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Lower estimates on a sequence for the maximum of the integrand of Laplace-Stieltjes integrals

are found. Using these estimates we obtained analogues of Whittaker’s theorem for entire functions

given by lacunary power series.
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INTRODUCTION

For an entire function

g(z) =
∞

∑
n=0

anzλn , z = reiθ , (1)

let Mg(r) = max{|g(z)| : |z| = r} and ̺ = lim
r→+∞

ln ln Mg(r)

ln r
, λ = lim

r→+∞

ln ln Mg(r)

ln r
be the

order and the lower order of g correspondingly. J.M. Whittaker [1] has proved that λ ≤ ̺β,

where β = lim
n→+∞

(ln λn)/ ln λn+1. For an analytic in {z : |z| < 1} function (1) of the order

̺0 = lim
r↑1

ln ln Mg(r)

− ln (1 − r)
and the lower order λ0 = lim

r↑1

ln ln Mg(r)

− ln (1 − r)
L.R. Sons [2] tried to prove

that λ0 + 1 ≤ (̺0 + 1)β. In [3] this result is disproved and it is showed that λ0 ≤ ̺0β, i. e.

absolute analogue of Whittaker’s theorem is valid. Moreover, in [3] it is obtained analogues of

Whittaker’s theorem for Dirichlet series
∞

∑
n=0

aneλns, s = σ + it, with an arbitrary abscissa of the

absolute convergence σa = A ∈ (−∞, +∞], where 0 = λ0 < λn ↑ +∞, n → ∞.

Here we investigate similar problems for Laplace-Stieltjes integrals.

1 MAIN RESULTS

Let V be the class of all nonnegative nondecreasing unbounded continuous on the right

functions F on [0,+∞). We say that F ∈ V(l) if F ∈ V and F(x)− F(x − 0) ≤ l < +∞ for all

x ≥ 0.

For a nonnegative function f on [0,+∞) the integral

I(σ) =

∞
∫

0

f (x)exσdF(x), σ ∈ R, (2)
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is called of Laplace-Stieltjes [4]. Integral (1) is a direct generalisation of the ordinary Laplace

integral I(σ) =
∫ ∞

0 f (x)exσdx and of the Dirichlet series
∞

∑
n=0

aneλnσ with nonnegative coeffi-

cients an and exponents λn, 0 ≤ λn ↑ +∞, n → ∞, if we choose F(x) = n(x) = ∑
λn≤x

1 and

f (λn) = an ≥ 0 for all n ≥ 0. The maximal therm of this Dirichlet series is defined by formula

µ(σ) = max{aneλnσ : n ≥ 0}.

By Ω(A) we denote the class of all positive unbounded on (−∞, A) functions Φ such that

the derivative Φ′ is positive continuously differentiable and increasing to +∞ on (−∞, A).

From now on, we denote by ϕ the inverse function to Φ′, and let Ψ(x) = x − Φ(x)/Φ′(x) be

the function associated with Φ in the sense of Newton. It is clear that the function ϕ is con-

tinuously differentiable and increasing to A on (0,+∞). The function Ψ is [4–6] continuously

differentiable and increasing to A on (−∞, A).

For Φ ∈ Ω(A) and 0 < a < b < +∞ we put

G1(a, b, Φ) =
ab

b − a

b
∫

a

Φ(ϕ(t)

t2
dt, G2(a, b, Φ) = Φ





1

b − a

b
∫

a

ϕ(t)dt



 .

It is known [5] that G1(a, b, Φ) < G2(a, b, Φ), and in [3] the following Lemma is proved.

Lemma 1. Let (xk) be an increasing to +∞ sequence of positive numbers, Φ ∈ Ω(A) and

µD(σ) be the maximal term of formal Dirichlet series

D(s) =
∞

∑
k=1

exp{−xkΨ(ϕ(xk)) + sxk}, s = σ + it.

Then

lim
σ↑A

ln µD(σ)

Φ(σ)
= 1, lim

σ↑A

ln ln µD(σ)

ln Φ(σ)
= 1, (3)

lim
σ↑A

ln µD(σ)

Φ(σ)
= lim

k→∞

G1(xk, xk+1, Φ)

G2(xk, xk+1, Φ)
(4)

and if

ln µD(σ) +

(

Φ(σ)Φ′′(σ)

(Φ′(σ))2
− 1

)

ln Φ(σ) ≥ 0, σ ∈ [σ0, A), (5)

then

lim
σ↑A

ln ln µD(σ)

ln Φ(σ)
= lim

k→∞

ln G1(xk, xk+1, Φ)

ln G2(xk, xk+1, Φ)
. (6)

It is clear that integral (2) either converges for all σ ∈ R or diverges for all σ ∈ R or there

exists a number σc such that integral (2) converges for σ < σc and diverges for σ > σc. In the

latter case the number σc is called abscissa of the convergence of integral (2). If integral (2)

converges for all σ ∈ R then we put σc = +∞, and if it diverges for all σ ∈ R then we put

σc = −∞.

