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ANALOGUES OF WHITTAKER’S THEOREM FOR LAPLACE-STIELTJES INTEGRALS

Lower estimates on a sequence for the maximum of the integrand of Laplace-Stieltjes integrals
are found. Using these estimates we obtained analogues of Whittaker’s theorem for entire functions
given by lacunary power series.
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INTRODUCTION
For an entire function -
g(z) = Y anzt, z=re", (1)
n=0
let M o ) B do— Tm In In Mg (r) A= 1 lnlnMg(r)b th
e g(”) = max{[g(z)| : |z| =7} and ¢ = riffwT, = r—l%fooT e the

order and the lower order of g correspondingly. J.M. Whittaker [1] has proved that A < ¢p,
where p = lim (In A,)/1In A,4q. For an analytic in {z : |z| < 1} function (1) of the order

n—-+oo
— InlInM —  InlInM
0o = lim Lg(r) and the lower order Ay = lim Lg(r) L.R. Sons [2] tried to prove
r1l —11’1(1—7’) 1l —11’1(1—1’)

that Ag +1 < (gp + 1)B. In [3] this result is disproved and it is showed that Ay < @op, i. e.
absolute analogue of Whittaker’s theorem is valid. Moreover, in [3] it is obtained analogues of

[e ]
Whittaker’s theorem for Dirichlet series Y. a,e’,s = o + it, with an arbitrary abscissa of the
n=0
absolute convergence 0, = A € (—oo, +o0], where 0 = Ay < A, T +00, 1 — o0.

Here we investigate similar problems for Laplace-Stieltjes integrals.

1 MAIN RESULTS

Let V be the class of all nonnegative nondecreasing unbounded continuous on the right
functions F on [0, +o0). We say that F € V(I) if F € V and F(x) — F(x —0) <1 < +oo0 for all
x > 0.

For a nonnegative function f on [0, +0c0) the integral

(9]

I(o) = / F(x)e“dF(x), o ER, @)

0
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is called of Laplace-Stieltjes [4]. Integral (1) is a direct generalisation of the ordinary Laplace

integral I(0) = [;° f(x)e*’dx and of the Dirichlet series §0 a,e’? with nonnegative coeffi-
cients a, and exponents A,, 0 < A, T 400, n — oo, if wenchoose F(x) =n(x) = Y land

An<x
f(Ay) = a, > 0forall n > 0. The maximal therm of this Dirichlet series is defined by formula
(o) = max{a,e’’ : n > 0}.

By QQ(A) we denote the class of all positive unbounded on (—oco, A) functions ® such that
the derivative @' is positive continuously differentiable and increasing to +oco on (—oo, A).
From now on, we denote by ¢ the inverse function to @', and let ¥(x) = x — ®(x)/P’(x) be
the function associated with @ in the sense of Newton. It is clear that the function ¢ is con-
tinuously differentiable and increasing to A on (0, +o0). The function ¥ is [4-6] continuously
differentiable and increasing to A on (—oo, A).

For® € O)(A)and 0 < a < b < +co we put

b b
Gi(a, b, ®) — ba_ba/q)(g(t)dt, Gola, b, ®) = @ (bla/go(t)dt) .

a

It is known [5] that Gy (a,b, @) < Gy(a, b, @), and in [3] the following Lemma is proved.

Lemma 1. Let (x;) be an increasing to +co sequence of positive numbers, ® € Q(A) and
up () be the maximal term of formal Dirichlet series

D(s) = i exp{ —x¥(@(xx)) +sxx}, s=o0+it.

k=1
Then | ©) n1 ©)
=)~V M new) v ®)
. Inpp(o) . Gi(xg, x40, D)
lim ———~Z% = lim 4
ota @(0) koo G2(Xk, X1, P) @
and if o(0)0" (0)
1o o
In HD(U')"— (W—].) In CD(O') ZO, g & [Uo, A), (5)
then

. Inln “LlD(O') . In G1 (Xk, Xk+1, CI))
lim ————~ = lim :
A In®(0) k—oo IN G2 (xg, X41, D)

(6)

It is clear that integral (2) either converges for all o € R or diverges for all ¢ € R or there
exists a number ¢, such that integral (2) converges for o < . and diverges for ¢ > o.. In the
latter case the number o, is called abscissa of the convergence of integral (2). If integral (2)
converges for all ¢ € R then we put 0, = 400, and if it diverges for all ¢ € R then we put
Oc = —o0.

