NYKYFORCHYN O.R. ${ }^{1,2}$, HLUSHAK I.D. ${ }^{2}$

APPROXIMATION OF CAPACITIES WITH ADDITIVE MEASURES

Abstract

For a space of non-additive regular measures on a metric compactum with the Prokhorov-style metric, it is shown that the problem of approximation of arbitrary measure with an additive measure on a fixed finite subspace reduces to linear optimization problem with parameters dependent on the values of the measure on a finite number of sets.

An algorithm for such an approximation, which is more efficient than the straighforward usage of simplex method, is presented.

Key words and phrases: Prokhorov metric, non-additive measure, approximation, compact metric space.

${ }^{1}$ Kasimir the Great University, 30 Jana Karola Chodkiewicza str., 85-064, Bydgoszcz, Poland
${ }^{2}$ Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine
E-mail: oleh.nyk@gmail.com (Nykyforchyn O.R.), inna_gl@rambler.ru (Hlushak I.D.)

INTRODUCTION

Capacities were introduced by Choquet [1] and found numerous applications in different branches of mathematics. Spaces of upper semicontinuous capacities on compacta were systematically studied in [5]. In particular, in the latter paper functoriality of the construction of a space of capacities was proved and Prokhorov-style and Kantorovich-Rubinstein-style metrics on the set of capacities on a metric compactum were introduced. Needs of practice require that a capacity can be approximated with capacities of simpler structure or with some convenient properties.

We follow the terminology and notation of [5] and denote by $\exp X$ the set of all non-empty closed subsets of a compactum X. We call a function $c: \exp X \cup\{\varnothing\} \rightarrow I$ a capacity on a compactum X if the three following properties hold for all subsets $F, G \subset X$:

1. $c(\varnothing)=0$;
2. if $F \subset G$, then $c(F) \leqslant c(G)$ (monotonicity);
3. if $c(F)<a$, then there is an open subset $U \supset F$ such that for all $G \subset U$ the inequality $c(G)<a$ is valid (upper semicontinuity).

If, additionally, $c(X)=1($ or $c(X) \leq 1)$ holds, then the capacity is called normalized (resp. subnormalized). We denote by $\bar{M} X, M X$, and $\underline{M} X$ the sets of all capacities on X, of all normalized, and of all subnormalized capacities on X respectively.

It was shown in [5] that $M X$ carries a compact Hausdorff topology with the subbase of all sets of the form

$$
O_{-}(F, a)=\{c \in M X \mid c(F)<a\}, \text { where } F \underset{\mathrm{cl}}{\subset} X, a \in I,
$$

[^0]and
\[

$$
\begin{aligned}
O_{+}(U, a) & =\{c \in M X \mid c(U)>a\} \\
& =\{c \in M X \mid \text { there is a compactum } F \subset U, c(F)>a\}, \text { where } U \underset{\text { op }}{\subset} X, a \in I .
\end{aligned}
$$
\]

The same formulae determine a subbase of a compact Hausdorff topology on $\underline{M} X$ so that $M X \subset \underline{M} X$ is a subspace.

Previously we have considered the following subclasses of MX:

1) $M_{\cap} X$ is the set of the so-called \cap-capacities (or necessity measures) with the property: $c(A \cap B)=\min \{c(A), c(B)\}$ for all $A, B \subset X$.
2) $M_{\cup} X$ is the set of the so-called \cup-capacities (or possibility measures) with the property: $c(A \cup B)=\max \{c(A), c(B)\}$ for all $A, B \underset{\mathrm{cl}}{\subset} X$.
3) Class $M X_{0}$ of capacities defined on a closed subspace $X_{0} \subset X$. We regard each capacity c_{0} on X_{0} as a capacity on X extended with the formula $c(F)=c_{0}\left(F \cap X_{0}\right), F \underset{\mathrm{cl}}{\subset} X$.
4) Class $M_{L i p} X$ of capacities that are non-expanding w.r.t. the Hausdorff metric on $\exp X$.

