Gavrylkiv V.M.

SUPEREXTENSIONS OF THREE-ELEMENT SEMIGROUPS

A family \mathcal{A} of non-empty subsets of a set X is called an upfamily if for each set $A \in \mathcal{A}$ any set $B \supset A$ belongs to \mathcal{A}. An upfamily \mathcal{L} of subsets of X is said to be linked if $A \cap B \neq \varnothing$ for all $A, B \in \mathcal{L}$. A linked upfamily \mathcal{M} of subsets of X is maximal linked if \mathcal{M} coincides with each linked upfamily \mathcal{L} on X that contains \mathcal{M}. The superextension $\lambda(X)$ consists of all maximal linked upfamilies on X. Any associative binary operation $*: X \times X \rightarrow X$ can be extended to an associative binary operation $\circ: \lambda(X) \times \lambda(X) \rightarrow \lambda(X)$ by the formula $\mathcal{L} \circ \mathcal{M}=\left\langle\bigcup_{a \in L} a * M_{a}: L \in \mathcal{L},\left\{M_{a}\right\}_{a \in L} \subset \mathcal{M}\right\rangle$ for maximal linked upfamilies $\mathcal{L}, \mathcal{M} \in \lambda(X)$. In the paper we describe superextensions of all threeelement semigroups up to isomorphism.

Key words and phrases: semigroup, maximal linked upfamily, superextension, projective retraction, commutative.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine
E-mail: vgavrylkiv@gmail.com

Introduction

In this paper we investigate the algebraic structure of the superextension $\lambda(S)$ of a threeelement semigroup S. The thorough study of various extensions of semigroups was started in [11] and continued in [1-7,12-16]. The largest among these extensions is the semigroup $v(S)$ of all upfamilies on S. A family \mathcal{A} of non-empty subsets of a set X is called an upfamily if for each set $A \in \mathcal{A}$ any subset $B \supset A$ belongs to \mathcal{A}. Each family \mathcal{B} of non-empty subsets of X generates the upfamily $\langle B \subset X: B \in \mathcal{B}\rangle=\{A \subset X: \exists B \in \mathcal{B}(B \subset A)\}$. An upfamily \mathcal{F} that is closed under taking finite intersections is called a filter. A filter \mathcal{U} is called an ultrafilter if $\mathcal{U}=\mathcal{F}$ for any filter \mathcal{F} containing \mathcal{U}. The family $\beta(X)$ of all ultrafilters on a set X is called the Stone-Čech compactification of X, see [17], [20]. An ultrafilter $\{x\}$, generated by a singleton $\{x\}, x \in X$, is called principal. Each point $x \in X$ is identified with the principal ultrafilter $\langle\{x\}\rangle$ generated by the singleton $\{x\}$, and hence we consider $X \subset \beta(X) \subset v(X)$. It was shown in [11] that any associative binary operation $*: S \times S \rightarrow S$ can be extended to an associative binary operation $0: v(S) \times v(S) \rightarrow v(S)$ by the formula

$$
\mathcal{L} \circ \mathcal{M}=\left\langle\bigcup_{a \in L} a * M_{a}: L \in \mathcal{L}, \quad\left\{M_{a}\right\}_{a \in L} \subset \mathcal{M}\right\rangle
$$

for upfamilies $\mathcal{L}, \mathcal{M} \in v(S)$. In this case the Stone-Čech compactification $\beta(S)$ is a subsemigroup of the semigroup $v(S)$.

The semigroup $v(S)$ contains many other important extensions of S. In particular, it contains the semigroup $\lambda(S)$ of maximal linked upfamilies. The space $\lambda(S)$ is well-known in

[^0]General and Categorial Topology as the superextension of S, see [19]- [21]. An upfamily \mathcal{L} of subsets of S is linked if $A \cap B \neq \varnothing$ for all $A, B \in \mathcal{L}$. The family of all linked upfamilies on S is denoted by $N_{2}(S)$. It is a subsemigroup of $v(S)$. The superextension $\lambda(S)$ consists of all maximal elements of $N_{2}(S)$, see [10], [11].