Let

u(o,I) =sup{f(x)e” : x >0}, oc€R,

be the maximum of the integrand. Then either y(c,I) < oo forall o € R or p(c, I) = +oo for
all ¢ € R or there exists a number ¢}, such that y(c, I) < +oo forall ¢ < ¢y and p(c,I) = +oo
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for for all o > ¢,. By analogy the number ¢}, is called abscissa of maximum of the integrand.
It is well known ( [4]) that if F € V and In F(x) = o(x) as x — +oo then 0. > 0y,.

For each Dirichlet series 0 < 0y,. In general case this inequality can be not executed. We
will say in this connection as in [4] that a nonnegative function f has regular variation in regard
to F if there exista > 0,b > 0and h > 0 such that forall x > a

x+b

| FaE®) = nf) 7)

In [4] it is proved that if F € V and f has regular variation in regard to F then 0. < ¢,. We
need also the following lemma.

Lemma 2 ( [4]). Leto, = A € (—oo,+o0] and ® € O (A). In order thatInu(c,I) < ®(c) for
allo € [0y, A), it is necessary and sufficient thatIn f(x) < —x¥(¢(x)) forall x > x.

Let L be the class of all positive continuous functions & increasing to +co on (xg, +0),
xp > —oo. Wesay thata € LY if o € L and a((1+0(1))x) = (1 +o0(1))a(x) as x — +oo, and
a € Lg;if a(cx) = (1+0(1))a(x) as x — oo for each ¢ € (0, +00).

Using Lemmas 1 and 2 first we will prove the following theorem.

Theorem 1. Let 0, = +00, ® € Q(+00), In pu(c,I) < &(0) forallc > oy and X = (xi) be
a some sequence of positive numbers increasing to +oco. Suppose that f is a nonincreasing
function. Then:

1) if eitherIn f(x;) —In f(xg1) = O(1) ask — coorln f(xx) = (1 +0(1))In f(xkyq1) as
k — ooand ® € LY orxgq —xx < H < +oo forallk > 0, or x,pq = (1+0(1))x; as
k — ocoand ® € LY, then

. Inu(o,I) . G1(xp, X1, @)
Iim ———— < lim ; 8
ooteo P(0) T peo Ga(Xk Xpp1, P) ®
2) if
(o)D" (0)
il S A > — >
Ino+ < (@ ()2 1)|In®(0) >g> -0, >0y, )

and either In f(x;) —In f(x;;1) = O(1) ask — coorln f(xx) = (1+0(1))In f(xrsq)
ask — oandIn ® € L% orln f(x;) < aln f(x441), 0 < a < 1,andIn ® € Ly, or
Xpp1 — X < H < +oo forallk > 0, or xp.1 = (1+0(1))x; ask — co and ® € LY or
g1 < Axy forallk > 0 and In ® € Lg; then

lim InIn u(o, 1) < lim In Gy (xg, Xk 1, P)

. 10
A o) = i Gy xien, D) 10

Proof. We remark that in view of the condition 0}, = +oco we have f(x) — 0as x — +o0 and
o =o(ln u(o,I)) as o — 4o0. Now, we put xo = 0 and p(c, [; X) = max { f(xx)e”* : k > 0}.
Clearly,

In p(o,I) =sup(In f(x) +ox) > sup(In f(xx) +oxx) = In u(o, I, X). (11)

x>0 k>0
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Therefore, In y(c, I; X) < ®(0) for all ¢ > 0p and by Lemma 2 In f(x;) < —x ¥ (¢(xx)) for all
k > ko. Hence it follows that In u(c, I; X) < In up(r) for o > 0p. Therefore, by Lemma 1 from
(4) we obtain