Analogous subclasses are defined in $\underline{M} X$ and $\bar{M} X$, with the obvious denotations.
It was proved in $[2,3]$ that the subsets $M_{\cap} X, M_{\cup} X, M_{L i p} X$, and $M X_{0}$ are closed in $M X$, hence for a compactum X they are compacta as well, similarly for the respective subsets in $\underline{M} X$ and $\bar{M} X$.

We consider the metric on the set $\bar{M} X$ of capacities on a metric compactum (X, d) :

$$
\hat{d}\left(c, c^{\prime}\right)=\inf \left\{\varepsilon>0 \mid c\left(\bar{O}_{\varepsilon}(F)\right)+\varepsilon \geqslant c^{\prime}(F), c^{\prime}\left(\bar{O}_{\varepsilon}(F)\right)+\varepsilon \geqslant c(F), \forall F \underset{\mathrm{cl}}{\subset} X\right\}
$$

here $\bar{O}_{\varepsilon}(F)$ is the closed ε-neighborhood of a subset $F \subset X$. The restrictions of this metric on $\underline{M} X$ and $M X$ are admissible [5].

For an arbitrary capacity c on a metric compactum X, explicit constructions for the closest to c point in the four above subclasses were presented in $[3,4]$.

Now we consider probably the most important class of additive regular measures.
Our goal is to approximate a capacity c on a metric compactum X with an additive measure on a finite subspace of X. Such measures are dense in the space $\bar{P} X$ of all finite additive regular measures and have nice representation as linear combinations of Dirac measures.

1 ALGORITHM FOR APPROXIMATION OF A CAPACITY WITH AN ADDITIVE MEASURE ON A FINITE SUBSPACE

Consider a capacity c on a metric compactum (X, d) and a finite subspace $X_{0}=\left\{x_{1}, x_{2}, \ldots\right.$, $\left.x_{n}\right\} \subset X$. We are going to find the distance between $c \in \bar{M} X$ and the subspace $\bar{P} X_{0} \subset \bar{M} X$, in particular to find an additive measure m on X_{0} that is (almost) the closest to c with respect to the distance \hat{d}.

The inequality $\hat{d}(c, m) \leqslant \varepsilon$ means that there is $0 \leqslant z \leqslant \varepsilon$ satisfying

$$
\left\{\begin{array}{l}
m(A) \leqslant c\left(\bar{O}_{\varepsilon} A\right)+z \\
c(A) \leqslant m\left(\bar{O}_{\varepsilon} A\right)+z
\end{array}\right.
$$

for all $A \subset X$ cl Obviously it is sufficient to verify the first inequality $m(A) \leqslant c_{\varepsilon}^{+}(A)+z$, where we denote $c_{\varepsilon}^{+}=c\left(\bar{O}_{\varepsilon}(A)\right)$, only for all $A \subset X_{0}$. Similarly, for the second condition we verify
$c(B) \leqslant m(A)+z$ for all $B \subset X$ and $A \subset X_{0}$ such that $\left(\bar{O}_{\varepsilon} B\right) \cap X_{0} \subset A$. This is equivalent to $m(A) \geqslant c_{\varepsilon}^{-}(A)-z$ for all $A \subset X_{0}$, where

$$
c_{\varepsilon}^{-}(A)=c\left(X \backslash \bar{O}_{\varepsilon}\left(X_{0} \backslash A\right)\right)=\sup \left\{c(B) \mid B \underset{\mathrm{cl}}{\subset} X, B \cap \bar{O}_{\varepsilon}\left(X_{0} \backslash A\right)=\varnothing\right\}
$$