Let

µ(σ, I) = sup{ f (x)exσ : x ≥ 0}, σ ∈ R,

be the maximum of the integrand. Then either µ(σ, I) < +∞ for all σ ∈ R or µ(σ, I) = +∞ for

all σ ∈ R or there exists a number σµ such that µ(σ, I) < +∞ for all σ < σµ and µ(σ, I) = +∞
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for for all σ > σµ. By analogy the number σµ is called abscissa of maximum of the integrand.

It is well known ( [4]) that if F ∈ V and ln F(x) = o(x) as x → +∞ then σc ≥ σµ.

For each Dirichlet series σc ≤ σµ. In general case this inequality can be not executed. We

will say in this connection as in [4] that a nonnegative function f has regular variation in regard

to F if there exist a ≥ 0, b ≥ 0 and h > 0 such that for all x ≥ a

x+b
∫

x−a

f (t)dF(t) ≥ h f (x). (7)

In [4] it is proved that if F ∈ V and f has regular variation in regard to F then σc ≤ σµ. We

need also the following lemma.

Lemma 2 ( [4]). Let σµ = A ∈ (−∞,+∞] and Φ ∈ Ω(A). In order that ln µ(σ, I) ≤ Φ(σ) for

all σ ∈ [σ0, A), it is necessary and sufficient that ln f (x) ≤ −xΨ(ϕ(x)) for all x ≥ x0.

Let L be the class of all positive continuous functions α increasing to +∞ on (x0, +∞),

x0 ≥ −∞. We say that α ∈ L0 if α ∈ L and α((1 + o(1))x) = (1 + o(1))α(x) as x → +∞, and

α ∈ Lsi if α(cx) = (1 + o(1))α(x) as x → +∞ for each c ∈ (0, +∞).

Using Lemmas 1 and 2 first we will prove the following theorem.

Theorem 1. Let σµ = +∞, Φ ∈ Ω(+∞), ln µ(σ, I) ≤ Φ(σ) for all σ ≥ σ0 and X = (xk) be

a some sequence of positive numbers increasing to +∞. Suppose that f is a nonincreasing

function. Then:

1) if either ln f (xk)− ln f (xk+1) = O(1) as k → ∞ or ln f (xk) = (1 + o(1)) ln f (xk+1) as

k → ∞ and Φ ∈ L0, or xk+1 − xk ≤ H < +∞ for all k ≥ 0, or xk+1 = (1 + o(1))xk as

k → ∞ and Φ ∈ L0, then

lim
σ→+∞

ln µ(σ, I)

Φ(σ)
≤ lim

k→∞

G1(xk, xk+1, Φ)

G2(xk, xk+1, Φ)
; (8)

2) if

ln σ +

(

Φ(σ)Φ′′(σ)

(Φ′(σ))2
− 1

)

ln Φ(σ) ≥ q > −∞, σ ≥ σ0, (9)

and either ln f (xk)− ln f (xk+1) = O(1) as k → ∞ or ln f (xk) = (1 + o(1)) ln f (xk+1)

as k → ∞ and ln Φ ∈ L0, or ln f (xk) ≤ a ln f (xk+1), 0 < a < 1, and ln Φ ∈ Lsi, or

xk+1 − xk ≤ H < +∞ for all k ≥ 0, or xk+1 = (1 + o(1))xk as k → ∞ and Φ ∈ L0 or

xk+1 ≤ Axk for all k ≥ 0 and ln Φ ∈ Lsi then

lim
σ→+∞

ln ln µ(σ, I)

ln Φ(σ)
≤ lim

k→∞

ln G1(xk, xk+1, Φ)

ln G2(xk, xk+1, Φ)
. (10)

Proof. We remark that in view of the condition σµ = +∞ we have f (x) → 0 as x → +∞ and

σ = o(ln µ(σ, I)) as σ → +∞. Now, we put x0 = 0 and µ(σ, I; X) = max { f (xk)e
σxk : k ≥ 0}.

