ISSN 2075-9827 e-ISSN 2313-0210 Carpathian Math. Publ. 2017, 9 (1), 92–97 doi:10.15330/cmp.9.1.92-97

NYKYFORCHYN O.R.^{1,2}, HLUSHAK I.D.²

APPROXIMATION OF CAPACITIES WITH ADDITIVE MEASURES

For a space of non-additive regular measures on a metric compactum with the Prokhorov-style metric, it is shown that the problem of approximation of arbitrary measure with an additive measure on a fixed finite subspace reduces to linear optimization problem with parameters dependent on the values of the measure on a finite number of sets.

An algorithm for such an approximation, which is more efficient than the straighforward usage of simplex method, is presented.

Key words and phrases: Prokhorov metric, non-additive measure, approximation, compact metric space.

¹ Kasimir the Great University, 30 Jana Karola Chodkiewicza str., 85-064, Bydgoszcz, Poland

² Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine

E-mail: oleh.nyk@gmail.com(Nykyforchyn O.R.), inna_gl@rambler.ru(Hlushak I.D.)

INTRODUCTION

Capacities were introduced by Choquet [1] and found numerous applications in different branches of mathematics. Spaces of upper semicontinuous capacities on compacta were systematically studied in [5]. In particular, in the latter paper functoriality of the construction of a space of capacities was proved and Prokhorov-style and Kantorovich-Rubinstein-style metrics on the set of capacities on a metric compactum were introduced. Needs of practice require that a capacity can be approximated with capacities of simpler structure or with some convenient properties.

We follow the terminology and notation of [5] and denote by exp X the set of all non-empty closed subsets of a compactum X. We call a function $c : \exp X \cup \{\emptyset\} \rightarrow I$ a *capacity* on a compactum X if the three following properties hold for all subsets $F, G \subset X$:

- 1. $c(\emptyset) = 0;$
- 2. if $F \subset G$, then $c(F) \leq c(G)$ (monotonicity);
- 3. if c(F) < a, then there is an open subset $U \supset F$ such that for all $G \subset U$ the inequality c(G) < a is valid (upper semicontinuity).

If, additionally, c(X) = 1 (or $c(X) \le 1$) holds, then the capacity is called *normalized* (resp. *subnormalized*). We denote by $\overline{M}X$, MX, and $\underline{M}X$ the sets of all capacities on X, of all normalized, and of all subnormalized capacities on X respectively.

It was shown in [5] that *MX* carries a compact Hausdorff topology with the subbase of all sets of the form

$$O_{-}(F,a) = \{c \in MX \mid c(F) < a\}, \text{where} F \underset{cl}{\subset} X, a \in I,$$

УДК 515.12, 517.518.11

© Nykyforchyn O.R., Hlushak I.D., 2017

²⁰¹⁰ Mathematics Subject Classification: 25C15, 28E10.

and

$$O_+(U,a) = \{c \in MX \mid c(U) > a\}$$

= $\{c \in MX \mid \text{there is a compactum } F \subset U, c(F) > a\}, \text{ where } U \underset{\text{op}}{\subset} X, a \in I.$

The same formulae determine a subbase of a compact Hausdorff topology on $\underline{M}X$ so that $MX \subset \underline{M}X$ is a subspace.

Previously we have considered the following subclasses of *MX*:

1) $M_{\cap}X$ is the set of the so-called \cap -*capacities* (or necessity measures) with the property: $c(A \cap B) = \min\{c(A), c(B)\}$ for all $A, B \subset X$.

2) $M_{\cup}X$ is the set of the so-called \cup -*capacities* (or possibility measures) with the property: $c(A \cup B) = \max\{c(A), c(B)\}$ for all $A, B \subset X$.

3) Class MX_0 of capacities defined *on a closed subspace* $X_0 \subset X$. We regard each capacity c_0 on X_0 as a capacity on X extended with the formula $c(F) = c_0(F \cap X_0)$, $F \subset X$.