Obviously $c_{\varepsilon}^{-}(A) \leqslant c_{\varepsilon}^{+}(A)$ for all $A \subset X_{0}$.
All additive measures on X_{0} are of the form $m=y_{1} \delta_{x_{1}}+y_{2} \delta_{x_{2}}+\cdots+y_{n} \delta_{x_{n}}$. Thus, to find the least z that satisfies the above conditions for some m, we have to solve the linear programming problem w.r.t. the variables $y_{1}, y_{2}, \ldots, y_{n}, z \geqslant 0$:

$$
\begin{cases}y_{1}, y_{2}, \ldots, y_{n}, z \geqslant 0 \\ \sum_{x_{i} \in A} y_{i} \leqslant c_{\varepsilon}^{+}(A)+z & \text { for all } A \subset X_{0} \\ \sum_{x_{i} \in A} y_{i} \geqslant c_{\varepsilon}^{-}(A)-z & \text { for all } A \subset X_{0} \\ z \rightarrow \min & \end{cases}
$$

which we rewrite as follows:

$$
\begin{cases}y_{1}, y_{2}, \ldots, y_{n}, z \geqslant 0, & \\ -\sum_{x_{i} \in A} y_{i}+z \geqslant-c_{\varepsilon}^{+}(A) & \text { for all } A \subset X_{0} \\ \quad \sum_{x_{i} \in A} y_{i}+z \geqslant c_{\varepsilon}^{-}(A) & \text { for all } A \subset X_{0} \\ z \rightarrow \min \end{cases}
$$

We embed the set $\operatorname{Exp} X_{0}$ into \mathbb{R}^{n} by identifying each subset $A \subset X_{0}$ with the vector containing 1 at all i-th positions such that $x_{i} \in A$ and 0 at all other positions. E.g., \varnothing is represented by $(0, \ldots, 0)$, and X_{0} by $(1, \ldots, 1)$. By - Exp X_{0} we denote the set of the opposites to elements of $\operatorname{Exp} X_{0} \subset \mathbb{R}^{n}$. Define a function $c_{\varepsilon}: \operatorname{Exp} X_{0} \cup\left(-\operatorname{Exp} X_{0}\right) \rightarrow \mathbb{R}$ by the formula

$$
c_{\varepsilon}(A)= \begin{cases}c_{\varepsilon}^{-}(A), & A \in \operatorname{Exp} X_{0} \\ -c_{\varepsilon}^{+}(-A), & A \in\left(-\operatorname{Exp} X_{0}\right) .\end{cases}
$$

The common element $\varnothing=(0, \ldots, 0) \in \operatorname{Exp} X_{0} \cap\left(-\operatorname{Exp} X_{0}\right)$ leads to no contradiction because $c_{\varepsilon}^{-}(\varnothing)=c_{\varepsilon}^{+}(\varnothing)=0$.

We also denote by $(A \mid 1)$ the vector obtained by appending a trailing 1 to the sequence $A=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \operatorname{Exp} X_{0} \cup\left(-\operatorname{Exp} X_{0}\right)$. Then the linear optimization problem can we written as

$$
\left\{\begin{array}{l}
y_{1}, y_{2}, \ldots, y_{n}, z \geqslant 0 \\
(A \mid 1) \cdot\left(y_{1}, y_{2}, \ldots, y_{n}, z\right) \geqslant c_{\varepsilon}(A) \text { for all } A \in \operatorname{Exp} X_{0} \cup\left(-\operatorname{Exp} X_{0}\right) \\
z \rightarrow \min
\end{array}\right.
$$