Clearly,

ln µ(σ, I) = sup
x≥0

(ln f (x) + σx) ≥ sup
k≥0

(ln f (xk) + σxk) = ln µ(σ, I, X). (11)
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Therefore, ln µ(σ, I; X) ≤ Φ(σ) for all σ ≥ σ0 and by Lemma 2 ln f (xk) ≤ −xkΨ(ϕ(xk)) for all

k ≥ k0. Hence it follows that ln µ(σ, I; X) ≤ ln µD(r) for σ ≥ σ0. Therefore, by Lemma 1 from

(4) we obtain

lim
σ→+∞

ln µ(σ, I; X)

Φ(σ)
≤ lim

k→∞

G1(xk, xk+1, Φ)

G2(xk, xk+1, Φ)
. (12)

On the other hand for σ > 0

ln µ(σ, I) = max
k≥0

sup
xk≤x<xk+1

(ln f (x) + xσ) ≤ max
k≥0

(ln f (xk) + xk+1σ). (13)

If ln f (xk) = (1 + o(1)) ln f (xk+1) as k → ∞ then for every ε > 0 we have ln f (xk) ≤

(ln f (xk+1))/(1 + ε) for all k ≥ k0 = k0(ε). Therefore,

max
k>0

(ln f (xk) + xk+1σ)

= max

{

max
k≤k0

(ln f (xk) + xk+1σ), max
k≥k0

(

ln f (xk)

ln f (xk+1)
ln f (xk+1) + xk+1σ

)}

≤ max

{

O(σ), max
k≥k0

(

ln f (xk+1)

1 + ε
+ xk+1σ

)}

≤
1

1 + ε
max
k≥0

(ln f (xk+1) + xk+1σ(1 + ε)) + O(σ), σ → +∞.

Hence and from (13) it follows that ln µ(σ, I) ≤ ln µ (σ(1 + ε), I; X) for σ ≥ σ∗
0 . Thus,

lim
r→+∞

ln µ(σ, I)

Φ(σ)
≤ lim

σ→+∞

ln µ(σ(1 + ε), I; X)

Φ(σ)

≤ lim
r→+∞

ln µ(σ, I; X)

Φ(σ)
lim

σ→+∞

Φ(σ(1 + ε))

Φ(σ)
≤ A(ε) lim

k→∞

G1(xk, xk+1, Φ)

G2(xk, xk+1, Φ)
,

(14)

where A(ε) = lim
r→+∞

Φ(σ(1 + ε))

Φ(σ)
. For Φ ∈ L0 in [7] is proved that A(ε) ց 1 as ε ↓ 0. Therefore,

(14) implies (8).

If xk+1 = (1 + o(1))xk as k → ∞ then for arbitrary ε > 0 from (13) it follows that

ln µ(σ, I) ≤ ln µ (σ(1 + ε), I; X) + O(σ), σ∗
0 (ε) ≤ σ → +∞,

whence in view of the condition Φ ∈ L0 as above we obtain (8).

If ln f (xk)− ln f (xk+1) = O(1) as k → ∞ then from (13) we have

ln µ(σ, I) ≤ max
k≥0

(ln f (xk+1) + xkσ + ln f (xk)− ln f (xk+1)) ≤ ln µ(σ, I; X) + const, (15)

that is in view of (12)

lim
r→+∞

ln µ(σ, I)

Φ(σ)
≤ lim

σ→+∞

ln µ(σ, I; X)

Φ(σ)
≤ lim

k→∞

G1(xk, xk+1, Φ)

G2(xk, xk+1, Φ)
. (16)

Finally, if xk+1 − xk ≤ H < +∞ for all k ≥ 0 then from (13) follows that

ln µ(σ, I) ≤ max
k≥0

(ln f (xk) + xkσ + σ(xk+1 − xk)) ≤ ln µ(σ, I; X) + Hσ, (17)
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that is in view of (12) we obtain again (16). The first part of Theorem 1 is proved.

Now we will prove the second part. Since ln σ = o(ln µ(σ, I)) as σ → +∞, condition (9)

follows from (5).

If either ln f (xk)− ln f (xk+1) = O(1) as k → ∞ or xk+1 − xk ≤ H < +∞ for all k ≥ 0 then

from either (16), or (17) in view of (12) and Lemma 1 we obtain

lim
σ→+∞

ln ln µ(σ, I)

ln Φ(σ)
≤ lim

σ→+∞

ln ln µ(σ, I; X)

ln Φ(σ)
≤ lim

k→∞

ln G1(xk, xk+1, Φ)

ln G2(xk, xk+1, Φ)
.

If either ln f (xk) ≤ (1 + o(1)) ln f (xk+1) or xk+1 = (1 + o(1))xk as k → ∞ as x → +∞

then as above from (13) we have ln ln µ(σ, I) ≤ ln ln µ (σ(1 + ε), I; X) for every ε > 0 and all

σ ≥ σ0(ε), whence (10) follows in view of the condition ln Φ ∈ L0.

If ln f (xk) ≤ a ln f (xk+1), 0 < a < 1, then from (13) we have

ln µ(σ, I) ≤ a max
k≥0

(ln f (xk+1) + xk+1σ/a) = a ln µ(σ/a, I; X);

and since ln Φ ∈ Lsi, we obtain

lim
σ→+∞

ln ln µ(σ, I)

ln Φ(σ)
≤ lim

r→+∞

ln ln µ(σ/a, I; X)

ln Φ(σ/a)
lim

r→+∞

ln Φ(σ/a)

ln Φ(σ)
≤ lim

k→∞

ln G1(xk, xk+1, Φ)

ln G2(xk, xk+1, Φ)
.