4) Class $M_{Lip}X$ of capacities that are non-expanding w.r.t. the Hausdorff metric on exp *X*. Analogous subclasses are defined in <u>M</u>X and <u>M</u>X, with the obvious denotations.

It was proved in [2, 3] that the subsets $M_{\cap}X$, $M_{\cup}X$, $M_{Lip}X$, and MX_0 are closed in MX, hence for a compactum X they are compacta as well, similarly for the respective subsets in $\underline{M}X$ and $\overline{M}X$.

We consider the metric on the set *MX* of capacities on a metric compactum (X, d):

$$\hat{d}(c,c') = \inf\{\varepsilon > 0 \mid c(\bar{O}_{\varepsilon}(F)) + \varepsilon \ge c'(F), c'(\bar{O}_{\varepsilon}(F)) + \varepsilon \ge c(F), \forall F \subset X\},\$$

here $\overline{O}_{\varepsilon}(F)$ is the closed ε -neighborhood of a subset $F \subset X$. The restrictions of this metric on $\underline{M}X$ and MX are admissible [5].

For an arbitrary capacity *c* on a metric compactum *X*, explicit constructions for the closest to *c* point in the four above subclasses were presented in [3, 4].

Now we consider probably the most important class of *additive* regular measures.

Our goal is to approximate a capacity *c* on a metric compactum *X* with an additive measure on a *finite subspace* of *X*. Such measures are dense in the space $\overline{P}X$ of all finite additive regular measures and have nice representation as linear combinations of Dirac measures.

1 Algorithm for Approximation of a capacity with an additive measure on a finite subspace

Consider a capacity *c* on a metric compactum (X, d) and a finite subspace $X_0 = \{x_1, x_2, ..., x_n\} \subset X$. We are going to find the distance between $c \in \overline{M}X$ and the subspace $\overline{P}X_0 \subset \overline{M}X$, in particular to find an additive measure *m* on X_0 that is (almost) the closest to *c* with respect to the distance \hat{d} .

The inequality $\hat{d}(c, m) \leq \varepsilon$ means that there is $0 \leq z \leq \varepsilon$ satisfying

$$\begin{cases} m(A) \leqslant c(\bar{O}_{\varepsilon} A) + z, \\ c(A) \leqslant m(\bar{O}_{\varepsilon} A) + z \end{cases}$$

for all $A \subset_{cl} X$. Obviously it is sufficient to verify the first inequality $m(A) \leq c_{\varepsilon}^+(A) + z$, where we denote $c_{\varepsilon}^+ = c(\bar{O}_{\varepsilon}(A))$, only for all $A \subset X_0$. Similarly, for the second condition we verify

 $c(B) \leq m(A) + z$ for all $B \subset X$ and $A \subset X_0$ such that $(\overline{O}_{\varepsilon} B) \cap X_0 \subset A$. This is equivalent to $m(A) \geq c_{\varepsilon}^-(A) - z$ for all $A \subset X_0$, where

$$c_{\varepsilon}^{-}(A) = c(X \setminus \bar{O}_{\varepsilon}(X_0 \setminus A)) = \sup\{c(B) \mid B \subset_{\mathrm{cl}} X, B \cap \bar{O}_{\varepsilon}(X_0 \setminus A) = \emptyset\}.$$

Obviously $c_{\varepsilon}^{-}(A) \leq c_{\varepsilon}^{+}(A)$ for all $A \subset X_{0}$.

