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COINCIDENCE POINT THEOREMS FOR ¢ — y—CONTRACTION MAPPINGS IN
METRIC SPACES INVOLVING A GRAPH

Some new coupled coincidence and coupled common fixed point theorems for ¢ — ¢p—contrac-
tion mappings are established. We have also an application to some integral system to support the
results.
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INTRODUCTION AND PRELIMINARIES

In 2009, Lakshmikantham and Ciri¢ [2] introduced a generalization of monotonicity that
called mixed g-monotone property. The authors established some coupled coincidence and
coupled fixed point results related the mappings have mixed g-monotone property in the par-
tially ordered metric space.

Definition 1 ([2]). An element (x,y) € X? is said to be a coupled coincidence point of a map-
pings F: X? — Xandg: X — X if F(x,y) = gxand F (y, x) = gy.

Definition 2 ([2]). An element (x,y) € X? is said to be a coupled common fixed point of the
mappings F: X?> — Xand g: X — X if F(x,y) = gx =xand F (y,x) = gy = v.

Definition 3 ([2]). Let X be a nonempty set and F : X> — X and g : X — X. Wesay F and g
are commutative if gF (x,y) = F (gx,gy) forall x,y € X.

Now, we furnish the following class of auxiliary functions which will be used densely in
the sequel.

Definition 4 ([11]). Let ® denote all functions ¢ : [0,00) — [0, o), which satisfy following:
(1) ¢ is continuous and non-decreasing;
(¢2) @ (t) =0ifft =0;

(3) @ (t+s) < @ (t)+¢(s) forallt,s € [0,00) and ¥ denote all functions 1 : [0,00) — [0,00),
which satisfy (y1);
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(1) ¥ is continuous function with the condition ¢ (t) >  (t) for allt > 0.

By (¢1), (2) and (1) we have that ¢ (0) = 0.

Next, we give the following coupled fixed point theorems as the main results of Isik and
Turkoglu [11].

Theorem 1 ([11]). Let (X, <,d) be a complete partially ordered metric space. Suppose that
F : X?> — X is a mapping having the mixed monotone property on X. Assume there exists
¢ € ® and ¢ € Y such that

¢ (d(F(x,y),F(u,0)) <271 x ¢ (d(x,u) +d (y,0)) (1)

forall x,y,u,v € X withx > uandy < v.
Suppose that either

(a) F is continuous or;
(b) X has the following properties:

1) if a non-decreasing sequence {x,} — x, then x,, < x for alln,

2) if a non-increasing sequence {y,} — y, theny <y, for all n.

If there exist two elements x, yo € X with xg < F (xo,Yo0) and yo > F (yo, x0). Then F has a
coupled fixed point.

The existence of fixed points of contraction mappings in metric space endowed with graph
has been initiated by Jachymski [4]. Fixed point theorems for single valued and multivalued
operators in such metric spaces have been studied by some authors since 2007 (see [5]— [10]
and so on).

Let (X, d) be a metric space, A be a diagonal of X?, and G be a directed graph with no par-
allel edges such that the set V (G) of its vertices coincides with X and A C E (G), where E (G)
is the set of the edges of the graph. That is, G is determined by (V (G),E (G)). Furthermore,
denote by G~! the graph obtained from G by reversing the direction of the edges in G. Hence,

E(G) ={(xy) €X*:(y,x) €E(G)}.
Definition 5 ([4]). A function g : X — X is G—continuous if

(a) for all x, x, € X and any sequence (n;);c\ of positive integers, (x,,) — x. and
(X, Xn;41) € E(G), forn € N, implies § (xy,) — g%+

(b) for all y, y« € X and any sequence (n;);cy of positive integers, (yu,) — Y« and
(Ynjs Yn,+1) € E(G™1), forn € N, implies § (yn,) — Y+

Definition 6 ([9]). Let (X,d) be a complete metric space, G be a directed graph and
F: X x X — X be a mapping. Then