It has a straightforward geometric interpretation: of all functionals of the form

$$
\gamma\left(t_{1}, t_{2}, \ldots, t_{n}\right)=y_{1} t_{1}+y_{2} t_{2}+\cdots+y_{n} t_{n}+z
$$

such that $\gamma(A) \geqslant c_{\varepsilon}(A)$ for all $A \in \operatorname{Exp} X_{0} \cup\left(-\operatorname{Exp} X_{0}\right)$, choose one with the minimal z, i.e., with the least value $\gamma(\overrightarrow{0})$. Now it is clear that, due to monotonicity of the function c_{ε}, the restrictions $y_{1}, y_{2}, \ldots, y_{n} \geqslant 0$ can be dropped. Observe also that the restriction $z \geqslant 0$ is equivalent to

$$
(\varnothing \mid 1) \cdot\left(y_{1}, y_{2}, \ldots, y_{n}, z\right) \geqslant c_{\varepsilon}(\varnothing)
$$

hence can be dropped as well.
Geometric arguments also show that the problem is solved if affinely independent

$$
A_{1}, A_{2}, \ldots, A_{n+1} \in \operatorname{Exp} X_{0} \cup\left(-\operatorname{Exp} X_{0}\right)
$$

are found such that $\overrightarrow{0}$ is in their convex hull (in the sequel we call such $A_{1}, A_{2}, \ldots, A_{n+1}$ basic subsets), and the solutions $y_{1}, y_{2}, \ldots, y_{n}, z$ of the system

$$
\begin{cases}\left(A_{1} \mid 1\right) \cdot\left(y_{1}, y_{2}, \ldots, y_{n}, z\right) & =c_{\varepsilon}\left(A_{1}\right) \\ \left(A_{2} \mid 1\right) \cdot\left(y_{1}, y_{2}, \ldots, y_{n}, z\right) & =c_{\varepsilon}\left(A_{2}\right) \\ \ldots & \\ \left(A_{n+1} \mid 1\right) \cdot\left(y_{1}, y_{2}, \ldots, y_{n}, z\right) & =c_{\varepsilon}\left(A_{n+1}\right)\end{cases}
$$

satisfy

$$
(A \mid 1) \cdot\left(y_{1}, y_{2}, \ldots, y_{n}, z\right) \geqslant c_{\varepsilon}(A)
$$

for all $A \in \operatorname{Exp} X_{0} \cup\left(-\operatorname{Exp} X_{0}\right)$.
Therefore we propose the following algorithm, which essentially is equivalent to the simplex algorithm, but is better suited for our needs. Choose initial basic subsets, e.g., $A_{1}=\left\{x_{1}\right\}$, $A_{2}=\left\{x_{2}\right\}, \ldots, A_{n}=\left\{x_{n}\right\}, A_{n+1}=-\left\{x_{n}\right\}$, then calculate $y_{1}, y_{2}, \ldots, y_{n}, z$ as

$$
\left(y_{1}, y_{2}, \ldots, y_{n}, z\right)^{T}=\left(M\left(A_{1}, A_{2}, \ldots, A_{n}\right)\right)^{-1}\left(c\left(A_{1}\right), c\left(A_{2}\right), \ldots, c\left(A_{n+1}\right)\right)^{T}
$$

where $(-)^{T}$ means transposition, and

$$
M\left(A_{1}, A_{2}, \ldots, A_{n}\right)=\left[\begin{array}{c|c}
A_{1} & 1 \\
A_{2} & 1 \\
\ldots & \ldots \\
A_{n+1} & 1
\end{array}\right]
$$

i.e., i is the matrix with the rows $\left(A_{1} \mid 1\right),\left(A_{2} \mid 1\right), \ldots,\left(A_{n+1} \mid 1\right)$.

We will permanently need the inverse matrix

$$
\left(M\left(A_{1}, A_{2}, \ldots, A_{n}\right)\right)^{-1}=\left[\begin{array}{cccc}
\lambda_{11} & \lambda_{12} & \ldots & \lambda_{1, n+1} \\
\lambda_{21} & \lambda_{22} & \ldots & \lambda_{2, n+1} \\
\ldots & \ldots & \ddots & \ldots \\
\lambda_{n 1} & \lambda_{n 2} & \ldots & \lambda_{n, n+1} \\
\mu_{1} & \mu_{2} & \ldots & \mu_{n+1}
\end{array}\right]
$$