All additive measures on X_0 are of the form $m = y_1\delta_{x_1} + y_2\delta_{x_2} + \cdots + y_n\delta_{x_n}$. Thus, to find the least *z* that satisfies the above conditions for some *m*, we have to solve the linear programming problem w.r.t. the variables $y_1, y_2, \ldots, y_n, z \ge 0$:

$$\begin{cases} y_1, y_2, \dots, y_n, z \ge 0, \\ \sum_{x_i \in A} y_i \le c_{\varepsilon}^+(A) + z & \text{ for all } A \subset X_0, \\ \sum_{x_i \in A} y_i \ge c_{\varepsilon}^-(A) - z & \text{ for all } A \subset X_0, \\ z \to \min, \end{cases}$$

which we rewrite as follows:

$$\begin{cases} y_1, y_2, \dots, y_n, z \ge 0, \\ -\sum_{x_i \in A} y_i + z \ge -c_{\varepsilon}^+(A) & \text{ for all } A \subset X_0, \\ \sum_{x_i \in A} y_i + z \ge c_{\varepsilon}^-(A) & \text{ for all } A \subset X_0, \\ z \to \min. \end{cases}$$

We embed the set $\operatorname{Exp} X_0$ into \mathbb{R}^n by identifying each subset $A \subset X_0$ with the vector containing 1 at all *i*-th positions such that $x_i \in A$ and 0 at all other positions. E.g., \emptyset is represented by $(0, \ldots, 0)$, and X_0 by $(1, \ldots, 1)$. By $-\operatorname{Exp} X_0$ we denote the set of the opposites to elements of $\operatorname{Exp} X_0 \subset \mathbb{R}^n$. Define a function $c_{\varepsilon} : \operatorname{Exp} X_0 \cup (-\operatorname{Exp} X_0) \to \mathbb{R}$ by the formula

$$c_{\varepsilon}(A) = \begin{cases} c_{\varepsilon}^{-}(A), & A \in \operatorname{Exp} X_{0}, \\ -c_{\varepsilon}^{+}(-A), & A \in (-\operatorname{Exp} X_{0}). \end{cases}$$

The common element $\emptyset = (0, ..., 0) \in \operatorname{Exp} X_0 \cap (-\operatorname{Exp} X_0)$ leads to no contradiction because $c_{\varepsilon}^-(\emptyset) = c_{\varepsilon}^+(\emptyset) = 0$.

We also denote by (A|1) the vector obtained by appending a trailing 1 to the sequence $A = (a_1, a_2, ..., a_n) \in \operatorname{Exp} X_0 \cup (-\operatorname{Exp} X_0)$. Then the linear optimization problem can we written as

$$\begin{cases} y_1, y_2, \dots, y_n, z \ge 0, \\ (A|1) \cdot (y_1, y_2, \dots, y_n, z) \ge c_{\varepsilon}(A) \text{ for all } A \in \operatorname{Exp} X_0 \cup (-\operatorname{Exp} X_0), \\ z \to \min. \end{cases}$$

It has a straightforward geometric interpretation: of all functionals of the form

$$\gamma(t_1, t_2, \dots, t_n) = y_1 t_1 + y_2 t_2 + \dots + y_n t_n + z$$

such that $\gamma(A) \ge c_{\varepsilon}(A)$ for all $A \in \operatorname{Exp} X_0 \cup (-\operatorname{Exp} X_0)$, choose one with the minimal z, i.e., with the least value $\gamma(\vec{0})$. Now it is clear that, due to monotonicity of the function c_{ε} , the restrictions $y_1, y_2, \ldots, y_n \ge 0$ can be dropped. Observe also that the restriction $z \ge 0$ is equivalent to

$$(\emptyset|1) \cdot (y_1, y_2, \ldots, y_n, z) \ge c_{\varepsilon}(\emptyset),$$

hence can be dropped as well.

Geometric arguments also show that the problem is solved if affinely independent

$$A_1, A_2, \ldots, A_{n+1} \in \operatorname{Exp} X_0 \cup (-\operatorname{Exp} X_0)$$

are found such that $\vec{0}$ is in their convex hull (in the sequel we call such $A_1, A_2, \ldots, A_{n+1}$ basic *subsets*), and the solutions y_1, y_2, \ldots, y_n, z of the system

$$\begin{cases} (A_1|1) \cdot (y_1, y_2, \dots, y_n, z) &= c_{\varepsilon}(A_1), \\ (A_2|1) \cdot (y_1, y_2, \dots, y_n, z) &= c_{\varepsilon}(A_2), \\ \dots \\ (A_{n+1}|1) \cdot (y_1, y_2, \dots, y_n, z) &= c_{\varepsilon}(A_{n+1}) \end{cases}$$

satisfy

 $(A|1) \cdot (y_1, y_2, \dots, y_n, z) \ge c_{\varepsilon}(A)$

for all $A \in \operatorname{Exp} X_0 \cup (-\operatorname{Exp} X_0)$.