Each map $f: X \rightarrow Y$ induces the map

$$
\lambda f: \lambda(X) \rightarrow \lambda(Y), \quad \lambda f: \mathcal{M} \mapsto\langle f(M) \subset Y: M \in \mathcal{M}\rangle \text { (see [10]). }
$$

A non-empty subset I of a semigroup S is called an ideal if $I S \cup S I \subset I$. A semigroup S is called simple if S is the unique ideal of S. An element z of a semigroup S is called a zero (resp. a left zero, a right zero) in S if $a z=z a=z$ (resp. $z a=z, a z=z$) for any $a \in S$. A semigroup S is said to be a left (right) zeros semigroup if $a b=a(a b=b)$ for any $a, b \in S$. A semigroup S is called a null semigroup if there exists an element $c \in S$ such that $x y=c$ for any $x, y \in S$. By O_{n}, $L O_{n}$ and $R O_{n}$ we denote a null semigroup, a left zero semigroups and a right zero semigroup of order n respectively. Following the algebraic tradition, we denote by C_{n} the cyclic group of order n.

Let S be a semigroup and $e \notin S$. The binary operation defined on S can be extended to $S \cup\{e\}$ putting $e s=s e=s$ for all $s \in S \cup\{e\}$. The notation S^{+1} denotes a monoid $S \cup\{e\}$ obtained from S by adjoining an extra identity e (regardless of whether S is or is not a monoid). Analogous to the above construction, for every semigroup S one can define S^{+0}, a semigroup with attached an extra zero to S.

Let us recall that a semilattice is a commutative idempotent semigroup. Idempotent semigroups are called bands. So, in a band each element x is an idempotent, which means that $x x=x$. By L_{n} we denote the linear semilattice $\{0,1, \ldots, n\}$ of order n, endowed with the operation of minimum. A semigroup S is called Clifford if it is a union of groups.

A semigroup $\langle a\rangle=\left\{a^{n}\right\}_{n \in \mathbb{N}}$ generated by a single element a is called monogenic or cyclic. If a monogenic semigroup is infinite, then it is isomorphic to the additive semigroup \mathbb{N}. A finite monogenic semigroup $S=\langle a\rangle$ also has very simple structure (see [8], [18]). There are positive integer numbers r and m called the index and the period of S such that

- $S=\left\{a, a^{2}, \ldots, a^{m+r-1}\right\}$ and $m+r-1=|S|$;
- for any $i, j \in \omega$ the equality $a^{r+i}=a^{r+j}$ holds if and only if $i \equiv j \bmod m$;
- $C_{m}=\left\{a^{r}, a^{r+1}, \ldots, a^{m+r-1}\right\}$ is a cyclic and maximal subgroup of S with the neutral element $e=a^{n} \in C_{m}$, where m divides n.

We denote by $C_{r, m}$ a finite monogenic semigroup of index r and period m.
An isomorphism between S and S^{\prime} is one-to-one function $\varphi: S \rightarrow S^{\prime}$ such that $\varphi(x y)=$ $\varphi(x) \varphi(y)$ for all $x, y \in S$. If there exist an isomorphism between S and S^{\prime}, then S and S^{\prime} are said to be isomorphic, denoted $S \cong S^{\prime}$. An antiisomorphism between S and S^{\prime} is one-to-one function $\varphi: S \rightarrow S^{\prime}$ such that $\varphi(x y)=\varphi(y) \varphi(x)$ for all $x, y \in S$. If there exist an antiisomorphism between S and S^{\prime}, then S and S^{\prime} are said to be antiisomorphic, denoted $S \cong{ }_{a} S^{\prime}$. If $(S, *)$ is a semigroup, then (S, \circ), where $x \circ y=y * x$, is a semigroup as well. The semigroups $(S, *)$ and (S, \circ) are called dual. It is easy to see that dual semigroups are antiisomorphic.

There are exactly five pairwise non-isomorphic semigroups having two elements: C_{2}, L_{2}, $\mathrm{O}_{2}, \mathrm{LO}_{2}, \mathrm{RO}_{2}$. The superextension $\lambda(\mathrm{S})$ of two-element semigroups S consists of two principal ultrafilters and therefore $\lambda(S) \cong S$.