For any $A \in \operatorname{Exp} X_{0} \cup\left(-\operatorname{Exp} X_{0}\right)$ the column $\left(M\left(A_{1}, A_{2}, \ldots, A_{n}\right)\right)^{-1}(A \mid 1)^{T}$ consists of the coefficients $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n+1}$ such that $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n+1}=1$ and $\alpha_{1} A_{1}+\alpha_{2} A_{2}+\cdots+$ $\alpha_{n+1} A_{n+1}=A$ (in the above sense). In particular, $\mu_{1} A_{1}+\mu_{2} A_{2}+\cdots+\mu_{n+1} A_{n+1}=\varnothing$, and $\lambda_{i 1} A_{1}+\lambda_{i 2} A_{2}+\cdots+\lambda_{i, n+1} A_{n+1}=\left\{x_{i}\right\}$ for all $1 \leqslant i \leqslant n$.

Now, having $y_{1}, y_{2}, \ldots, y_{n}, z$ calculated, compare the differences

$$
c_{\varepsilon}(A)-(A \mid 1)\left(y_{1}, y_{2}, \ldots, y_{n}, z\right)
$$

for all $A \in \operatorname{Exp} X_{0} \cup\left(-\operatorname{Exp} X_{0}\right)$. If the basic subsets $A_{1}, A_{2}, \ldots, A_{n+1}$ provide a solution, then all the differences are not greater than 0 . Otherwise find the greatest difference $\Delta=$
$c_{\varepsilon}\left(A^{\prime}\right)-\left(A^{\prime} \mid 1\right)\left(y_{1}, y_{2}, \ldots, y_{n}, z\right)$, which is positive, and replace with A^{\prime} a subset A_{i} such that $\overrightarrow{0}$ is in the convex hull of $A_{1}, A_{2}, \ldots, A_{i-1}, A^{\prime}, A_{i+1}, \ldots, A_{n+1}$.

Let $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n+1}\right)^{T}=\left(M\left(A_{1}, A_{2}, \ldots, A_{n}\right)\right)^{-1}\left(A^{\prime} \mid 1\right)^{T}$, hence $A^{\prime}=\alpha_{1} A_{1}+\alpha_{2} A_{2}+\cdots+$ $\alpha_{n+1} A_{n+1}$, then

$$
A_{i}=\frac{1}{\alpha_{i}} A^{\prime}-\frac{\alpha_{1}}{\alpha_{i}} A_{1}-\cdots-\frac{\alpha_{i-1}}{\alpha_{i}} A_{i-1}-\frac{\alpha_{i+1}}{\alpha_{i}} A_{i+1}-\frac{\alpha_{n+1}}{\alpha_{i}} A_{n+1} .
$$

Therefore

$$
\begin{aligned}
\varnothing & =\left(\mu_{1}-\mu_{i} \frac{\alpha_{1}}{\alpha_{i}}\right) A_{1}+\cdots+\left(\mu_{i-1}-\mu_{i} \frac{\alpha_{i-1}}{\alpha_{i}}\right) A_{i-1}+\left(\mu_{i+1}-\mu_{i} \frac{\alpha_{i+1}}{\alpha_{i}}\right) A_{i+1} \\
& +\cdots+\left(\mu_{n+1}-\mu_{i} \frac{\alpha_{n+1}}{\alpha_{i}}\right) A_{n+1}+\frac{\mu_{i}}{\alpha_{i}} A^{\prime} .
\end{aligned}
$$

The coefficients in the new decomposition of \varnothing should be nonnegative, hence $\alpha_{i}>0$ is required, as well as either $\alpha_{j} \leqslant 0$ or $\mu_{j}-\mu_{i} \frac{\alpha_{j}}{\alpha_{i}} \geqslant 0$ for all $j \neq i$. If $\alpha_{j}>0$, then the latter inequality is equivalent to $\frac{\mu_{j}}{\alpha_{j}} \geqslant \frac{\mu_{i}}{\alpha_{i}}$. Hence $\frac{\mu_{i}}{\alpha_{i}}$ should be the least of $\frac{\mu_{j}}{\alpha_{j}}$ for $1 \leqslant j \leqslant n+1$ such that $\alpha_{j}>0$.