If xk+1 ≤ Axk for all k ≥ 0 then ln µ(σ, I) ≤ ln µ (Aσ, I; X) + O(σ) as σ → +∞, whence in

view of the condition ln Φ ∈ Lsi we obtain (10). The proof of Theorem 1 is complete.

Now we consider the case σµ = 0. Let L̂ be the class of all positive continuous on (σ0, 0),

σ0 ≥ −∞, functions β, increasing to +∞. We say that β ∈ L̂0 if β ∈ L̂ and β((1 + o(1))σ) =

(1 + o(1))β(σ) as σ ↑ 0, and β ∈ L̂si if β(cσ) = (1 + o(1))β(σ) as σ ↑ 0 for each c ∈ (0, +∞).

Lemma 3. Let β ∈ L̂ and B(δ) = lim
σ↑0

β(σ/(1 + δ))

β(σ)
(δ > 0). In order that β ∈ L̂0, it is necessary

and sufficient that B(δ) → 1 as δ ↓ 0.

Proof. Suppose that β ∈ L̂0 but B(δ) 6→ 1 as δ ↓ 0. Since the function B(δ) is nondecreasing,

there exists lim
δ↓0

B(δ) = b∗ > 1, that is B(δ) ≥ b∗ > 1. We choose an arbitrary sequence (δn) ↓ 0.

For every δn there exists a sequence (σn,k) ↑ 0 such that β((1 + δn)σn,k) ≥ bβ(σn,k), 1 < b < b∗.

We put σ1 = σ1,1 and σn = min{σn,k ≥ σn−1 : k ≥ n − 1} and construct a function γ(σ) → 0,

σ ↑ 0, such that γ(σn) = δn. Then β(σn/(1 + γ(σn))) = β(σn/(1 + δn)) ≥ bβ(σn). In view of

definition of L̂0 it is impossible.

On the contrary, let B(δ) → 1 as δ ↓ 0 but β 6∈ L̂0. Then there exists a function γ(σ) → 0,

σ ↑ 0, and sequence (σn) ↑ 0, n → ∞, such that lim
n→∞

β(σn/(1 + γ(σn))/β(σn) = a 6= 1. Clearly,

a < 1 provided γ(σn) < 0 and a > 1 provided γ(σn) > 0. We examine, for example, the

second case. Let δ > 0 be an arbitrary number. Then γ(σn) < δ for n ≥ n0 and

B(δ) = lim
σ↑0

β(σ/(1 + δ))

β(σ)
≥ lim

n→∞

β(σn/(1 + δ))

β(σn)
≥ lim

n→∞

β(σn/(1 + γ(σn)))

β(σn)
= a > 1,

which is impossible. Lemma 3 is proved.

Theorem 2. Let σµ = 0, Φ ∈ Ω(0), ln µ(σ, I) ≤ Φ(σ) for all σ ≥ σ0 and X = (xk) be some

sequence X = (xk) of positive numbers increasing to +∞. Suppose that f (x) ր +∞ as

x → +∞. Then:
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1) if either ln f (xk+1)− ln f (xk) ≤ H or xk+1 − xk ≤ H < +∞ for all k ≥ 0, or ln f (xk) =

(1+ o(1)) ln f (xk+1) as k → ∞ and Φ ∈ L̂0, or xk+1 = (1+ o(1))xk as k → ∞ and Φ ∈ L̂0,

or xk+1 ≤ Axk for k ≥ 0 and Φ ∈ L̂si then

lim
σ↑0

ln µ(σ, I)

Φ(σ)
≤ lim

k→∞

G1(xk, xk+1, Φ)

G2(xk, xk+1, Φ)
, (18)

2) if
(

Φ(σ)Φ′′(σ)

(Φ′(σ))2
− 1

)

ln Φ(σ) ≥ q > −∞, σ ∈ [σ0, 0), (19)

lim
σ↑0

ln ln µ(σ, I)

ln Φ(σ)
≤ lim

k→∞

ln G1(xk, xk+1, Φ)

ln G2(xk, xk+1, Φ)
. (20)

Proof. As above let µ(σ, I; X) = max { f (xk)e
σxk : k ≥ 0}. Clearly, (11) holds. Therefore,

ln µ(σ, I; X) ≤ Φ(σ) for all σ ∈ [σ0, 0) and by Lemma 2 ln f (xk) ≤ −xkΨ(ϕ(xk)) for all k ≥ k0,

that is ln µ(σ, I; X) ≤ ln µD(r) for σ ≥ σ0. Therefore, by Lemma 1

lim
σ↑0

ln µ(σ, I; X)

Φ(σ)
≤ lim

k→∞

G1(xk, xk+1, Φ)