In u(o, I; X) G1(xg, Xg11, D)

lim < lim . 12
AT 00 T Gl wn ) i

On the other hand for o > 0
In p(o,I) =max sup (In f(x)+x0) < r]&e\(;((ln fxg) + x¢410). (13)

k20 <x<mi

If In f(x) = (14+0(1))In f(xxr1) as k — oo then for every ¢ > 0 we have In f(x;) <
(In f(xky1))/ (1 +¢) forall k > ko = ko(e). Therefore,

max(In f(x) + X410)
k=0

max {%g(ln fxi) + xk+10)lrlg§<§ (% In f(x41) + xk+1t7> }

< max {O((r),max <w + kaU) }

k>k 1+e

< e max(In fxi) + xe0(1+e)) +0(0), 0= oo,

Hence and from (13) it follows that In p (o, I) <In u (0(1 +¢),I; X) for o > oj. Thus,

lim In (o, I) < lim In u(oc(1+¢), LX)
r—+o00 q)(U> T—+00 (D(U') (14)
- Inp(o, X) o P(e(1+e)) . G, xp41, P)
< lim —————— Iim ——————% < A(e) im ,
T S5 CD(O’) T——+00 CD(O’) o ( )k—>—oo Gz(xk, ka,CD)
P(o(1+¢))

where A(e) = lim . For ® € L%in [7]is proved that A(e) N\, 1as e | 0. Therefore,

=400 D(0)
(14) implies (8).
If x¢ 1 = (1 +0(1))x as k — oo then for arbitrary ¢ > 0 from (13) it follows that
Inpu(o,I) <Inpu(c(l+e), LX)+ 0(0), o5(e) <o — +oo,

whence in view of the condition ® € L° as above we obtain (8).
IfIn f(xx) —In f(xrr1) = O(1) as k — oo then from (13) we have

In u(o,I) < r?>aé<(ln f(xr1) +xx0+1In f(xx) —In f(x441)) <In p(o,[; X) +const, (15)

that is in view of (12)

. Inwu(o,I) . Inu(o, ;X) . Gi(xg, 11, P)
lim ———— < lim ——————= < lim . 16
M TB0) AT 0 i Gl i, ®) (10)
Finally, if x; 1 — xx < H < 400 for all k > 0 then from (13) follows that
In p(o, I) < max(In f(xx) + xx0 + o (x, 1 — xx)) <In u(co, ; X) + Ho, (17)

k>0
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that is in view of (12) we obtain again (16). The first part of Theorem 1 is proved.
Now we will prove the second part. Since In ¢ = o(In u(c, 1)) as ¢ — +o0o, condition (9)
follows from (5).
If either In f(x) —In f(xx1) = O(1) ask — oo or xp 1 — xx < H < 400 for all k > 0 then
from either (16), or (17) in view of (12) and Lemma 1 we obtain
lim lim

InIn p(o,I) InIn (o, I; X) . In Gy(xg, xp 1, D)
m ——=— < lm < lim )
o—+00 In CD(O’) o——+00 In CD(O') k— o0 In Gz(xk, ka,CD)

If either In f(xx) < (140(1))In f(xgy1) or 21 = (1 +0(1))xx as k — o0 as x — oo
then as above from (13) we have In In p(c,I) < Inln u (c(1+e¢), I; X) for every ¢ > 0 and all
o > 0y(e), whence (10) follows in view of the condition In & € L°.