(i) F is called G—continuous if for all (x,y), (x.,y«) € X* and for any sequence (1;);cy
of positive integers such that (x,,) — X, (Yn;) — Y« asi — oo and (xy,, xy,41) € E(G),
(Yn; Yn+1) € E(GY), for n € N, implies F(xn,yn;) — F(xs,y:) and
F (Yn;, xn;) = F (ys, x4) asi — oo;
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(ii) (X,d,G) has property A if (a) for any sequence (x,), .y in X with (x,) — x, asn —
oo and (xn,x,41) € E(G) forn € N, then (x,,x«) € E(G); (b) for any sequence
(Yn)pen in X with (yn) — y« asn — oo and (Y, Yn+1) € E(G™1) forn € N, then
(ywy:) € E(GTT).

Consider the set CCoinFix (Fg) of all coupled coincidence points of mappings F : X* — X,
g : X — X and the set (X?) g as follows:

CCoinFix (Fg) = {(x,y) €X?:gx=F(x,y)andgy =F (y,x)} and
<X2>F = {(x,y) € X?:(gx,F(x,y)) € E(G) and (gy,F (y,x)) € E (G’l)}.
4
In 2016, Eshi et al. [12] introduced the concept of G — g—contraction mapping as follows.
Definition 7 ([12]). F : X*> — X is called G — g—contraction if:
(i) § is edge preserving, ie,(gx,gu) € E(G) and (gy,gv) € E(G!Y) =
(8(gx),8(gu)) € E(G) and (g (gy) & (gv)) € E(G);
(i) F is g—edge preserving, ie.,(gx,gu) € E(G) and (gy,gv) € E(G1) =
(F (x,y),F (1,0)) € E(G) and (F (v, %), F (0,u)) € E (G);
(iii) for all x, y, u, v € X such that, (gx,qu) € E(G) and (gy,gv) € E(G™),

d(F (x,y),F(u,0)) < 5[(gx,qu) + (gy,8v)], where k € [O, %) is called the contraction
constant of F.

Proposition 1 ([12]). If F : X*> — X is g—edge preserving and F (X?) C g(X). Also, let
(Xn) pens Wn)pens (Un)pen and (vn),cn be sequences in metric space (X, d) endowed with a
directed graph G. Then

(a) (gx,gu) € E(G) and (gy,gv) € E(G™') = (F(xn,yn),F(un,0,)) € E(G) and
(Yn, xn) , F (0, un)) € E (Gfl) foralln € N;

(F
1) (x,y) € (X*)p, = (F(xu-1,Yn-1),F (xn,yn)) € E(G) and (F (yn-1,%n-1), F (yu, X)) €
E (Gil) foralln € N;

(©) (x,y) € (XZ)Fg = (F (xn,Yn) , F (Yn, xn)) € (XZ)Fg for alln € N.

In this paper, we prove coupled coincidence and coupled common fixed point theorems for
contaction mappings in metric spaces endowed with a directed graph. Our results extend and
improve the results obtained by Eshi et al. in [12], Isik and Ttirkoglu in [11], Chifu and Petrusel
in [9] so on. Moreover, we have an application to some integral system to support the results.

1 MAIN RESULTS

Definition 8. Let (X,d) be a complete metric space endowed with a directed graph G. The
mappings F : X2 — X, ¢ : X — X are called a ¢ — (—contraction if:

1) g is edge preserving, F is g—edge preserving;
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2) there exists ¢ € ® and ¢ € Y such that for all x, y, u, v € X satisfying (gx,gu) € E (G)
and (gy,gv) € E(G™),

¢ (d(F(x,y),F(u,0))) <27 x ¢ (d(gx,gu) +d(gy,80)). 2

Lemma 1. Let (X,d) be complete metric space endowed with a directed graph G, and let
F:X*>— X, g:X — X bea ¢ — ¢—contraction and F (X?) C g (X). Also, let (xn), (yx) be
sequences in X. If for each (x,y) € (X?) rg then

On = d(8§xXn+1,8%n) +d (§Yn+1,8Yn) — 0asn — oo.