Now we replace A_{i} with $A_{i}^{\prime}=A^{\prime}$, and the inverse matrix

$$
\left(M\left(A_{1}, A_{2}, \ldots, A_{i-1}, A_{i}^{\prime}, A_{i+1}, \ldots, A_{n}\right)\right)^{-1}=\left[\begin{array}{cccc}
\lambda_{11}^{\prime} & \lambda_{12}^{\prime} & \ldots & \lambda_{1, n+1}^{\prime} \\
\lambda_{21}^{\prime} & \lambda_{22}^{\prime} & \ldots & \lambda_{2, n+1}^{\prime} \\
\ldots & \ldots & \ddots & \ldots \\
\lambda_{n 1}^{\prime} & \lambda_{n 2}^{\prime} & \ldots & \lambda_{n, n+1}^{\prime} \\
\mu_{1}^{\prime} & \mu_{2}^{\prime} & \ldots & \mu_{n+1}^{\prime}
\end{array}\right]
$$

is adjusted accordingly:

$$
\begin{array}{cll}
\mu_{i}^{\prime}=\frac{\mu_{i}}{\alpha_{i}}, & \mu_{j}^{\prime}=\mu_{j}-\alpha_{j} \frac{\mu_{i}}{\alpha_{i}^{\prime}} & 1 \leqslant j \leqslant n+1, j \neq i, \\
\lambda_{k i}^{\prime}=\frac{\lambda_{k i}}{\alpha_{i}}, & \lambda_{k j}^{\prime}=\lambda_{k j}-\alpha_{j} \frac{\lambda_{k i}}{\alpha_{i}}, & 1 \leqslant k, j \leqslant n+1, j \neq i
\end{array}
$$

Now look how $y_{1}, y_{2}, \ldots, y_{n}, z$ have changed. Taking into account

$$
\begin{aligned}
z & =\mu_{1} c_{\varepsilon}\left(A_{1}\right)+\cdots+\mu_{i-1} c_{\varepsilon}\left(A_{i-1}\right)+\mu_{i} c_{\varepsilon}\left(A_{i}\right) \\
& +\mu_{i+1} c_{\varepsilon}\left(A_{i+1}\right)+\cdots+\mu_{n+1} A_{n+1} \\
z^{\prime} & =\left(\mu_{1}-\alpha_{1} \frac{\mu_{i}}{\alpha_{i}}\right) c_{\varepsilon}\left(A_{1}\right)+\cdots+\left(\mu_{i-1}-\alpha_{i-1} \frac{\mu_{i}}{\alpha_{i}}\right) c_{\varepsilon}\left(A_{i-1}\right)+\frac{\mu_{i}}{\alpha_{i}} c_{\varepsilon}\left(A_{i}^{\prime}\right) \\
& +\left(\mu_{i+1}-\alpha_{i+1} \frac{\mu_{i}}{\alpha_{i}}\right) c_{\varepsilon}\left(A_{i+1}\right)+\cdots+\left(\mu_{n+1}-\alpha_{n+1} \frac{\mu_{i}}{\alpha_{i}}\right) c_{\varepsilon}\left(A_{n+1}\right),
\end{aligned}
$$

obtain

$$
z^{\prime}-z=\frac{\mu_{i}}{\alpha_{i}}\left(c_{\varepsilon}\left(A_{i}^{\prime}\right)-\left(\alpha_{1} c_{\varepsilon}\left(A_{1}\right)+\cdots+\alpha_{n+1} c_{\varepsilon}\left(A_{n+1}\right)\right)\right)=\frac{\mu_{i}}{\alpha_{i}} \cdot \Delta .
$$