IfIn f(xx) <aln f(xx41),0 < a < 1, then from (13) we have

In p(o,I) < ar}<1>aox(ln f(xkr1) +x)10/a) = aln u(o/a, I; X);

and since In® € Lg;, we obtain

Inln p(c/a, I; X) m In ®(c/a) < lim In G1(xg, x541, P)

lim InIn pu(o,I)
oy rotee  In®(c/a) rote InP(0) T e In Go(xg, Xpi1, D)

< 1
e In @(0) o

If xp 1 < Axy forallk > 0 thenln p(o,I) < In u(Ac,I;X) 4+ O(c) as ¢ — +oco, whence in
view of the condition In ® € Lj; we obtain (10). The proof of Theorem 1 is complete. O

Now we consider the case 0, = 0. Let L be the class of all positive continuous on (cq, 0),
0p > —oo, functions B, increasing to +co0. We say that € LOif 8 € L and B((1 +0(1))0) =
(1+0(1))B(c) asc 1 0,and B € Ly; if B(co) = (1+0(1))B(c) as ¢ 1 0 for each ¢ € (0, +o0).

Lemma 3. Let € [ and B() = mw

o0 B(o)
and sufficient that B(6) — 1 as ¢ | 0.

(6 > 0). In order that B € L9, it is necessary

Proof. Suppose that B € L9 but B(§) 4 1asd | 0. Since the function B(4) is nondecreasing,
there exists 1(5%1 B(6) = b* > 1, thatis B(J) > b* > 1. We choose an arbitrary sequence (J,) | 0.

For every ¢, there exists a sequence (0;, ) T 0 such that B((1 + 6,)0, k) > bB(0y, ), 1 < b < b*.
We put 07 = 041 and 0, = min{c,, x > 0,_1 : k > n — 1} and construct a function y(c) — 0,
o 10, such that y(0,) = d,. Then B(0y /(1 + v(0w))) = B(ou/(1 4+ 6n)) > bB(0y). In view of
definition of L? it is impossible.

On the contrary, let B(6) — 1as ¢ | 0 but 8 ¢ LO. Then there exists a function y(¢) — 0,
o 10, and sequence (0,,) T 0, n — oo, such that r}gr;o B(on/(1+(0w))/B(ow) = a # 1. Clearly,
a < 1 provided y(c,) < 0and a > 1 provided y(0,) > 0. We examine, for example, the
second case. Let > 0 be an arbitrary number. Then y(0,,) < ¢ for n > ng and

B(6) :1.—5(‘7/(1 +9)) > Tim Blon/(1+9)) > Tm Blon/(1+ (o))

im im =a>1,
o0 plo)  Toame o Blow) o Blow)
which is impossible. Lemma 3 is proved. O

Theorem 2. Let o, = 0, ® € Q(0), In u(o,I) < &(c) for all ¢ > 0y and X = (xi) be some
sequence X = (xi) of positive numbers increasing to +co. Suppose that f(x) ,* +oco as
x — +oo. Then:
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1) ifeitherIn f(xg 1) —In f(xx) < Horxgy1 —xp < H < +oo forallk > 0, orln f(x;) =
(1+0(1))In f(xry1) ask — c0and @ € 1.9, orx 1 = (1+0(1))xg ask — coand @ € L0,
or X1 < Axy fork > 0 and ® € L; then

- Inp(o, 1) _ o Gr(xg Xer1, P)
lim ————2% < lim , 18
0 PO) T S Galxg Xk, @) (1)
2) if
O (0)P"(0)
il Sl > _
< (@ ()2 1) In®(0) >g> —0co, 0 € |[0p,0), (19)
. Inln (o, I) . In Gy(xg, x5 1, D)
Iim ————% < lim . 20
0 D) e In Galx xire, @) 20

Proof. As above let (o, I; X) = max{f(x;)e”* : k > 0}. Clearly, (11) holds. Therefore,
In p(o, I; X) < ®(0) forall o € [0p,0) and by Lemma 2 In f(x;) < —x¥ (¢(xx)) forall k > ko,
thatisIn p(c, I; X) <1In up(r) for o > oy. Therefore, by Lemma 1

