless it is impossible to represent

every capacity in this manner using only capacities of one of the two mentioned classes. We

can discuss only approximation of an arbitrary capacity with ∪- or ∩-capacities. A construc-

tion of the capacity from the class of ∪- or ∩-capacities that is the closest to the given one w.r.t.

the Prokhorov metric was described in [4]. A method of optimal approximation of a capacity

with a capacity on a closed subspace was also presented there. Although the proposed ap-

proximations are optimal (belong to the optimal ones), they does not depend continuously on

the original capacity. In this paper we consider the problem of continuous approximation. It

is proved that the space MX of subnormalized capacities on a metric compactum X is an I-

convex compactum, hence all elements of MX can be approximated with “almost optimal”

precision with elements of an arbitrary closed I-convex subset X0 ⊂ MX, in particular, with

∪-capacities, ∩-capacities, or capacities on a fixed closed subspace X0 ⊂ X, so that the approx-

imation is continuous w.r.t. the original capacity and the chosen “tolerance”.

1 BASIC FACTS AND DEFINITIONS

We follow the terminology and notation of [2] and denote by exp X the set of all non-empty

closed subsets of a compactum X. The set exp X is considered with the Vietoris topology. If
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a metric d on X is admissible, then the Hausdorff metric d̂ is admissible on exp X. For a point

x in (X, d) and a non-empty subset S ⊂ X we denote d(x, S) = inf{d(x, x′) | x′ ∈ S}, and I is

the unit segment [0, 1].

We call a function c : exp X ∪ {∅} → I a capacity on a compactum X if the three following

properties hold for all subsets F, G ⊂
cl

X:

1. c(∅) = 0;

2. if F ⊂ G, then c(F) ≤ c(G) (monotonicity);

3. if c(F) < a, then there is an open subset U ⊃ F such that for all G ⊂ U the inequality

c(G) < a is valid (upper semicontinuity).

If, additionally, c(X) = 1 (or c(X) ≤ 1) holds, then the capacity is called normalized (resp.

subnormalized).

We denote by MX and MX the sets of all normalized and of all subnormalized capacities

respectively. It was shown in [2] that MX carries a compact Hausdorff topology with the sub-

base of all sets of the form

O−(F, a) = {c ∈ MX | c(F) < a}, where F ⊂
cl

X, a ∈ I,

and

O+(U, a) = {c ∈ MX | c(U) > a}

= {c ∈ MX | there is a compactum F ⊂ U, c(F) > a}, where U ⊂
op

X, a ∈ I.

The same formulae determine a subbase of a compact Hausdorff topology on MX and

therefore MX ⊂ MX is a subspace.

We consider the following subclasses of MX.

1. M∩X is the set of the so-called ∩-capacities (or necessity measures) with the property:

c(A ∩ B) = min{c(A), c(B)} for all A, B ⊂
cl

X.

2. M∪X is the set of the so-called ∪-capacities (or possibility measures) with the property:

c(A ∪ B) = max{c(A), c(B)} for all A, B ⊂
cl

X.

3. Class MX0 of capacities defined on a closed subspace X0 ⊂ X. We regard each capacity c0

on X0 as a capacity on X extended with the formula c(F) = c0(F ∩ X0), F ⊂
cl

X.

Analogous subclasses are defined in MX, with the obvious denotations. It was proved in

[3] that the subsets M∩X, M∪X, and MX0 are closed in MX, hence for a compactum X they are

compacta as well.

From now on we restrict to MX, results for MX are quite analogous. We consider the metric

on the set MX of subnormalized capacities on a metric compactum (X, d) :

d̂(c, c′) = inf{ε > 0 | c(Ōε(F)) + ε ≥ c′(F), c′(Ōε(F)) + ε ≥ c(F), ∀F ⊂
cl

X}.

Here Ōε(F) is the closed ε-neighborhood of a subset F ⊂ X. This metric is admissible [2].

Recall some definitions and well-known facts on compact topological semilattices and compact

idempotent semimodules.
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A poset (X,≤) is called an upper semilattice is pairwise suprema x ∨ y exist for all x, y ∈ X.

A subset Y of an upper semilattice Y is called an upper subsemilattice if the supremum of each

two elements of Y is in Y. Then Y is an upper semilattice as well, and suprema of all finite

non-empty subsets of Y in X and in Y exist and are equal.

An upper semilattice (X,≤) is called topological if a topology is fixed on X such that the pair-

wise supremum x ∨ y depends on x, y ∈ X continuously.

A topological semilattice is called Lawson [7] if in each its point it possesses a local base

consisting of subsemilattices.

An upper semilattice is complete if each it non-empty subset has the least upper bound. It is

well-known that any compact topological upper semilattice is complete and contains agreatest

element [6]. A compact Hausdorff topological upper semilattice X is Lawson if and only if

the mapping sup : exp X → X that assigns the least upper bound to each non-empty closed

subset A ⊂ X is continuous w.r.t. the Vietoris topology.