In this paper we concentrate on describing the structure of the superextensions $\lambda(S)$ of three-element semigroups S. Among 19683 different operations on a three-element set $S=$ $\{a, b, c\}$ there are exactly 113 operations which are associative, see [9]. In other words, there exist exactly 113 three-element semigroups, and many of these are isomorphic so that there are essentially only 24 pairwise non-isomorphic semigroups of order 3 .

1 Projective retractions and superextensions

In this section we will apply some properties of proretract semigroups to study the structure of the superextensions of semigroups.

A subset R of a set X is called a retract if there exists a retraction of X onto R, that is a map of X onto R which leaves each element of R fixed. A retraction $r: S \rightarrow T$ of a semigroup S onto a subsemigroup T of S is called a projective retraction if $x y=r(x) r(y)$ for any $x, y \in$ S. A semigroup S is said to be a proretract-semigroup provided that there exists a projective retraction $r: S \rightarrow T$ of S onto some proper subsemigroup T of S. In this case T will be called a projective retract of S under a projective retraction r, and S will be called a proretract extension of T under a projective retraction r. If $r: S \rightarrow T$ is a projective retraction of a semigroup S onto a subsemigroup T of S, then r is a homomorphism and T is an ideal of S.

If a semigroup S is simple, then it is not a proretract-semigroup. In particular, groups, left zero and right zero semigroups are not proretract-semigroups.

Proposition 1. A finite monogenic semigroup $C_{r, m}$ of index r and period m is a proretractsemigroup if and only if $r=2$.

Proof. Let $C_{r, m}=\left\{a, a^{2}, \ldots, a^{r}, \ldots, a^{r+m-1} \mid a^{r+m}=a^{m}\right\}$. If $r=1$, then $C_{r, m}$ is simple and thus it is not a proretract-semigroup.

Let $r=2$. Consider the map $\varphi: C_{2, m} \rightarrow C_{m}=\left\{a^{2}, \ldots, a^{m+1}\right\}, \varphi(s)=e s$, where e is the identity of the maximal subgroup C_{m} of $C_{2, m}$. Then $s t \in C_{m}$ and $s t=e s e t=\varphi(s) \varphi(t)$ for any $s, t \in C_{2, m}$. Consequently, φ is a projective retraction.

Let $r>2$. Suppose that $\varphi: C_{r, m} \rightarrow I$ is a projective retraction onto some proper ideal I of S. Then $a a=\varphi(a) \varphi(a)$. In monogenic semigroups of index $r>2$ the equality $a^{2}=\varphi(a)^{2}$ is possible only in the case $\varphi(a)=a$. Since φ is a homomorphism, then φ leaves each element of $C_{r, m}$ fixed. Therefore, $I=C_{r, m}$, a contradiction.

Let us note that for a subsemigroup T of a semigroup S the homomorphism $i: \lambda(T) \rightarrow$ $\lambda(S), i: \mathcal{A} \rightarrow\langle\mathcal{A}\rangle_{S}$ is injective, and thus we can identify the semigroup $\lambda(T)$ with the subsemigroup $i(\lambda(T)) \subset \lambda(S)$. Therefore, for each family \mathcal{B} of non-empty subsets of T we identify the upfamilies

$$
\langle\mathcal{B}\rangle_{T}=\{A \in T \mid \exists B \in \mathcal{B}(B \subset A)\} \in \lambda(T) \quad \text { and } \quad\langle\mathcal{B}\rangle_{S}=\{A \in S \mid \exists B \in \mathcal{B}(B \subset A)\} \in \lambda(S) .
$$

In the following proposition we show that proretract-semigroup property is preserved by superextensions.

Proposition 2. If $r: S \rightarrow T$ is a projective retraction of a semigroup S onto a subsemigroup T of S, then $\lambda r: \lambda(S) \rightarrow \lambda(T)$ is a projective retraction of the superextension $\lambda(S)$ onto $\lambda(T)$.