. Inp(o, ;X) _ . Gi(xg, xpp1, D)
lim ——————= < lim . 21
o0 PO) T ke Galxk, Xpey1, P) -
On the other hand for ¢ < 0 now we have
In p(o,I) =max sup (In f(x)+x0) < r]&e\(;((ln f(xXpq1) + x40). (22)

20 3y <x<xpy

Therefore, if either In f(x;y1) —In f(xx) < Hor x4 — xx < H < +o0 for all k > 0 hence we
obtain either In y(c,I) <In u(c,; X)+ Horln u(c,I) < In u(c, I; X) + Ho, whence

h_mlny(a,l)gh_mlny(U,I;X)'

o10 CI)((T o10 P (U) (23)

Inequalities (21) and (23) imply (18).

If either x;. 1 = (1+0(1))xg orln f(xx) = (1 +0(1))In f(xgy1) as k — oo then from (23) as
in the proof of Theorem 1 for every ¢ > 0 we have correspondingly In u(c,I) < In u(c/(1+
e),;X)and In pu(c,I) < (14+¢)Inpu(c/(1+e¢),[;X) for ¢ € [0p(¢),0), whence in view of
condition In ® € L% of Lemma 3 and of the arbitrariness of ¢ we obtain (23) and, thus, (18)
holds.

Finally, if x;1 < Axy for k > 0 then In p(o,I) < In pu(c/A,I; X), whence in view of
condition ® € [ ; we obtain again (23). The first part of Theorem 2 is proved.

For the proof of the second part we remark that from the condition f(x) ,* +coasx — 400
it follows that In u(c,I) T +oc0 as ¢ 1 0. Therefore, (19) implies (5). We remark also that
if either In f(xg 1) —In f(xx) < Hor xpyq —x¢ < H < 4ooforallk > 0orln f(x;) =
(1+0(1))In f(x3.1)ask = ccand In ® € [0 or x4, 1 = (1+0(1))x; ask — coand In & € [0
or X y1 < Axg fork > 0and In ® € L; then from the inequalities obtained above we get
(20). If In f(x)y1) < Aln f(xx) for k > 0 then from (21) we obtain the inequality In u(c, I) <
Aln u(c/A,TI;X), whence in view of the condition In ® € L,; inequality (20) follows. The
proof of Theorem 2 is complete. O
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2 ANALOGUES OF WHITTAKER’S THEOREM

Examing the other scale of growth from Theorems 1 and 2 gives us a possible to get the
series of results for Laplace-Stieltjes integrals. Here we will be stopped only for two cases
which more frequent at meet in mathematical works. The most used characteristics of growth
for integrals (2) with 0, = +o0 (by analogy with Dirichlet series) are R-order gg[I], lower R-
order Ag[I] and (if gr[I] € (0,+o0)) R-type Tr[I], lower R-type tgr[I], which are defined by
formulas

_ Tm ninlo) . InlnI(o)
orll] = lim ————, AR[I]_UL%O 7,
Tall] = Tm —21@ = fm 2 1)

o—+o0 exp{oor[I]} ctoo exp{oor(I]}

We will show that in this formulas In I(¢) can be replaced by In p(c, I) and will use the
following Lemmas for this purpose.

Lemma 4 ([4,8]). Let F € V, f has regular variation in regard to F and either 0, = +o0 or
0, =0 and lirB f(x) = +oo. Thenn p(c,I) < (1+0(1))In I(c) asc 1 0y.
X—>+00

Lemma 5 ( [4,9]). Let F € V, 0, = +o0 and lim (In F(x))/x = T < +oo. Then I(c) <

X— 400

(o +7t+e¢1) foreverye > 0andallo > o(e).
It is easy to check that these lemmas imply the following statement.