Therefore we propose the following algorithm, which essentially is equivalent to the simplex algorithm, but is better suited for our needs. Choose initial basic subsets, e.g., $A_1 = \{x_1\}$, $A_2 = \{x_2\}, \ldots, A_n = \{x_n\}, A_{n+1} = -\{x_n\}$, then calculate y_1, y_2, \ldots, y_n, z as

$$(y_1, y_2, \ldots, y_n, z)^T = (M(A_1, A_2, \ldots, A_n))^{-1} (c(A_1), c(A_2), \ldots, c(A_{n+1}))^T,$$

where $(-)^T$ means transposition, and

$$M(A_1, A_2, \dots, A_n) = \begin{bmatrix} A_1 & | & 1 \\ A_2 & | & 1 \\ \dots & \dots & \dots \\ A_{n+1} & | & 1 \end{bmatrix},$$

i.e., it is the matrix with the rows $(A_1|1), (A_2|1), ..., (A_{n+1}|1)$.

We will permanently need the inverse matrix

$$(M(A_1, A_2, \dots, A_n))^{-1} = \begin{bmatrix} \lambda_{11} & \lambda_{12} & \dots & \lambda_{1,n+1} \\ \lambda_{21} & \lambda_{22} & \dots & \lambda_{2,n+1} \\ \dots & \dots & \ddots & \dots \\ \lambda_{n1} & \lambda_{n2} & \dots & \lambda_{n,n+1} \\ \mu_1 & \mu_2 & \dots & \mu_{n+1} \end{bmatrix}$$

For any $A \in \operatorname{Exp} X_0 \cup (-\operatorname{Exp} X_0)$ the column $(M(A_1, A_2, \dots, A_n))^{-1} (A|1)^T$ consists of the coefficients $\alpha_1, \alpha_2, \dots, \alpha_{n+1}$ such that $\alpha_1 + \alpha_2 + \dots + \alpha_{n+1} = 1$ and $\alpha_1 A_1 + \alpha_2 A_2 + \dots + \alpha_{n+1} A_{n+1} = A$ (in the above sense). In particular, $\mu_1 A_1 + \mu_2 A_2 + \dots + \mu_{n+1} A_{n+1} = \emptyset$, and $\lambda_{i1}A_1 + \lambda_{i2}A_2 + \dots + \lambda_{i,n+1}A_{n+1} = \{x_i\}$ for all $1 \leq i \leq n$.

Now, having y_1, y_2, \ldots, y_n, z calculated, compare the differences

$$c_{\varepsilon}(A) - (A|1)(y_1, y_2, \ldots, y_n, z)$$

for all $A \in \text{Exp } X_0 \cup (-\text{Exp } X_0)$. If the basic subsets $A_1, A_2, \ldots, A_{n+1}$ provide a solution, then all the differences are not greater than 0. Otherwise find the greatest difference $\Delta =$

 $c_{\varepsilon}(A') - (A'|1)(y_1, y_2, \dots, y_n, z)$, which is positive, and replace with A' a subset A_i such that $\vec{0}$ is in the convex hull of $A_1, A_2, ..., A_{i-1}, A', A_{i+1}, ..., A_{n+1}$. Let $(\alpha_1, \alpha_2, ..., \alpha_{n+1})^T = (M(A_1, A_2, ..., A_n))^{-1} (A'|1)^T$, hence $A' = \alpha_1 A_1 + \alpha_2 A_2 + \dots + \alpha_n A_n$