We call (X,⊕,⊛) a (left idempotent) (I, max, ∗)-semimodule if X is a set with operations

⊕ : X × X → X, ⊛ : I × X → X such that for all x, y, z ∈ X, α, β ∈ I the following holds:

1. x ⊕ y = y ⊕ x;

2. (x ⊕ y)⊕ z = x ⊕ (y ⊕ z);

3. there is a unique 0̄ ∈ X such that x ⊕ 0̄ = x for all x;

4. α ⊛ (x ⊕ y) = (α ⊛ x)⊕ (α ⊛ y), max{α, β}⊛ x = (α ⊛ x)⊕ (β ⊛ x);

5. (α ∗ β)⊛ x = α ⊛ (β ⊛ x);

6. 1⊛ x = x;

7. 0⊛ x = 0̄.

In the sequel we use a shorter term “I-semimodule” for (I, max, ∗)-semimodule.

A triple (X,⊕,⊛) is called a compact Hausdorff Lawson I-semimodule if (X,⊕,⊛) is an I-

semimodule and a compact Hausdorff topology is fixed on X that makes it a compact Lawson

upper semilattice with ⊕ being pairwise supremum (hence the partial order is defined as

x ≤ y ⇔ x ⊕ y = y), and the multiplication ⊛ is continuous.

For all points x1, x2, . . . , xn ∈ X and coefficients α1, α2, . . . , αn ∈ I such that

max{α1, α2, . . . , αn} = 1 we define the I-convex combination of a finite number of elements α1 ⊛

x1 ⊕ α2 ⊛ x2 ⊕ . . . ⊕ αn ⊛ xn, which from now on is denoted simply as α1x1 ⊕ α2x2 ⊕ . . . ⊕ αnxn.

It can be calculated stepwise using pairwise convex combinations of the form x ⊕ αy, which in

fact are values of a mapping X × I × X → X.

If the mentioned pairwise I-convex combination is continuous, then (X,⊕,⊛) is called

an I-convex compactum [5]. Hence an I-convex compactum is a compact Hausdorff space X

with a Lawson continuous pairwise I-convex combination (x, α, y) 7→ x ⊕ αy, X × I × X → X,

which (for α = 1) makes X a compact Hausdorff Lawson upper semilattice.

In compact Hausdorff Lawson I-semimodules we can define an I-convex combination of

an infinite number of elements using finite combinations as follows:

⊕
i∈I

αixi = inf{sup
i∈I1

αi ⊛ sup
i∈I1

xi ⊕ . . . ⊕ sup
i∈In

αi ⊛ sup
i∈In

xi | n ∈ N, I = I1 ∪ I2 ∪ . . . ∪ In}.
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Observe that the above I-convex combination does not depend on αixi such that the respec-

tive αi are equal to zero. Theorem [5, 5.9.2] implies an important property of the mapping that

sends each collection of elements with coefficients to their I-convex combination.

Lemma 1. Let (X,⊕,⊛) be an I-convex compactum and exp1(X × I) ⊂ exp(X × I) the sub-

space of all closed subsets of X × I that contain at least one pair of the form (x, 1). Then

the mapping h : exp1(X × I) → X defined for A ⊂
cl

X × I by the formula

h(A) = ⊕
i∈I

{αixi|(xi, αi) ∈ A}

is continuous.

2 SOME MAPPINGS IN METRIC I-CONVEX COMPACTA

We need some auxilliary statements. Let S ⊂ X be a non-empty closed I-convex subset

of a metric I-convex compactum (X,⊕,⊛), i.e. S contains all I-convex combinations of its

elements. Then S is known [5] to be an I-convex compactum as well. For the product topology

on X × R the metric ρ((x1, a1), (x2, a2)) = max{d(x1, x2), |a1 − a2|} is admissible.

For an element x ∈ X consider the set Fx = {(x′, a)|x ∈ S, d(x, x′) ≤ a ≤ diam X}.

Proposition 1. The set Fx ⊂ S × [0, diam X] is closed and the mapping

f : X → exp(S × [0, diam X]) that assigns Fx to each x ∈ X is continuous.

The proof relies on the two following lemmas.

Lemma 2. Let (X, d) be a metric compactum, then for all x ∈ X the set

Fx = {(x′, a)|x′ ∈ X, d(x, x′) ≤ a ≤ diam X} is non-empty and closed in X × [0, diam X].

Proof. Obviously (x′, diam X) ∈ Fx for all x′ ∈ X, hence the set in question is non-empty.