Proposition 1. Let F € V, f has regular variation in regard to F and 0, = +oo. IfIn F(x) =
O(x) as x — oo then

— Inln u(o,I) InIn pu(o,I)

QR [I] - U'ETOO f, )\R [I] - O'E%Qr-loo o ’ (24)
and ifIn F(x) = o(x) as x — +oo then
Telll = fm @D g gy @D 25)
oo exp{or|[I]} o—+oo XpLoQr[1]}
Using Theorem 1 and Proposition 1 we prove the following theorem.
Theorem 3. Let F € V, 0, = 400 and X = (xr) be some sequence of positive numbers
increasing to +co. Suppose that f is a nonincreasing function and has regular variation in
regard to F.
Ifln F(x) = O(x) asx — +o0 and In f(xx) = (1+0(1))In f(xx11) ask — oo then
. Inx
AR[I) < Berll], B = lim —* (26)

k—soo IN X4 1

Ifln F(x) = o(x) asx — 400 andIn f(x;) —In f(xx,1) = O(1) ask — oo then

tr[I] < Tr[1]

0 71n 7} 1 Y
exp< 1+ In —, = lim ——. (27)
1—o p{ 1—9 Y T k—oo Xk+1
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Proof. From (24) and (25) for every ¢ and all ¢ > op(e) we have accordingly In u(c,I) <
exp{(or[I] +€)c} and In u(c,I) < (Tr[I] + €)exp{or[I]c}. We choose ® € ((+o0) such
that ®(0) = Te? for ¢ > op(e), where either ¢ = or[I] +eand T = 1 or ¢ = ¢r|[I] and
T = Tr[I] + & ThenIn u(c,I) < ®(0) for o > op(e), In ® € L and it is well known ( [4,10])
that

D) = 1 Xk Xk+1 In Xk+1

Gl (xkl Xk+1/
0 Xj41 — Xk Xk

and

1 Xpp11In X — xp In xp
Golie T, ®) = eQ =P { : XkJ:— X '

Since ®(¢)®" (0)/®'(0)? = 1, condition (9) holds and by Theorem 1 we have

X1 X X
(xk+1 . xk) ln kAk+1 ln k+1
Xk+1 — Xk Xk

AR < 0 lim 28
R[]_Qk—>—oo Xpr1In xpqq — xpInoxg (28)
provided In f(x;) = (14+0(1))In f(x4,1) as k — oo, and
Xk Xk+1 In Xk+1

. Xk+1 — Xk Xk
tr|I] <eT lim 29
rll] < k—rc0 {xk+1lnxk+1—xklnxk} @)

exp
Xk+1 — Xk

provided In f(x;) —In f(xry1) = O(1) as k — oo.

We suppose that f < 1. Then there exist a number p* € (B, 1) and an increasing sequence
(kj) of positive integers such that In x; < p*In x¢ 1, that is x, = 0(x,11) as j — oo. There-
fore, from (28) we obtain

Xie. X . X
kM1 k]+1>

Xhj+1 — Xk; Xk

(xkj+1 - xk]) In <
AR[I] < o lim

j—s00 Xjej1 In X1 — X I,
In x, +0(1) +1In In x4 _

*
= 7

=@ ]% In xijrl
whence in view of the arbitrariness of f* and € we obtain inequality (26) follows.
Further, if v € (0,1), then xi; = (1 + 0(1))7yxk; 41 as j — oo for some increasing sequence
(k;) of positive integers and from (29) we obtain

X X, 111’1 X 1/xkA
(1 < o7 tim X In (v /)

oo Xgoo1In Xg. 1 — xg, In xp,
(xij _ xk]-) exp j j j j
Xhj+1 — Xk;
YXp, 1 In (1 /7y
=¢eT lim A /) 77 lnlexp{1+71n7},
b (I=7)exp{lnx 1 — (YIny)/1=7)} 1-79 7 1—v

1 1
whence in view of the arbitrariness of ¢ we get (27). Since 1 Z > In - exp {1 + ,)1/ fz} — 1
as v — 1, then inequality (27) is obvious if v = 1. Finally, if v = 0, then In Xje; = o(In xkﬁl) as
j — oo for some increasing sequence (k;) of positive integers and from (29) we obtain