 $\alpha_{n+1}A_{n+1}$, then

$$A_i = \frac{1}{\alpha_i}A' - \frac{\alpha_1}{\alpha_i}A_1 - \dots - \frac{\alpha_{i-1}}{\alpha_i}A_{i-1} - \frac{\alpha_{i+1}}{\alpha_i}A_{i+1} - \frac{\alpha_{n+1}}{\alpha_i}A_{n+1}$$

Therefore

$$\varnothing = (\mu_1 - \mu_i \frac{\alpha_1}{\alpha_i}) A_1 + \dots + (\mu_{i-1} - \mu_i \frac{\alpha_{i-1}}{\alpha_i}) A_{i-1} + (\mu_{i+1} - \mu_i \frac{\alpha_{i+1}}{\alpha_i}) A_{i+1} + \dots + (\mu_{n+1} - \mu_i \frac{\alpha_{n+1}}{\alpha_i}) A_{n+1} + \frac{\mu_i}{\alpha_i} A'.$$

The coefficients in the new decomposition of \emptyset should be nonnegative, hence $\alpha_i > 0$ is required, as well as either $\alpha_j \leq 0$ or $\mu_j - \mu_i \frac{\alpha_j}{\alpha_i} \geq 0$ for all $j \neq i$. If $\alpha_j > 0$, then the latter inequality is equivalent to $\frac{\mu_j}{\alpha_j} \ge \frac{\mu_i}{\alpha_i}$. Hence $\frac{\mu_i}{\alpha_i}$ should be the least of $\frac{\mu_j}{\alpha_j}$ for $1 \le j \le n+1$ such that $\alpha_i > 0$.

Now we replace A_i with $A'_i = A'$, and the inverse matrix

$$\left(M(A_{1}, A_{2}, \dots, A_{i-1}, A_{i}', A_{i+1}, \dots, A_{n})\right)^{-1} = \begin{bmatrix}\lambda_{11}' & \lambda_{12}' & \dots & \lambda_{1,n+1}' \\ \lambda_{21}' & \lambda_{22}' & \dots & \lambda_{2,n+1}' \\ \dots & \dots & \ddots & \dots \\ \lambda_{n1}' & \lambda_{n2}' & \dots & \lambda_{n,n+1}' \\ \mu_{1}' & \mu_{2}' & \dots & \mu_{n+1}' \end{bmatrix}$$

is adjusted accordingly:

$$\mu'_{i} = \frac{\mu_{i}}{\alpha_{i}}, \qquad \mu'_{j} = \mu_{j} - \alpha_{j} \frac{\mu_{i}}{\alpha_{i}}, \qquad 1 \leq j \leq n+1, \ j \neq i,$$

$$\lambda'_{ki} = \frac{\lambda_{ki}}{\alpha_{i}}, \qquad \lambda'_{kj} = \lambda_{kj} - \alpha_{j} \frac{\lambda_{ki}}{\alpha_{i}}, \qquad 1 \leq k, j \leq n+1, \ j \neq i.$$

Now look how y_1, y_2, \ldots, y_n, z have changed. Taking into account

$$z = \mu_{1}c_{\varepsilon}(A_{1}) + \dots + \mu_{i-1}c_{\varepsilon}(A_{i-1}) + \mu_{i}c_{\varepsilon}(A_{i}) + \mu_{i+1}c_{\varepsilon}(A_{i+1}) + \dots + \mu_{n+1}A_{n+1},$$

$$z' = (\mu_{1} - \alpha_{1}\frac{\mu_{i}}{\alpha_{i}})c_{\varepsilon}(A_{1}) + \dots + (\mu_{i-1} - \alpha_{i-1}\frac{\mu_{i}}{\alpha_{i}})c_{\varepsilon}(A_{i-1}) + \frac{\mu_{i}}{\alpha_{i}}c_{\varepsilon}(A'_{i}) + (\mu_{i+1} - \alpha_{i+1}\frac{\mu_{i}}{\alpha_{i}})c_{\varepsilon}(A_{i+1}) + \dots + (\mu_{n+1} - \alpha_{n+1}\frac{\mu_{i}}{\alpha_{i}})c_{\varepsilon}(A_{n+1}),$$

obtain

$$z'-z=\frac{\mu_i}{\alpha_i}(c_{\varepsilon}(A'_i)-(\alpha_1c_{\varepsilon}(A_1)+\cdots+\alpha_{n+1}c_{\varepsilon}(A_{n+1})))=\frac{\mu_i}{\alpha_i}\cdot\Delta.$$