G2(xk, xk+1, Φ)
. (21)

On the other hand for σ < 0 now we have

ln µ(σ, I) = max
k≥0

sup
xk≤x<xk+1

(ln f (x) + xσ) ≤ max
k≥0

(ln f (xk+1) + xkσ). (22)

Therefore, if either ln f (xk+1)− ln f (xk) ≤ H or xk+1 − xk ≤ H < +∞ for all k ≥ 0 hence we

obtain either ln µ(σ, I) ≤ ln µ(σ, I; X) + H or ln µ(σ, I) ≤ ln µ(σ, I; X) + Hσ, whence

lim
σ↑0

ln µ(σ, I)

Φ(σ)
≤ lim

σ↑0

ln µ(σ, I; X)

Φ(σ)
. (23)

Inequalities (21) and (23) imply (18).

If either xk+1 = (1 + o(1))xk or ln f (xk) = (1+ o(1)) ln f (xk+1) as k → ∞ then from (23) as

in the proof of Theorem 1 for every ε > 0 we have correspondingly ln µ(σ, I) ≤ ln µ(σ/(1 +

ε), I; X) and ln µ(σ, I) ≤ (1 + ε) ln µ(σ/(1 + ε), I; X) for σ ∈ [σ0(ε), 0), whence in view of

condition ln Φ ∈ L̂0, of Lemma 3 and of the arbitrariness of ε we obtain (23) and, thus, (18)

holds.

Finally, if xk+1 ≤ Axk for k ≥ 0 then ln µ(σ, I) ≤ ln µ(σ/A, I; X), whence in view of

condition Φ ∈ L̂si we obtain again (23). The first part of Theorem 2 is proved.

For the proof of the second part we remark that from the condition f (x) ր +∞ as x → +∞

it follows that ln µ(σ, I) ↑ +∞ as σ ↑ 0. Therefore, (19) implies (5). We remark also that

if either ln f (xk+1) − ln f (xk) ≤ H or xk+1 − xk ≤ H < +∞ for all k ≥ 0 or ln f (xk) =

(1 + o(1)) ln f (xk+1) as k → ∞ and ln Φ ∈ L̂0 or xk+1 = (1 + o(1))xk as k → ∞ and ln Φ ∈ L̂0

or xk+1 ≤ Axk for k ≥ 0 and ln Φ ∈ L̂si then from the inequalities obtained above we get

(20). If ln f (xk+1) ≤ A ln f (xk) for k ≥ 0 then from (21) we obtain the inequality ln µ(σ, I) ≤

A ln µ(σ/A, I; X), whence in view of the condition ln Φ ∈ L̂si inequality (20) follows. The

proof of Theorem 2 is complete.
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2 ANALOGUES OF WHITTAKER’S THEOREM

Examing the other scale of growth from Theorems 1 and 2 gives us a possible to get the

series of results for Laplace-Stieltjes integrals. Here we will be stopped only for two cases

which more frequent at meet in mathematical works. The most used characteristics of growth

for integrals (2) with σc = +∞ (by analogy with Dirichlet series) are R-order ̺R[I], lower R-

order λR[I] and (if ̺R[I] ∈ (0,+∞)) R-type TR[I], lower R-type tR[I], which are defined by

formulas

̺R[I] = lim
σ→+∞

ln ln I(σ)

σ
, λR[I] = lim

σ→+∞

ln ln I(σ)

σ
,

TR[I] = lim
σ→+∞

ln I(σ)

exp{σ̺R[I]}
, tR[I] = lim

σ→+∞

ln I(σ)

exp{σ̺R[I]}
.

We will show that in this formulas ln I(σ) can be replaced by ln µ(σ, I) and will use the

following Lemmas for this purpose.

Lemma 4 ( [4, 8]). Let F ∈ V, f has regular variation in regard to F and either σµ = +∞ or

σµ = 0 and lim
x→+∞

f (x) = +∞. Then ln µ(σ, I) ≤ (1 + o(1)) ln I(σ) as σ ↑ σµ.

Lemma 5 ( [4, 9]). Let F ∈ V, σµ = +∞ and lim
x→+∞

(ln F(x))/x = τ < +∞. Then I(σ) ≤

µ(σ + τ + ε, I) for every ε > 0 and all σ ≥ σ(ε).

It is easy to check that these lemmas imply the following statement.

Proposition 1. Let F ∈ V, f has regular variation in regard to F and σµ = +∞. If ln F(x) =

O(x) as x → +∞ then

̺R[I] = lim
σ→+∞

ln ln µ(σ, I)

σ
, λR[I] = lim

σ→+∞

ln ln µ(σ, I)

σ
, (24)

and if ln F(x) = o(x) as x → +∞ then

TR[I] = lim
σ→+∞

ln µ(σ, I)

exp{σ̺R[I]}
, tR[I] = lim

σ→+∞

ln µ(σ, I)

exp{σ̺R[I]}
. (25)

Using Theorem 1 and Proposition 1 we prove the following theorem.