X (In xp. 1 — In x. X Xk 41
tr[I] < eT lim I iy ) — T lim ——In ——

oo exp{In X1+ o(1)} j—roo Xkj+1 Xk;

=0,
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i.e. inequality (27) holds. The proof of Theorem 3 is complete. O

Now we consider the case 0;, = 0. The order g [I], the lower order Ag[I] and (if 0 < go[I] <
+o00) the type Tp[I] and the lower type to[I] are defined by formulas

_—InlnI(0) . InlnI(0)
Ol =R mesen M =S /i’
To[I] = Tim |o|®W1In I(0), to[I] = lim |o|¢WIn I(0).
ot0 10

We will show that in this formulas In I(c) can be replaced by In u(c, I) and will use for this
purpose the following lemmas.

Lemma 6 ([4,9]). Let F € V, 0, = 0 andIn F(x) < hln f(x) for x > xq. Then for every ¢ > 0
and all o € [op(¢),0)

lnI(U)g(l—{—h—i—e)lny( I)—I—K, K = K(¢) = const.

7
1+h+e
Lemma 7 ([4,9]). LetF € V,0, = 0 and In F(x) = o(x7y(x)) as x — 400, where v is a positive

continuous and decreasing to 0 function on [0, +o0) such that xy(x) T +co as x — +oco. Then
forevery e > 0and all o € [op(e),0)

v elel 1 o]
< 7 .
lnl(‘f)-—ln”<1+e’l>+1+e7 <41+@2

Lemmas 4, 6 and 7 imply the following statement.

Proposition 2. Let F € V, 0, = +0o, f has regular variation in regard to F and f(x) , +oo as
x — 4o0. If eitherIn F(x) = O(In f(x)) orln In F(x) = o(In x) as x — +oo then

——Inln pu(c,I) InIn u(o,I)

ell] = i /o)) Aolg] = %W' (30)
and if eitherIn F(x) = o(In f(x)) orln In F(x) = o(In x) as x — o0 then
To[l] = Iim |o|®Win u(o, 1),  to[I] = lim |o|% In u(o, 1)). (31)
o10 10

Proof. If In F(x)) = O(In f(x)) (accordingly In F(x) = o(In f(x))) as x — oo then formulas
(30) (accordingly (31)) easy follows from Lemmas 4 and 6.

If we choose function v such that y(x) = x°~! for x > xq, where § € (0,1) is an arbitrary
numbers, then 1 satisfies the conditions of Lemma 7. Therefore, if In F(x) = o(x’) as x — +o0

then
o elo] [e(1+e)2\'"’
< -
lnI(U)_lny<1+€,l>+1+e< o] )

=Inu <1L+8, I> +e27°(14+e) 2|0’ =Inp (1;:_8,1) +o(1), o710,

whence the formulas (30) and (31) follow. It remained to notice that the condition
InIn F(x) = o(ln x) as x — +co implies the condition In F(x) = o(x°) as x — +oo for
0 € (0,1). Proposition 2 is proved. O
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Using Theorem 2 and Proposition 2 we prove the following theorem.

Theorem 4. Let F € V, 0, = 0 and X = (x;) be some sequence of positive numbers increasing
to +o0. Suppose that f has regular variation in regard to F and f(x) ,/* +oc0 as x — +oo.

If either In F(x) = O(In f(x)) or InInF(x) = o(lnx) as x — +oco and
In f(xx11) = O(In f(xx)) ask — co then

In X

Aoll] < Beoll], = lim = (32)

If either In F(x) = o(ln f(x)) or InInF(x) = o(lnx) as x — 4o and
In f(xx11) = (14+0(1))In f(xx) ask — oo then

boll] < To[IJA(y), 7 = lim %, (33)

k—so0 Xk+1

where
/(@) (1 — A1/ (1)) (1 — ye/(et1))e

(1—q)ett

Proof. 1f go[I] < +oo (Ty[I] < 4+o0) thenIn u(c,I) < &(0) =

Aly) =

T
o forall o € [op(e), 0), where
either 0 = go[I] +eand T = 1 or ¢ = gg[I] and T = Ty[I] + ¢. Clearly, ® € L0 and In ® € L;.
It is known [4, p. 40] that for this function