Proof. Let xp, yo € X. Since F (Xz) C ¢(X), we can constitute x1, y; € X such that
F(x0,y0) = gx1 and F(yo,x0) = gy1. Again, we can constitute xp, y» € X such that
F(x1,y1) = gxp and F (y1,x1) = gy2. Continuing this procedure above we obtain sequences
(xn) and (y,) in X such that

gxn = F(xp_1,yn—1) and gyn = F (Yn—1, Xn—1) 3)

forallm > 1, x = xoand y = yo. Let (x0,10) € (XZ)Fg such that (gxo, F (x0,40)) =

(§x0,8%1) € E(G) and (gyo, F (vo,x0)) = (gv0,8y1) € E (G™1). Then, by Proposition 1 (b),
we get (F (xy-1,Yn-1),F (xn,¥n)) € E(G) and (F (yy—1,%-1) ,F (yn, xx)) € E(G™!). Thus
we have that (gxn, gxn+1) € E(G) and (g¥n, §¥n+1) € E(G™!) forall n € N. Using the
¢ — p—contaction (2) and (3), we have that

@ (d (F (X, Yn)  F (Xn-1,Yn-1)))

¢ (d (8xnt1,8%n)) =
<271 x ¢ (d (gxn, §xn-1) + 4 (8Yn, §Yn-1)) and

(4)

¢ (d(8Yn+1,8Yyn)) = @ (A (F (Yn, xn), F (Yn-1,%n-1)))
<271 X ¢ (d (8Yn, §Yn—1) +d (§%n, §Xn-1))
for all n € N. From (4) and (5) we get

(5)

@ (d (8xut1,8%n)) + @ (d (8Yn+1,8Yn)) < ¥ (d (8xn,§%n-1) +d (8Yn,§Yn-1)) - (6)

From (¢3), we obtain that

@ (d (8xn+1,8%n) +d (8Yn+1,8Yn)) < P (d (§Xn, 8Xn—1) +d (§Yn,§Yn-1)) -

Regarding the properties ¢ and 1, we conclude that

d(8xn+1,8%n) + A (8Yn+1,8Yn) < d(8%n,§%n-1) +d (§Yn, &Yn—1) -

It follows that p, := d (§Xp+1,8%n) + d (Yn+1,8Yn) is decreasing. Then lim, 00 pn = p for
some p > 0. Taking the limit as n — oo in (6), we have ¢ (p) < ¢ (p). From the properties ¢
and ¢, we obtain that p = 0, and thus

On = d (§Xn+1,8%n) +d (§Yn+1,8Yn) — 0asn — oo.
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Theorem 2. Let (X,d) be complete metric space endowed with a directed graph G, and let
F:X?— X, g:X — X bea ¢ — p—contraction and F (X?) C g (X). Let ¢ be G—continuous
and commutes with F. Suppose that:

(i) F is G—continuous, or
(ii) the tripled (X, d, G) has a property A.
Then CCoinFix (Fg) # @ iff (Xz)Fg + .

Proof. Let CCoinFix (Fg) # . Then there exists (x.,y.) € CCoinFix (Fg) such that

(g%, F (x4,yx)) = (%4, 8%:) € A C E(G) and (gy«, F (ys, x:)) = (gy+,8y+) € A C E(G71).
It follows that (x.,y.) € (XZ)Fg, so that (XZ)Fg £ O.

pg 7 @ Then there exists (xo,y0) € (XZ)Fg, e.g.
(gx0, F (x0,y0)) € E(G), (gyo,F (yo,x0)) € E(G™!). Then, by Proposition 1 (b), we get
(F (xp—1,Yn-1), F (xu,yn)) € E(G) and (F (yu—1,%n—1) ,F (yn, xn)) € E (G~1). Thus we have
that

Now, suppose that (X?)