Theorem 3. Let F ∈ V, σµ = +∞ and X = (xk) be some sequence of positive numbers

increasing to +∞. Suppose that f is a nonincreasing function and has regular variation in

regard to F.

If ln F(x) = O(x) as x → +∞ and ln f (xk) = (1 + o(1)) ln f (xk+1) as k → ∞ then

λR[I] ≤ β̺R [I], β = lim
k→∞

ln xk

ln xk+1
. (26)

If ln F(x) = o(x) as x → +∞ and ln f (xk)− ln f (xk+1) = O(1) as k → ∞ then

tR[I] ≤ TR[I]
γ

1 − γ
exp

{

1 +
γ ln γ

1 − γ

}

ln
1

γ
, γ = lim

k→∞

xk

xk+1
. (27)
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Proof. From (24) and (25) for every ε and all σ ≥ σ0(ε) we have accordingly ln µ(σ, I) ≤

exp{(̺R [I] + ε)σ} and ln µ(σ, I) ≤ (TR[I] + ε) exp{̺R[I]σ}. We choose Φ ∈ Ω(+∞) such

that Φ(σ) = Te̺σ for σ ≥ σ0(ε), where either ̺ = ̺R[I] + ε and T = 1 or ̺ = ̺R[I] and

T = TR[I] + ε. Then ln µ(σ, I) ≤ Φ(σ) for σ ≥ σ0(ε), ln Φ ∈ L0 and it is well known ( [4, 10])

that

G1(xk, xk+1, Φ) =
1

̺

xkxk+1

xk+1 − xk
ln

xk+1

xk

and

G2(xk, xk+1, Φ) =
1

e̺
exp

{

xk+1 ln xk+1 − xk ln xk

xk+1 − xk

}

.

Since Φ(σ)Φ′′(σ)/Φ′(σ)2 = 1, condition (9) holds and by Theorem 1 we have

λR[I] ≤ ̺ lim
k→∞

(xk+1 − xk) ln

(

xkxk+1

xk+1 − xk
ln

xk+1

xk

)

xk+1 ln xk+1 − xk ln xk
(28)

provided ln f (xk) = (1 + o(1)) ln f (xk+1) as k → ∞, and

tR[I] ≤ eT lim
k→∞

xkxk+1

xk+1 − xk
ln

xk+1

xk

exp

{

xk+1 ln xk+1 − xk ln xk

xk+1 − xk

} (29)

provided ln f (xk)− ln f (xk+1) = O(1) as k → ∞.

We suppose that β < 1. Then there exist a number β∗ ∈ (β, 1) and an increasing sequence

(kj) of positive integers such that ln xk j
≤ β∗ ln xk j+1, that is xk j

= o(xk j+1) as j → ∞. There-

fore, from (28) we obtain

λR[I] ≤ ̺ lim
j→∞

(xk j+1 − xk j
) ln

(

xk j
xk j+1

xk j+1 − xk j

ln
xk j+1

xk j

)

xk j+1 ln xk j+1 − xk j
ln xk j

≤ ̺ lim
j→∞

ln xk j
+ o(1) + ln ln xk j+1

ln xk j+1
≤ ̺β∗,

whence in view of the arbitrariness of β∗ and ε we obtain inequality (26) follows.

Further, if γ ∈ (0, 1), then xk j
= (1 + o(1))γxk j+1 as j → ∞ for some increasing sequence

(kj) of positive integers and from (29) we obtain

tR[I] ≤ eT lim
j→∞

xk j
xk j+1 ln (xk j+1/xk j

)

(xk j+1 − xk j
) exp

{

xk j+1 ln xk j+1 − xk j
ln xk j

xk j+1 − xk j

}

= eT lim
j→∞

γxk j+1 ln (1/γ)

(1 − γ) exp{ln xk j+1 − (γ ln γ)/(1 − γ)}
= T

γ

1 − γ
ln

1

γ
exp

{

1 +
γ ln γ

1 − γ

}

,

whence in view of the arbitrariness of ε we get (27). Since
γ

1 − γ
ln

1

γ
exp

{

1 +
γ ln γ

1 − γ

}

→ 1

as γ → 1, then inequality (27) is obvious if γ = 1. Finally, if γ = 0, then ln xk j
= o(ln xk j+1) as

j → ∞ for some increasing sequence (kj) of positive integers and from (29) we obtain

tR[I] ≤ eT lim
j→∞

xk j
(ln xk j+1 − ln xk j

)

exp{ln xk j+1 + o(1)}
= eT lim

j→∞

xk j

xk j+1
ln

xk j+1

xk j

= 0,
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i.e. inequality (27) holds. The proof of Theorem 3 is complete.