We show that the complement X × [0, diam X] \ Fx is open. Let a point (x′, a) belong to

the complement, i.e. d(x, x′) > a. Put ε =
d(x, x′)− a

2
. Then ε > 0 and for any point

(y, b) in the ε-neighborhood of (x′, a), which is a ball Bε(x′) × (a − ε, a + ε), the inequalities

d(y, x) ≥ d(x′, x)− d(x′, y) > (a + 2ε)− ε = a + ε > b are valid. Hence the ε-neighborhood of

the point (x′, a) is contained in the set X × [0, diam X] \ Fx.

Therefore the set Fx = Fx ∩ (S × I) is non-empty and closed in S × [0, diam X] as well.

Lemma 3. Let (X, d) be a metric compactum and S its non-empty closed subset, then the map-

ping f from X to the space exp(S× [0, diam X]) of all non-empty closed subsets with the Haus-

dorff metric that sends each x ∈ X to the set Fx, is non-expanding.

Proof. Let x, y ∈ X, x 6= y, hence r = d(x, y) > 0. If (x′, a) ∈ Fx, i.e. d(x, x′) ≤ a, put

b = min{a+ r, diam X}. Thus |b− a| = ρ((x′, a), (x′, b)) ≤ r and d(y, x′) ≤ d(x, y)+ d(x, x′) =

d(x, x′) + r. Taking into account d(y, x′) ≤ diam X we deduce d(y, x′) ≤ b, hence (x′, b) ∈ Fy.

Thus for each point (x′, a) ∈ Fx there is a point (x′, b) ∈ Fy at a distance ≤ r, and vice

versa. Thus the Hausdorff distance ρH between Fx and Fy does not exceed r = d(x, y), i.e. f is

non-expanding. This completes the proof.
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Assign to all x ∈ X and ε > 0 the set Gx ⊂ S × I of the form

Gx =

{

(x′, α)|x′ ∈ S, α ∈ I, α ≤ max

{

0, 1 −
d(x, x′)− d(x, S)

ε

}}

.

Observe that a point (x′, α), with α > 0, can belong to Gx only if x′ ∈ S, d(x, x′) < d(x, S) + ε.

Proposition 2. The following statements hold:

(1) the set Gx is closed in S × I;

(2) the mapping g : X × (0,+∞) → exp(S × I) that assigns Gx to each element x ∈ X and

ε > 0 is continuous;

(3) for all x ∈ X, ε > 0 the equality max{α ∈ I | (x′, α) ∈ Gx for some x′ ∈ S} = 1 is valid.

Proof. The set Gx ⊂ S × I is the image of the set Fx ⊂ S × [0, diam X], namely Gx = (1X ×

θx,ε)(Fx), where θx,ε : [0, diam X] → I is defined by the formula

θx,ε(a) = max{1 −
a − d(x, S)

ε
, 0}. Hence Gx is closed as the image of a closed set under

a continuous mapping of compacta (1). Moreover Fx and θx,ε depend on x and ε continuously,

therefore the same holds for Gx (2). Compactness of S ⊂ X implies existence of x′ ∈ S such

that d(x, x′) = d(x, S), hence (x′, 1) ∈ Gx (3).

Proposition 3. The mapping Φ : X × (0,+∞) → S defined as

Φ(x, ε) = ⊕
i∈I

{αixi|(xi, αi) ∈ Gx}

is continuous.

Proof. Continuity of Φ is a corollary of Proposition 2 and Lemma 1 because Φ is the composi-

tion of the continuous mappings g and h (cf. Lemma 1).

3 CONSTRUCTION OF ALMOST OPTIMAL APPROXIMATIONS OF CAPACITIES

Consider the space MX of subnormalized capacities. For reader’s convenience we present

and prove properties of MX [5] in the following statement.

Proposition 4. The triple (MX,∨,∧) is a (I, max, min)-convex compactum, if the operations

∨ : MX × MX → MX and ∧ : I × MX → MX are defined by the formulae:

c1 ∨ c2(F) = max{c1(F), c2(F)}, α ∧ c(F) = min{α, c(F)}

for c1, c2 ∈ MX, α ∈ I, F ⊂
cl

X.

Proof. It is almost obvious that the defined above functions c1 ∨ c2 : exp X → I,

α ∧ c : exp X ∪ {∅} → I are capacities on X. Put ⊕ = ∨, ⊛ = ∧ and set the zero element

0̄ ∈ MX to the “zero capacity” with the values 0̄(F) = 0 for all F ⊂
cl

X. It is easy to observe that

axioms (1)—(7) from the definition of semimodule hold. Thus (MX,∨,∧) is a (left idempotent)

(I, max, min)-semimodule. Recall (see [2]) that the subbase of all sets of the form O−(F, a) and

O+(U, a), for A ⊂
cl

X, U ⊂
op

X, a ∈ I, determines a compact Hausdorff topology τ on MX.
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It a partial order at MX is defined as

c1 ≤ c2 ⇔ c1 ∨ c2 = c2 ⇔ c1(F) ≤ c2(F), for all F ⊂
cl

X,

then the pairwise suprema are calculated argumentwise: c1 ∨ c2(F) = max{c1(F), c2(F)}, and

MX is an upper semilattice with the least element 0̄. It was proved in [5] that (MX,≤) is

a topological (i.e. the pairwise supremum c1 ∨ c2 depends on c1 and c2 continuously w.r.t.

the topology τ) upper Lawson semilattice (because subbase elements O−(F, a) and O+(U, a)

are subsemilattices), and τ is the Lawson topology.