Proof. Let $\mathcal{L}, \mathcal{M} \in \lambda(S)$. Then

$$
\begin{aligned}
\lambda r(\mathcal{L}) \circ \lambda r(\mathcal{M}) & =\left\langle\bigcup_{a \in r(L)} a * r(M)_{a}: r(L) \in \lambda r(\mathcal{L}), \quad\left\{r(M)_{a}\right\}_{a \in r(L)} \subset \lambda r(\mathcal{M})\right\rangle \\
& =\left\langle\bigcup_{a \in L} r(a) * r(M)_{a}: L \in \mathcal{L}, \quad\left\{r(M)_{a}\right\}_{a \in L} \subset \lambda r(\mathcal{M})\right\rangle \\
& =\left\langle\bigcup_{a \in L} a * M_{a}: L \in \mathcal{L}, \quad\left\{M_{a}\right\}_{a \in L} \subset \mathcal{M}\right\rangle=\mathcal{L} \circ \mathcal{M}
\end{aligned}
$$

Corollary 1. If S is a proretract-semigroup, then $\lambda(S)$ is a proretract-semigroup as well.
In the next section we show that there exists a semigroup S that is not a proretract-semigroup, but the superextension $\lambda(S)$ is a proretract-semigroup.

Theorem 1. If S is a null semigroup, then $\lambda(S)$ is a null semigroup as well.
Proof. Let S be a null semigroup. So there exists $c \in S$ such that $x y=c$ for all $x, y \in S$. Then the map $r: S \rightarrow\{c\}, r(s)=c$ for any $s \in S$, is a projective retraction. According to Proposition 2 the map $\lambda r: \lambda(S) \rightarrow \lambda\{c\}=\{\langle\{c\}\rangle\}$ is a projective retraction as well. Therefore,

$$
\mathcal{L} \circ \mathcal{M}=\lambda r(\mathcal{L}) \circ \lambda r(\mathcal{M})=\langle\{c\}\rangle \circ\langle\{c\}\rangle=\langle\{c\}\rangle
$$

for any $\mathcal{L}, \mathcal{M} \in \lambda(S)$. Consequently $\lambda(S)$ is a null semigroup.
A semigroup S is said to be an almost null semigroup if there exist the distinct elements $a, c \in S$ such that $a a=a$ and $x y=c$ for any $(x, y) \in S \times S \backslash\{(a, a)\}$.

Theorem 2. If S is an almost null semigroup, then $\lambda(S)$ is an almost null semigroup as well.
Proof. Let S be an almost null semigroup, so there exist the elements $a, c \in S, c \neq a$, such that $a a=a$ and $x y=c$ for any $(x, y) \in S \times S \backslash\{(a, a)\}$. Then the map $r: S \rightarrow\{a, c\}, r(a)=a$ and $r(s)=c$ for any $s \neq a$, is a projective retraction. According to Proposition 2 the map $\lambda r: \lambda(S) \rightarrow \lambda\{a, c\}$ is a projective retraction as well. It is easy to see that the semigroup $\lambda\{a, c\}=\{\langle\{a\}\rangle,\langle\{c\}\rangle\} \cong\{a, c\}$ is isomorphic to the semilattice $L_{2}=\{0,1\}$ with operation of minimum.

It is obvious that $\langle\{a\}\rangle \circ\langle\{a\}\rangle=\langle\{a\}\rangle$. If $\mathcal{A} \neq\langle\{a\}\rangle$, then there exists $A \in \mathcal{A}$ such that $a \notin A$ and therefore $r(A)=c$. This implies that $\lambda r(\mathcal{A})=\{\langle\{c\}\rangle\}$. If $(\mathcal{L}, \mathcal{M}) \in \lambda(S) \times$ $\lambda(S) \backslash\{(\langle\{a\}\rangle,\langle\{a\}\rangle)\}$, then $\lambda r(\mathcal{L})=\langle\{c\}\rangle$ or $\lambda r(\mathcal{M})=\langle\{c\}\rangle$. Therefore, $\mathcal{L} \circ \mathcal{M}=\lambda r(\mathcal{L}) \circ$ $\lambda r(\mathcal{M})=\langle\{c\}\rangle$. Consequently, $\lambda(S)$ is an almost null semigroup.