Now we consider the case σµ = 0. The order ̺0[I], the lower order λ0[I] and (if 0 < ̺0[I] <

+∞) the type T0[I] and the lower type t0[I] are defined by formulas

̺0[I] = lim
σ↑0

ln ln I(σ)

ln (1/|σ|)
, λ0[ϕ] = lim

σ↑0

ln ln I(σ)

ln (1/|σ|)
,

T0[I] = lim
σ↑0

|σ|̺0 [I] ln I(σ), t0[I] = lim
σ↑0

|σ|̺∗ [I] ln I(σ).

We will show that in this formulas ln I(σ) can be replaced by ln µ(σ, I) and will use for this

purpose the following lemmas.

Lemma 6 ( [4, 9]). Let F ∈ V, σµ = 0 and ln F(x) ≤ h ln f (x) for x ≥ x0. Then for every ε > 0

and all σ ∈ [σ0(ε), 0)

ln I(σ) ≤ (1 + h + ε) ln µ

(

σ

1 + h + ε
, I

)

+ K, K = K(ε) = const.

Lemma 7 ( [4,9]). Let F ∈ V, σµ = 0 and ln F(x) = o(xγ(x)) as x → +∞, where γ is a positive

continuous and decreasing to 0 function on [0,+∞) such that xγ(x) ↑ +∞ as x → +∞. Then

for every ε > 0 and all σ ∈ [σ0(ε), 0)

ln I(σ) ≤ ln µ

(

σ

1 + ε
, I

)

+
ε|σ|

1 + ε
γ−1

(

|σ|

ε(1 + ε)2

)

.

Lemmas 4, 6 and 7 imply the following statement.

Proposition 2. Let F ∈ V, σµ = +∞, f has regular variation in regard to F and f (x) ր +∞ as

x → +∞. If either ln F(x) = O(ln f (x)) or ln ln F(x) = o(ln x) as x → +∞ then

̺0[I] = lim
σ↑0

ln ln µ(σ, I)

ln (1/|σ|)
, λ0[ϕ] = lim

σ↑0

ln ln µ(σ, I)

ln (1/|σ|)
, (30)

and if either ln F(x) = o(ln f (x)) or ln ln F(x) = o(ln x) as x → +∞ then

T0[I] = lim
σ↑0

|σ|̺0 [I] ln µ(σ, I), t0[I] = lim
σ↑0

|σ|̺0 [I] ln µ(σ, I)). (31)

Proof. If ln F(x)) = O(ln f (x)) (accordingly ln F(x) = o(ln f (x))) as x → +∞ then formulas

(30) (accordingly (31)) easy follows from Lemmas 4 and 6.

If we choose function γ such that γ(x) = xδ−1 for x ≥ x0, where δ ∈ (0, 1) is an arbitrary

numbers, then γ satisfies the conditions of Lemma 7. Therefore, if ln F(x) = o(xδ) as x → +∞

then

ln I(σ) ≤ ln µ

(

σ

1 + ε
, I

)

+
ε|σ|

1 + ε

(

ε(1 + ε)2

|σ|

)1−δ

= ln µ

(

σ

1 + ε
, I

)

+ ε2−δ(1 + ε)1−2δ|σ|δ = ln µ

(

σ

1 + ε
, I

)

+ o(1), σ ↑ 0,

whence the formulas (30) and (31) follow. It remained to notice that the condition

ln ln F(x) = o(ln x) as x → +∞ implies the condition ln F(x) = o(xδ) as x → +∞ for

δ ∈ (0, 1). Proposition 2 is proved.
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Using Theorem 2 and Proposition 2 we prove the following theorem.

Theorem 4. Let F ∈ V, σµ = 0 and X = (xk) be some sequence of positive numbers increasing

to +∞. Suppose that f has regular variation in regard to F and f (x) ր +∞ as x → +∞.

If either ln F(x) = O(ln f (x)) or ln ln F(x) = o(ln x) as x → +∞ and

ln f (xk+1) = O(ln f (xk)) as k → ∞ then

λ0[I] ≤ β̺0[I], β = lim
k→∞

ln xk

ln xk+1
. (32)

If either ln F(x) = o(ln f (x)) or ln ln F(x) = o(ln x) as x → +∞ and

ln f (xk+1) = (1 + o(1)) ln f (xk) as k → ∞ then

t0[I] ≤ T0[I]A(γ), γ = lim
k→∞

xk

xk+1
, (33)

where

A(γ) =:
γ̺/(̺+1)(1 − γ1/(̺+1))(1 − γ̺/(̺+1))̺

(1 − γ)̺+1
.

Proof. If ̺0[I] < +∞ (T0[I] < +∞) then ln µ(σ, I) ≤ Φ(σ) =
T

|σ|̺
for all σ ∈ [σ0(ε), 0), where

either ̺ = ̺0[I] + ε and T = 1 or ̺ = ̺0[I] and T = T0[I] + ε. Clearly, Φ ∈ L̂0 and ln Φ ∈ L̂si.