 T(o+1)  xxpq 1 L
Gi1(xg, Xpy1, @) = (To)?/ (@D xp i1 — % x;/(eﬂ) ]1/(1e+1)
+

and

/(0+1 /(o+1)\ ¢
(o 1)(T) 1) <"V — /)
0 X1 — Xk

Go(xp, X1, @) =T (

We remark that

Q(0)P"(0) n 1 T
( (@) 1>1 ®0) =5 g THee 10

that is (19) holds.
Therefore, if In f(x;y1) = O(In f(xx)) as k — oo then by Theorem 2 in view of arbitrariness

of e
In X Xk41 1 o 1
Xk4+1 — Xk x;/(QJFl) x;i(léﬂrl)
Aoll] < gol] lim (34)

koo :
In Xgy1 — Xk
xlgzi(lg+1) x}g/(gﬂrl)
and ifIn f(xp11) = (14+0(1))In f(xg) as k — oo then

0+1 o/(e+1) _ _o/(e+1)\ °
toll] < To[1 1 EF D fim B ( LI )(x"“ — % . (35)

0% koo Xkt1 — Xk x;/(“l) x;i(f“) Xk+1 — Xk
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We suppose that § < 1. Then there exists a number §* € (B, 1) and an increasing se-
quence (k]-) of positive integers such that In Xg; < B*In X1/ that is Xg; = o(xk].H) asj — oo.
Therefore, from (34) we obtain

! Xk Xkj+1 1 1
n —
xk].+1 — xk]. xi‘/(g”‘l) x}l/ﬁﬂ)
Ao[I] < go[I] lim ] X
J—roo Xie,41 — Xk,
11’1 ] ]
x@/(QH) . xq/(@H)
kj-i-l k]'

/(o+1
In x,f, (e+1) In Xk

= o[I] im ———— = go[I] lim
j=e oln x;j/_ﬁ+1) j—oo IN Xki+1

—

< oo[I]B",

i.e. in view of arbitrariness of f* we obtain the inequality Ag[I] < Boo[I]. For p = 1 this
inequality is trivial.

Now we suppose that 7 € (0, 1). Then there exists an increasing sequence (k;) of positive
integers such that x;; = (14 0(1))7 xk;+1 as j — co. Therefore, from (35) we obtain

o/(e+1) _  0/(e+1) ¢

e+l Xge; Xk, Xk, ki
tolI] < To[1] (QJF? lim = 1/(1+1) - 1/(1+1) = ;
Y j—roo Xkj+1 — Xk; X ¢ xkﬁ? Xki+1 — Xk
(e+1)! o 1 (1 — ¥/ (eth)e (e + 1!
< — = S
It is easy to show that A(y) — (fog)gﬂ as v — 1 that (2) is transformed in obvious inequality
tolp] < Tolg] as v — 1. If v = 0 then x;; = 0(xy;+1) as j — oo and from (2) we obtain easy that
to[I] = 0, because A(0) = 0. The proof of Theorem 4 is complete. O
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AAsl MakCMMyMy TiAlHTeTrpaAbHOTO Bupasy iHTerpasy Aamaaca-CTiaTbeca 3HaliA€HO HVDKHI
OILIHKM Ha AEsIKili OCAIAOBCHOCTI. BMKOpMCTOBYIOUM Wi OLIIHKM, OTPMMaHO aHAAOTM TepeMn YiT-
TeKepa AASI IIAMX (PYHKIIIN, 306pakeHnX AaKyHapHUMM CTeTICHEBYMM PSIAAMIL.

Kntouosi crnosa i ppasu: inTerpar Aamraca-CTiaTbeca, MaKCMMYM MiAIHTETpaAbHOTO BUpa3y, TeO-
pema VYirTexepa.