The function c1 ∨ αc2 : exp X ∪ {∅} → I defined by the formula

c1 ∨ αc2(F) = c1 ∨ (α ∧ c2)(F) = max
{

c1(F), min{α, c2(F)}
}

is a subnormalized capacity on X, and the mapping MX × I × MX → MX that assigns c1 ∨ αc2

to (c1, α, c2) is continuous. Hence MX is a compact Hausdorff space with a Lawson continuous

pairwise I-convex combination which makes it a compact Hausdorff Lawson upper semilat-

tice, i.e. (MX,∨,∧) is an I-convex compactum.

If a compact topology on X is determined with an admissible metric d, then (MX, d̂) is

a metric compactum and the defined above metric d̂ on MX is admissible, i.e. (MX,∨,∧) is

a metric I-convex compactum. The following property of d̂ is crucial.

Lemma 4. Let (X, d) be a metric compactum, c0, ci ∈ MX for i ∈ I are capacities such

that d̂(c0, ci) ≤ ε for some ε ≥ 0 and all i. Then for arbitrary coeficients αi ∈ I such that

supi∈I αi = 1 the inequality d̂(c0,
∨

i∈I
αici) ≤ ε is valid.

For a finite number of ci the inequality is straightforward, and by continuity we extend it

to infinite combinations.

Remark. Since MX ⊂ MX is a closed subsemimodule, everything said above on MX applies

also to MX.

Therefore the above statements can be used to approximate a capacity c ∈ MX (or c ∈ MX)

with capacities from a closed I-convex subspace S ⊂ MX (resp. S ⊂ MX). The convexity

means that S contains all I-convex combinations of the form ∨
i∈I

(αi ∧ ci), where ci ∈ S, αi ∈ I,

max{αi|i ∈ I} = 1. For simplicity consider a more general case of MX.

For a capacity c ∈ MX and a number ε > 0 construct the set

Gc =

{

(c′, α)|c′ ∈ S, α ∈ I, α ≤ max

{

0, 1 −
d̂(c, c′)− d̂(c, S)

ε

}}

,

which is closed in S × I due to Proposition 2.

Define a capacity c̃ε with the formula c̃ε = ∨
i∈I

{αi ∧ ci|(ci, αi) ∈ Gc}. Equivalently c̃ε can be

defined as

c̃ε(F) = sup

{

(1 −
d̂(c, c′)− d̂(c, S)

ε
) ∧ c′(F)|c′ ∈ S, d̂(c, c′) ≤ d̂(c, S) + ε

}

(1)

for all F ⊂
cl

X. Although c̃ε is not the closest to c ∈ MX in the subspace S, it is “almost

the closest” in the sense of the following theorem.
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Theorem 1. For a capacity c ∈ MX, a number ε > 0 and a closed I-convex subspace S ⊂ MX

the capacity c̃ε belongs to S and satisfies the inequality d̂(c, c̃ε) ≤ d̂(c, S) + ε. The mapping

Φ : MX × (0, diam MX] → S defined as Φ(c, ε) = c̃ε is continuous.

Proof. Continuity of Φ and c̃ε ∈ S follow from Proposition 3. By the equality (1) the capacity

c̃ε is an I-convex combination of capacities c′ ∈ S such that d̂(c, c′) ≤ d̂(c, S) + ε, hence by

Lemma 4 the inequality d̂(c, c̃ε) ≤ d̂(c, S) + ε is valid as well.

Remark. Obviously an analogous theorem is valid for MX.

It is easy to verify that the subspaces M∩X and MX0 are closed and I-convex subsets of

the semimodule (MX,∨,∧) (M∪X is I-convex if the I-convex combination on (MX,∨,∧) is de-

fined in a dual manner, cf. [5]). Methods of calculating of the distances d̂(c, M∩X), d̂(c, M∪X),

d̂(c, MX0) were presented in [4]. Thus we can use the latter theorem to construct approxima-

tions of an arbitrary subnormalized capacity c on X with ∪-capacities, ∩-capacities or capaci-

ties on X0 ⊂ X that are ε-closed to optimal and depend on c, ε continuously.
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