(8%n,&xn+1) € E(G) and (gyn,§¥n+1) € E (Gil) @)

for alln € N. By Lemma 1, we have

Pn = A (§Xn11,8%n) +d (§Yn+1,8Yn) — 0asn — oo. (8)

Next, we shall prove that {gx,} and {gy,} are Cauchy sequences. If possible, assume that at
least one of {gx,} and {gy.} is not a Cauchy sequence. Then there exists ¢ > 0 for which

we can find subsequences { 8%Xn(k) }, { gxm(k)} of {gx,} and { SYn(k) }, { gym(k)} of {gyn} with
n (k) > m (k) > k such that

Ve i=d (gxn(k)/gxm(k)> +d (gyn(k)/g]/m(k)> > €. )

Farther, corresponding to m (k), we can choose # (k) in the manner that it is the smallest integer
for which (9) holds. Then,

d <gxn(k)71/gxm(k)) +d <8yn(k)7118ym(k)> <& (10)
Using (9), (10), and triangular inequality, we obtain
e<y<etd <gxn(k)fgxn(k)fl) +d <gyn(k)/g]/n(k)fl) : (11)
Letting k — oo in (11) and by (8), we have
Y :i=d <gxn(k),gxm(k)> +d <gyn(k),gym(k)) — eask — oo. (12)
From the triangle inequality, we get

Ye=d (gxn(k)rgxm(k)) +d <g]/n(k)rgym(k))
<d <gxn(k)+1/gxm(k)+1> +d (gyn(k)+1/8]/m(k)+1> + Pn(k) + Pm(k)-
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From property ¢, we have
o) <o (d (gxn )41 8%m( +1)) ( ( Yn(k)+1 8Ym(k) +1 )) te (Pn(k) + pm(k))
< (1 (F (o) (s )
+¢(d(F (yn(k ) (ym )))+¢(p(>+pm<k))
(13)
<27l xy (d (gxn(k)rgxm(k)) +d (g]/n(k)/g]/m(k)>)
+27 %y <d <gyn(k)/g]/m(k)> +d <gxn(k)/gxm(k)>) +¢ (pn(k) + Pm(k)>
<¢P(m)+e <Pn(k) + Pm(k)) -

Taking k — oo in (13) and from (8) and (12), we obtain a following contradiction:

¢e) <p(e)+¢(0)=v(e).

Thus, {gx,} and {gy.} are Cauchy sequences in X. As (X,d) is complete, there exists
X, Yx € X such that
Xy — Xy and gy, — Y4 asn — oo. (14)

Since ¢ be G—continuous, we have

9 (gxn) — gx« and g (gyn) — QY+ as n — oo.

Moreover as F and g are commutative

8 (8xn+1) = §(F(xu,yn)) = F (8xn, 8Yn), (15)
§(8ynt1) = §(F(yn xn)) = F (gYn, g%n). (16)
We now prove that
F(x:,y<) = g« and F (ys, xx) = QY.
Suppose assumption (i) holds. From (15) and (16), we have

g%, = lim g(gxyr1) = Hm F(gxy, gyn) = F (x+,¥),
gy= = [Jim g (gyns1) = lim F(gym gxn) = F (Y x:);
that is, (x.,y«) is a coincidence point of F and g.

Suppose now assumption (ii) holds. From (7) and (14), using property A, we get (gxy, x«) €
E(G) and (gyn,y+) € E (G™1) for each n € N. By (2), we get

¢ (d (8%, F (s, yx)) + d (8Y, F (Y, x5)))

< ¢ (d (g%, 8%nv1) +d (8%ns1, F (xs,y4)) + A (85, 8Ynt1) + d (gYnt1, F (Y5, X))

< ¢ (d (g%, 8%n41)) + @ (d (F (xn,yn) , F (X, y)))

+ ¢ (d(8ys/8Yn+1)) + ¢ (d (F (yn, Xn) , F (Y5, x:)))

< (d (gxn, gxx) + A (8Yn, 8Y)) + ¢ (d (8%, 8Xn11)) + ¢ (d (8Y, Yn+1)) -
Letting n — oo, we obtain ¢ (d (gx«, F (x«,Y+)) +d (gy«, F (y«,xx))) = 0. From properties ¢,
we have d(gx«, F(x+,yx)) + d(gy«, F (ys,x+)) = 0. Hence, gx, = F (x4, ys) and
&Y« = F (Y4, ). O
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Definition 9. Let (X,d) be a complete metric space endowed with a directed graph G. The
mappings F : X> — X, ¢ : X — X are called a (— contraction if:

(i) g is edge preserving, F is g—edge preserving;
(ii) there exists p € ¥ such that for all x, y, u, v € X satisfying (gx,gu) € E(G) and
(gy,8v) € E(G™),

d(F(x,y),F(u0)) <27 x4 (d(gx,gu) +d(gy,80)) -

Theorem 3. Let (X,d) be complete metric space endowed with a directed graph G, and let
F:X?>— X, g:X — X be ap—contraction and F (X?) C g(X). Let ¢ be G—continuous and
commutes with F. Suppose that:

(i) F is G—continuous, or
(ii) the tripled (X, d, G) has a property A.
Then CCoinFix (Fg) # @ iff (X?) £y # -

Proof. Taking ¢ (t) = t, along the lines of the proof of Theorem 2, we have the requested
results. By virtue of the analogy, we skip the details of the proof. O

If we choose the functions ¢ (t) = t and ¢ (t) = kt, for t € [0,c0) and k € [O, %) in Theorem
2, we have the following corollary.

Corollary 1 ([12]). Let (X, d) be complete metric space endowed with a directed graph G, and
letF: X? - XbeaG— g—contraction with contraction constant k € [O, %) and F (XZ) C

g (X). Let g be G—continuous and commutes with F. Suppose that (i) F is G—continuous, or
(ii) the tripled (X, d, G) has a property A. Then CCoinFix (Fg) # @ iff (XZ)Fg + O

Remark 1. In the case where (X, <) is partially ordered complete metric space, taking E (G) =
{(x,y) € X x X : x <y}, the functions ¢ (t) = t and ¢ (t) = kt, fort € [0,00) and k € [0,1),
Theorem 2 generalize and improve the results obtained by Bhaskar and Lakshmikantham ( [1],
Theorem 2.1) and Chifu and Petrusel ( [9], Theorem 2.1). If we take the function (t) = ¢ (t) —
Y1 (t), fort € [0,00), where 1 € ¥, Theorem 2 generalize the results given by Luong and
Thuan ( [3], Theorem 2.1). In Theorem 2, let § be the identity mapping. Then it is easy to see
that our conclusions enhance the results achieved by Isik and Tiirkoglu [11].

Theorem 4. In addition to Theorem 2, suppose that for any two elements (x,y), (x,y.) € X?,
there exists (p,r) € X? such that

(F (o), F(p) €E(G), (F(y,2),F(r,p) €E(G') and
(F (xe,3) F (p,7)) €E(G), (F(ye,x:) F(r,p)) € E(G7).

Then, F and g have a unique coupled common fixed point.
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Proof. By Theorem 2, we have CCoinFix (Fg) # &. Suppose (x,y), (x4, y«) are coupled fixed
points of F, e.g.,

§x =F(x,y), gy =F(y,x) and gxs = F (xs, ¥«), Y« = F (Y, xx) . (17)
Consider sequences {p, } and {r,} as follows
po=p, 10 ="1,Pu+1 = F (pn,rn) and 1,41 = F (rn, pn) foralln > 0.

From assumption, we get
(F(x,y) F(pr) = (gx,8p1) € E(G), (F(y,x),F(r,p)) = (8y.811) € E (G”) and

(F (x«,y%), F(p, 7)) = (§x+,8P1) € E(G),
(F (ye, %) F (r,p)) = (8y,8n) € E(GT1).

Since F is g—edge preserving, we have
(F(x,),F (pr,m1)) = (gx,8p2) € E(G), (F(y,x),F(r1,p1)) = (3y,872) € E(G™'),

(F (x«,y%), F (p1,11)) = (§x+,8P2) € E(G),
(F (y=,x.)  F (r1,p1)) = (8¥+,872) € E(G71) .