Theorem 3. If S is a left (right) zero semigroup, then $\lambda(S)$ is a left (right) zero semigroup as well.

Proof. Let S be a left zero semigroup. Then

$$
\mathcal{L} \circ \mathcal{M}=\left\langle\bigcup_{a \in L} a * M_{a}: L \in \mathcal{L}, \quad\left\{M_{a}\right\}_{a \in L} \subset \mathcal{M}\right\rangle=\left\langle\bigcup_{a \in L}\{a\}: L \in \mathcal{L}\right\rangle=\mathcal{L}
$$

for any $\mathcal{L}, \mathcal{M} \in \lambda(S)$. Thus $\lambda(S)$ is a left zero semigroup as well.
For a right zero semigroup the proof is similar.

2 SUPEREXTENSIONS OF COMMUTATIVE SEMIGROUPS OF ORDER 3

In this section we describe the structure of superextensions of commutative three-element semigroups. Among 24 pairwise non-isomorphic semigroups of order 3 there are 12 commutative semigroups.

For a semigroup $S=\{a, b, c\}$ the semigroup $\lambda(S)$ contains the three principal ultrafilters $\langle\{a\}\rangle,\langle\{b\}\rangle,\langle\{c\}\rangle$ and the maximal linked upfamily $\Delta=\langle\{a, b\},\{a, c\},\{b, c\}\rangle$. Since semigroups S and $\{\langle\{a\}\rangle,\langle\{b\}\rangle,\langle\{c\}\rangle\}$ are isomorphic, then we can assume that $\lambda(S)=S \cup\{\triangle\}$.

In the sequel we will describe the structure of superextensions of three-element semigroups $S=\{a, b, c\}$ defined by Cayley tables using the formula

$$
\mathcal{L} \circ \mathcal{M}=\left\langle\bigcup_{a \in L} a * M_{a}: L \in \mathcal{L}, \quad\left\{M_{a}\right\}_{a \in L} \subset \mathcal{M}\right\rangle
$$

of product of maximal linked upfamilies $\mathcal{L}, \mathcal{M} \in \lambda(S)$.
The superextension $\lambda\left(C_{3}\right)$ (described by the following Cayley table) of the cyclic group C_{3} is isomorphic to $\left(C_{3}\right)^{+0}$ and therefore $\lambda\left(C_{3}\right)$ is a commutative Clifford semigroup. The thorough study of superextensions of groups was started in [7] and continued in [1-3].

\cdot	a	b	c	\triangle
a	a	b	c	\triangle
b	b	c	a	\triangle
c	c	a	b	\triangle
\triangle	\triangle	\triangle	\triangle	\triangle

The superextensions of monogenic semigroups were studied in [13]. The cyclic semigroup $C_{2,2}$ is a proretract extension of cyclic subgroup $\{b, c\} \cong C_{2}$ under retraction $\varphi:\{a, b, c\} \rightarrow$ $\{b, c\}$ with $\varphi(a)=c$. The superextension $\lambda\left(C_{2,2}\right)$ is also a proretract extension of $\lambda\{b, c\} \cong$ $\{b, c\}$ according to Proposition 2. The monogenic semigroup $C_{3,1}$ is not a proretract-semigroup by Proposition 1, but its superextension $\lambda\left(C_{3,1}\right)$ is a proretract extension of $C_{3,1}$ under retraction $r: \lambda\left(C_{3,1}\right) \rightarrow C_{3,1}$ with $r(\triangle)=c$, and, therefore, $\lambda\left(C_{3,1}\right)$ is a proretract-semigroup. Here are the Cayley tables of $\lambda\left(C_{2,2}\right)$ and $\lambda\left(C_{3,1}\right)$ respectively:

\cdot	a	b	c	\triangle
a	b	c	b	b
b	c	b	c	c
c	b	c	b	b
\triangle	b	c	b	b

-	a	b	c	\triangle
a	b	c	c	c
b	c	c	c	c
c	c	c	c	c
\triangle	c	c	c	c

The following Cayley tables for the semigroups $\lambda\left(\left(C_{2}\right)^{+0}\right)$ and $\lambda\left(\left(C_{2}\right)^{+1}\right)$, where $C_{2} \cong$ $\{a, b\}$, imply that

$$
\lambda\left(\left(C_{2}\right)^{+0}\right) \cong\{a, b, \triangle\}^{+0} \cong\left(\left(C_{2}\right)^{+0}\right)^{+0}
$$

and

$$
\lambda\left(\left(C_{2}\right)^{+1}\right) \cong\{a, b, \triangle\}^{+1} \cong\left(\left(C_{2}\right)^{+1}\right)^{+1}:
$$

\cdot	a	b	c	\triangle
a	a	b	c	\triangle
b	b	a	c	\triangle
c	c	c	c	c
\triangle	\triangle	\triangle	c	\triangle

\cdot	a	b	c	\triangle
a	a	b	a	a
b	b	a	b	b
c	a	b	c	\triangle
\triangle	a	b	\triangle	\triangle

The superextensions of a null semigroup and an almost null semigroup are a null semigroup and an almost null semigroup as well according to Theorems 1 and 2:

$-\cdot$	a	b	c	\triangle
a	a	c	c	c
b	c	c	c	c
c	c	c	c	c
\triangle	c	c	c	c

The following Cayley tables for the semigroups $\lambda\left(\left(\mathrm{O}_{2}\right)^{+0}\right)$ and $\lambda\left(\left(\mathrm{O}_{2}\right)^{+1}\right)$ imply that

$$
\lambda\left(\left(O_{2}\right)^{+0}\right) \cong\{a, b, \triangle\}^{+0} \cong\left(O_{3}\right)^{+0} \quad \text { and } \quad \lambda\left(\left(O_{2}\right)^{+1}\right) \cong\{a, b, \triangle\}^{+1} \cong\left(O_{3}\right)^{+1} .
$$

The semigroups $\left(O_{2}\right)^{+0}$ and $\lambda\left(\left(O_{2}\right)^{+0}\right)$ are proretract extensions of the subsemigroup $\{b, c\} \cong$ L_{2}.

| \cdot | a | b | c | \triangle |
| :---: | :---: | :---: | :---: | :---: | :---: |
| a | b | b | c | b |
| b | b | b | c | b |
| c | c | c | c | c |
| \triangle | b | b | c | b |

\cdot	a	b	c	\triangle
a	b	b	a	b
b	b	b	b	b
c	a	b	c	\triangle
\triangle	b	b	\triangle	b

The superextensions of semilattices were studied in [4]. The following Cayley tables imply that $\lambda\left(L_{3}\right) \cong L_{4}$ is a linear semilattice, but the superextension of the non-linear semilattice is its proretract extension and it is not even a Clifford semigroup:

\cdot	a	b	c	\triangle
a	a	b	c	\triangle
b	b	b	c	b
c	c	c	c	c
\triangle	\triangle	b	c	\triangle

\cdot	a	b	c	\triangle
a	a	c	c	c
b	c	b	c	c
c	c	c	c	c
\triangle	c	c	c	c

The structure of the superextension of the last commutative semigroup is shown in the following table. This semigroup and its superextension are proretract extensions of the subgroup $\{a, c\} \cong C_{2}$.

\cdot	a	b	c	\triangle
a	c	a	a	a
b	a	c	c	c
c	a	c	c	c
\triangle	a	c	c	c

3 SUPEREXTENSIONS OF NON-COMMUTATIVE SEMIGROUPS OF ORDER 3

There are 12 pairwise non-isomorphic non-commutative three-element semigroups. Noncommutative semigroups are divided into the pairs of dual semigroups that are antiisomorphic.

The superextension of a left (right) zero semigroup is a left (right) zero semigroup as well according to Theorem 3 . Therefore $\lambda\left(L O_{3}\right) \cong L O_{4}$ and $\lambda\left(R O_{3}\right) \cong R O_{4}$.