It is known [4, p. 40] that for this function

G1(xk, xk+1, Φ) =
T(̺ + 1)

(T̺)̺/(̺+1)

xkxk+1

xk+1 − xk





1

x
1/(̺+1)
k

−
1

x
1/(̺+1)
k+1





and

G2(xk, xk+1, Φ) = T





(̺ + 1)(T̺)1/(̺+1)

̺

x
̺/(̺+1)
k+1 − x

̺/(̺+1)
k

xk+1 − xk





−̺

.

We remark that
(

Φ(σ)Φ′′(σ)

(Φ′(σ))2
− 1

)

ln Φ(σ) =
1

̺
ln

T

|σ|̺
↑ +∞, σ ↑ 0,

that is (19) holds.

Therefore, if ln f (xk+1) = O(ln f (xk)) as k → ∞ then by Theorem 2 in view of arbitrariness

of ε

λ0[I] ≤ ̺0[I] lim
k→∞

ln





xkxk+1

xk+1 − xk





1

x
1/(̺+1)
k

−
1

x
1/(̺+1)
k+1









ln





xk+1 − xk

x
̺/(̺+1)
k+1 − x

̺/(̺+1)
k





̺ (34)

and if ln f (xk+1) = (1 + o(1)) ln f (xk) as k → ∞ then

t0[I] ≤ T0[I]
(̺ + 1)̺+1

̺̺ lim
k→∞

xkxk+1

xk+1 − xk





1

x
1/(̺+1)
k

−
1

x
1/(̺+1)
k+1









x
̺/(̺+1)
k+1 − x

̺/(̺+1)
k

xk+1 − xk





̺

. (35)
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We suppose that β < 1. Then there exists a number β∗ ∈ (β, 1) and an increasing se-

quence (kj) of positive integers such that ln xk j
≤ β∗ ln xk j+1, that is xk j

= o(xk j+1) as j → ∞.

Therefore, from (34) we obtain

λ0[I] ≤ ̺0[I] lim
j→∞

ln





xk j
xk j+1

xk j+1 − xk j





1

x
1/(̺+1)
k j

−
1

x
1/(̺+1)
k j+1









ln





xk j+1 − xk j

x
̺/(̺+1)
k j+1 − x

̺/(̺+1)
k j





̺

= ̺0[I] lim
j→∞

ln x
̺/(̺+1)
k j

̺ ln x
1/(̺+1)
k j+1

= ̺0[I] lim
j→∞

ln xk j

ln xk j+1
≤ ̺0[I]β

∗,

i.e. in view of arbitrariness of β∗ we obtain the inequality λ0[I] ≤ β̺0[I]. For β = 1 this

inequality is trivial.

Now we suppose that γ ∈ (0, 1). Then there exists an increasing sequence (kj) of positive

integers such that xk j
= (1 + o(1))γ xk j+1 as j → ∞. Therefore, from (35) we obtain

t0[I] ≤ T0[I]
(̺ + 1)̺+1

̺̺ lim
j→∞

xk j
xki+1

xk j+1 − xk j





1

x
1/(̺+1)
k j

−
1

x
1/(̺+1)
k j+1









x
̺/(̺+1)
k j+1 − x

̺/(̺+1)
k j

xk j+1 − xk j





̺

≤ T0[I]
(̺ + 1)̺+1

̺̺

γ

γ − 1

(

1

γ1/(̺+1)
− 1

)

(1 − γ̺/(̺+1))̺

(1 − γ)̺ = T0[I]
(̺ + 1)̺+1

̺̺ A(γ).

It is easy to show that A(γ) → ̺̺

(̺+1)̺+1 as γ → 1 that (2) is transformed in obvious inequality

t0[ϕ] ≤ T0[ϕ] as γ → 1. If γ = 0 then xk j
= o(xk j+1) as j → ∞ and from (2) we obtain easy that

t0[I] = 0, because A(0) = 0. The proof of Theorem 4 is complete.
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Добушовський М.С., Шеремета М.М. Аналоги теореми Уiттекера для iнтегралiв Лапласа-Стiл-

тьєса // Карпатськi матем. публ. — 2016. — Т.8, №2. — C. 239–250.

Для максимуму пiдiнтегрального виразу iнтегралу Лапласа-Стiлтьєса знайдено нижнi

оцiнки на деякiй послiдовсностi. Використовуючи цi оцiнки, отримано аналоги тереми Уiт-

текера для цiлих функцiй, зображених лакунарними степеневими рядами.

Ключовi слова i фрази: iнтеграл Лапласа-Стiлтьєса, максимум пiдiнтегрального виразу, тео-

рема Уiттекера.