Continuing this procedure above, we obtain

(3%,8pn) € E(G), (sy,g7) €E(G') and

(8%.,8pn) € E(G), (gy=,gra) € E (G7).
By (2), we have

¢ (d (8%, Pnt1)) + @ (d (rnt1,8Y+))
=@ (d(F (x«,¥+), F (pn, 1)) + @ (d (F (rn, pn) , F (y+, %4)))
<27 X Y (d (X, gpn) +d (Y, gTn)) + 271 X P (d (8rn, gY) +d (8P, 8X-)) -
By the property of ¢, we have
@ (d (8%, 8Pn+1) + A (87n+1,8Y+)) < P (d (8%, gPn) + A (8, 8Tn)) - (18)
By (¢1) and (1), we have

d (8%, 8Pn+1) + A (8rn+1,8Y+) < d(8%x, 8Pn) +d (Y, 87n) -

Therefore, the sequence {f,} defined by f, = d(gx«, gpn) + d(gy+,gr), is a nonnegative
decreasing sequence, and consequently, there exists some f > 0 such that

d (gx,&pn) +d (8Y+,8n) = fasn — co.

Suppose that f > 0. Then taking limit as n — co in (18) and using the continuity of ¢ and ¢,
we get

o (f) < (f)
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which implies, from the properties of ¢ and ¢, that ¢ (f) = 0 and eventually, f = 0. Hence
d(gx«,gpn) +d(gY«,grm) — 0asn — oo,

which implies
lim d (gx.,gpn) = 0= lim d (gy.,grn).

Similarly
lim d (gx,gpn) =0 = hm d(gy,8rn) -

n—o0

By the triangular inequality we obtain

d(8xx,8%) < d(8x«, 8Pn) +d (gPn, %), A (gY+, 8Yy) < d(8Ys,8n) +d(gn,8y),  (19)

for all n € IN. Letting n — oo in (19), we obtain that d (gx., gx) = 0 = d (gy+«, gy). Hence, we
get
8x:x = gx and gy. = gy. (20)

Let gx, = gx = tand gy« = gy = s.
Owing to commutativity of F and g, by (17), we have

¢ (gx:) = ¢ (F (x4,y+)) = F(gxs,gy+) = gt = F(t,5) and

g (gys«) = & (F(ys, xx)) = F (gY+,8x+) = g5 = F (s, 1).

Hence, (t,s) is a coupled coincidence point. Thus, by repeating previous argument for (x, )
and (t,s),
gxy =gt =t =gt and gy, = gs = s = gs.

Therefore, t = gt = F (t,s) and s = gs = F (s, t). Hence, (¢, s) is a coupled common fixed point
of Fand g.
To show the uniqueness, suppose that (k,I) is another coupled common fixed point of F
and g. Hence,
k=gk=F(k1) and | =gl = F (L k). (21)

By (20), we have
gk=gt=t and gl = gs =s. (22)

Thus, from (21) and (22), wegetk = tand/ =s.Then, k =gk =gt =tand | =gl = gs =s. [

2 APPLICATION

We consider the following integral system:

+A/ (t,s,x(s),y(s))ds,

(23)
y(t +A/ (t,s,y(s),x(s))ds,

fort € [-T,T], T >0,A €R.
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Recall that the Bielecki-type norm on X := C ([-T, T],R"),

|x|lp = T[naTXT] )x (t) e_T(t_T)) forall x € X,

where T > 0, is arbitrarily chosen. Consider ||x —y||z = max;c_77) |x (t) —y (£)| e~ Tt=T) for
allx,y € X.
Define the graph G with partial order relation by

xyeX,x<y&sx(t)<y(t) foranyte I

Thus (X, ||x||5) is complete metric space endowed with a directed graph G.
If we take into consideration E (G) := {(x,y) € X*>: x <y}, then A (X?) C E(G). On the
other hand E (G !) := {(x,y) € X? : y < x}. Furthermore, (X, ||x||5, G) has property A.
Then (Xz)Fg = {(x,y) € X*: gx < F(x,y) and F (y,x) < gy} . We consider the following
conditions:

1. A:[-T,T] x [-T,T] x R* x R" = R" and h : [-T,T] — R" are continuous;

2. for all x,y,u,v € R" withx < u, v < y we have A (t,s,x,y) < A(t,s,u,v) for all ¢,
e [-T,T];

3. forallt,s € [-T,T| and for all x,y,u,v € R"
A s, 29) — Alts,u,0) < (v —ul+ly—ol),
where ¢ € ¥ such that ¢ (af) < ay (t) forall t € [T, T] and for all « > 0;

4. there exists (xg,yo) € X? such that

xo (1) < —{—A/ (t,s,x0(s),y0(s))ds,
() = b +A [ A1), % ()
wheret € [-T,T].

Theorem 5. Suppose that conditions (1)—(4) are satistied. Then there exists at least one solu-
tion of (23).

Proof. Let F: X> — X and ¢ : X — X be defined as

F(x,y)(t —{—A/ (t,s,x(s),y(s))ds, t € [-T,T],
8 (x) (1) =x(t).
Then (23) can be indicated as

gx=F(x,y) andgy = F (y,x) . (24)
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By (24), the solution of this system is a coupled coincidence point of the mappings F and g, if
we prove the assumptions in Theorem 3.
Let x,y,u,v € X be such that gx < gu and gv < gy,

F(x,y) (t) = h(t +A/ (t,5,x(s),y(s)) ds
B +A [ A8 () (5),8 () () ds
B0+ [ Alsg W) ($),8(0) () ds
(t) +A/ (t,5,u(s),(s)) ds = F (u,0) ()
forall t € [T, T]. Therefore (F (x, 1), F (1, 0)) GE(G)
F(o,u) () = h (1) +A/ (t,5,0(s), u(s))ds

+A/ (5,8 () ()., 8 (x) (5)) ds

+A/ (t,5,y(s),x(s))ds = F (y, %) (t)

forall t € [T, T]. Therefore (F (y,x),F (v,u)) € E (G 1) . Then, F is g—edge preserving.
We shall show that F is {y—contraction. We have

|F (x,y) (t) — F (u,0) (t)]
< M\/ 1A (t,s,%(s),y(s)) — A(t,s,u(s),0(s))| ds

<l [ v ()| + Iy (s) =0 (s)]) (e Tert=T))

A
< P =l + 1y = o) 7D

T
for all t € [—T, T]; therefore,

C(f— A
IF (x,y) (#) = F (u,0) (5)] e 7T < ‘71119 (> = ullp +lly = ©llp)- (25)
Applying maximum in (25), we have
A
prm»—FWmmBsigwmx—um+wy—w@»
If we take T such that M' =1 < |A| = F, then F is p—contraction.

From assumption (4) show that there exists (xo,¥0) € X? such that gxg < F (xg,y0) and
gyo < F (yo, x0), which implies that (X?) pg 7 @- Also, F and g are commutative.

On the other hand, by virtue of (1) and of the fact that (X, ||x||5z, G) has property A we
get that (i) or (ii) from Theorem 3 is fulfilled. Hence, there exists a coupled coincidence point
(x4, y+) € X? of the mapping F and g, which is the solution of the integral system (23). O
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Y cTaTTi OTpMMaHO AesiKi HOBi TeopeMy IpO 3B'SI3Hi TOUKM CITiBITAAAHHSI Ta 3Bs13HI dpikcoBaHi
TOUKM AASI ¢ — )—CKOPOTHMX BiaobpaxkeHb. Takox 6yAm oTpuMaHi 3aCTOCYBaHHST OTPMMaHMX pe-
3YABTATIB y AOCAIAKEHHI iHTerpaAbHMX CHCTEM.

Kntouosi cnoea i ppasu: 3B’s13Ha TOUKa CITiBIIAAAHHSI, 3B s13Ha pikcoBaHa TOUKa, BeplMHa 36epe-
KeHHsI, HaITpsIMAeHMIA rpadp.