Similarly

$$y'_{k}-y_{k}=\frac{\lambda_{ki}}{\alpha_{i}}(c_{\varepsilon}(A'_{i})-(\alpha_{1}c_{\varepsilon}(A_{1})+\cdots+\alpha_{n+1}c_{\varepsilon}(A_{n+1})))=\frac{\lambda_{ki}}{\alpha_{i}}\cdot\Delta.$$

This simplifies calculation of z' and all y'_k . We iterate the above step until $\Delta = 0$. The final value of z, which we denote $z(\varepsilon)$, is the least z such that

$$\begin{cases} m(A) \leq c(\bar{O}_{\varepsilon} A) + z, \\ c(A) \leq m(\bar{O}_{\varepsilon} A) + z \end{cases}$$

for some $m \in \overline{P}X_0$ and all $A \subset X$.

Observe that $z(\varepsilon)$ is non-increasing with respect to ε , hence the distance between c and $\overline{P}X_0$ is the least ε such that $z(\varepsilon) \leq \varepsilon$. This distance is not greater than z(0), therefore it is easy to bisect the segment [0, z(0)] to find the distance and an approximating additive measure with arbitrary precision.

2 CONCLUDING REMARKS

The proposed algorithm was implemented as a C program and tested on data sets with cardinality of X_0 up to 10.

However, each iteration of the presented algorithm requires previously calculated values of a capacity for all $2^{\text{cardinality of the space}}$ subsets, which is not appropriate even for ≥ 40 points. Hence, to handle subspaces of greater cardinality, we need to cut memory and time requirements using the metric structure and the only reliable property of a capacity, i.e., its monotonicity. This requires deeper investigation combining both topological properties of non-additive measures, e.g., their dimensional characteristics, and computational aspects.

References

- [1] Choquet G. Theory of Capacity. Ann. l'Institute Fourier 1953–1954, 5, 131–295.
- [2] Hlushak I.D., Nykyforchyn O.R. Submonads of the capacity monad. Carpathian J. Math. 2008, 24 (1), 2008, 56-67.
- [3] Hlushak I.D. Approximation of capacities on metric spaces with Lipschitz capacities. Carpathian Math. Publ. 2016, 6 (2), 196–202. doi:10.15330/cmp.6.2.196-202
- [4] Hlushak I.D. Optimal approximations of capacities on a metric compactum. Carpathian Math. Publ. 2016, 8 (1), 44–50. doi:10.15330/cmp.8.1.44-50
- [5] Zarichnyi M.M., Nykyforchyn O.R. *Capacity functor in the category of compacta*. Sbornik: Mathematics 2008, 199 (2), 159–184. doi:10.4213/sm1504 (translation of Mat. Sb. 2008, 199 (2), 3–26. (in Russain))

Received 01.02.2017

Revised 21.06.2017

Никифорчин О.Р, Глушак І.Д. *Апроксимація ємностей адитивними мірами //* Карпатські матем. публ. — 2017. — Т.9, №1. — С. 92–97.

Для простору неадитивних регулярних мір на метричному компакті з відстанню в стилі Прохорова показано, що задача наближення довільної міри адитивною мірою на фіксованому скінченному підпросторі зводиться до задачі лінійної оптимізації з параметрами, залежними від значень вихідної міри на скінченному числі множин.

Запропоновано алгоритм такого наближення, ефективніший порівняно з прямолінійним застосуванням симплекс-методу.

Ключові слова і фрази: метрика Прохорова, неадитивна міра, апроксимація, компактний метричний простір.