Similarly

$$
y_{k}^{\prime}-y_{k}=\frac{\lambda_{k i}}{\alpha_{i}}\left(c_{\varepsilon}\left(A_{i}^{\prime}\right)-\left(\alpha_{1} c_{\varepsilon}\left(A_{1}\right)+\cdots+\alpha_{n+1} c_{\varepsilon}\left(A_{n+1}\right)\right)\right)=\frac{\lambda_{k i}}{\alpha_{i}} \cdot \Delta .
$$

This simplifies calculation of z^{\prime} and all y_{k}^{\prime}. We iterate the above step until $\Delta=0$. The final value of z, which we denote $z(\varepsilon)$, is the least z such that

$$
\left\{\begin{array}{l}
m(A) \leqslant c\left(\bar{O}_{\varepsilon} A\right)+z \\
c(A) \leqslant m\left(\bar{O}_{\varepsilon} A\right)+z
\end{array}\right.
$$

for some $m \in \bar{P} X_{0}$ and all $A \underset{\mathrm{cl}}{\subset} X$.
Observe that $z(\varepsilon)$ is non-increasing with respect to ε, hence the distance between c and $\bar{P} X_{0}$ is the least ε such that $z(\varepsilon) \leqslant \varepsilon$. This distance is not greater than $z(0)$, therefore it is easy to bisect the segment $[0, z(0)]$ to find the distance and an approximating additive measure with arbitrary precision.

2 CONCLUDING REMARKS

The proposed algorithm was implemented as a C program and tested on data sets with cardinality of X_{0} up to 10 .

However, each iteration of the presented algorithm requires previously calculated values of a capacity for all $2^{\text {cardinality of the space }}$ subsets, which is not appropriate even for $\geqslant 40$ points. Hence, to handle subspaces of greater cardinality, we need to cut memory and time requirements using the metric structure and the only reliable property of a capacity, i.e., its monotonicity. This requires deeper investigation combining both topological properties of non-additive measures, e.g., their dimensional characteristics, and computational aspects.

References

[1] Choquet G. Theory of Capacity. Ann. l'Institute Fourier 1953-1954, 5, 131-295.
[2] Hlushak I.D., Nykyforchyn O.R. Submonads of the capacity monad. Carpathian J. Math. 2008, 24 (1), 2008, 56-67.
[3] Hlushak I.D. Approximation of capacities on metric spaces with Lipschitz capacities. Carpathian Math. Publ. 2016, 6 (2), 196-202. doi:10.15330/cmp.6.2.196-202
[4] Hlushak I.D. Optimal approximations of capacities on a metric compactum. Carpathian Math. Publ. 2016, 8 (1), 44-50. doi:10.15330/cmp.8.1.44-50
[5] Zarichnyi M.M., Nykyforchyn O.R. Capacity functor in the category of compacta. Sbornik: Mathematics 2008, 199 (2), 159-184. doi:10.4213/sm1504 (translation of Mat. Sb. 2008, 199 (2), 3-26. (in Russain))

Received 01.02.2017
Revised 21.06.2017

Никифорчин О.P, Глушак I.Д. Апроксимаиія ємностей адитивними мірами // Карпатські матем. публ. - 2017. — Т.9, №1. — С. 92-97.

Для простору неадитивних регулярних мір на метричному компакті з відстанню в стилі Прохорова показано, що задача наближення довільної міри адитивною мірою на фіксованому скінченному підпросторі зводиться до задачі лінійної оптимізації з параметрами, залежними від значень вихідної міри на скінченному числі множин.

Запропоновано алгоритм такого наближення, ефективніший порівняно з прямолінійним застосуванням симплекс-методу.

Ключові слова і фрази: метрика Прохорова, неадитивна міра, апроксимація, компактний метричний простір.

[^0]: У $\Delta \mathrm{K}$ 515.12, 517.518.11
 2010 Mathematics Subject Classification: 25C15, 28E10.