\cdot	a	b	c	\triangle
a	a	a	a	a
b	b	b	b	b
c	c	c	c	c
\triangle	\triangle	\triangle	\triangle	\triangle

\cdot	a	b	c	\triangle
a	a	b	c	\triangle
b	a	b	c	\triangle
c	a	b	c	\triangle
\triangle	a	b	c	\triangle

The following Cayley tables for the semigroups $\lambda\left(\left(\mathrm{LO}_{2}\right)^{+0}\right)$ and $\lambda\left(\left(\mathrm{RO}_{2}\right)^{+0}\right)$ imply that

$$
\lambda\left(\left(L O_{2}\right)^{+0}\right) \cong\{a, b, \triangle\}^{+0} \cong\left(L O_{3}\right)^{+0}
$$

and

$$
\lambda\left(\left(R O_{2}\right)^{+0}\right) \cong\{a, b, \triangle\}^{+0} \cong\left(R O_{3}\right)^{+0}:
$$

	a	b	c	\triangle
a	a	a	c	a
b	b	b	c	b
c	c	c	c	c
\triangle	\triangle	\triangle	c	\triangle

\cdot	a	b	c	\triangle
a	a	b	c	\triangle
b	a	b	c	\triangle
c	c	c	c	c
\triangle	a	b	c	\triangle

The following Cayley tables for the semigroups $\lambda\left(\left(L O_{2}\right)^{+1}\right)$ and $\lambda\left(\left(R O_{2}\right)^{+1}\right)$ imply that

$$
\lambda\left(\left(L O_{2}\right)^{+1}\right) \cong\{a, b, \Delta\}^{+1} \cong\left(\{a, b\}^{+1}\right)^{+1} \cong\left(\left(L O_{2}\right)^{+1}\right)^{+1}
$$

and

$$
\lambda\left(\left(R O_{2}\right)^{+1}\right) \cong\{a, b, \triangle\}^{+1} \cong\left(\{a, b\}^{+1}\right)^{+1} \cong\left(\left(R O_{2}\right)^{+1}\right)^{+1}:
$$

\cdot	a	b	c	\triangle
a	a	a	a	a
b	b	b	b	b
c	a	b	c	\triangle
\triangle	a	b	\triangle	\triangle

\cdot	a	b	c	\triangle
a	a	b	a	a
b	a	b	b	b
c	a	b	c	\triangle
\triangle	a	b	\triangle	\triangle

The following three-element semigroups and its superextensions are proretract extensions of its subsemigroups, which are isomorphic to LO_{2} and RO_{2} respectively:

| $\cdot \cdot$ | a | b | c | \triangle |
| :---: | :---: | :---: | :---: | :---: | :---: |
| a | c | c | c | c |
| b | b | b | b | b |
| c | c | c | c | c |
| \triangle | c | c | c | c |

$\cdot \cdot$	a	b	c	\triangle
a	c	b	c	c
b	c	b	c	c
c	c	b	c	c
\triangle	c	b	c	c

Other two pairs of non-Clifford non-commutative dual superextensions of three-element semigroups are given by the following Cayley tables:

\cdot	a	b	c	\triangle
a	c	a	c	c
b	c	b	c	c
c	c	c	c	c
\triangle	c	\triangle	c	c

\cdot	a	b	c	\triangle
a	a	b	a	a
b	a	b	a	a
c	a	b	c	\triangle
\triangle	a	b	a	a

The last two three-element semigroups are the examples of non-commutative bands whose superextensions are not Clifford semigroups.

References

[1] Banakh T., Gavrylkiv V. Algebra in superextension of groups, II: cancelativity and centers. Algebra Discrete Math. 2008, 4, 1-14.
[2] Banakh T., Gavrylkiv V. Algebra in superextension of groups: minimal left ideals. Mat. Stud. 2009, 31 (2), 142-148.
[3] Banakh T., Gavrylkiv V. Algebra in the superextensions of twinic groups. Dissertationes Math. 2010, 473, 1-74. doi:10.4064/dm473-0-1
[4] Banakh T., Gavrylkiv V. Algebra in superextensions of semilattices. Algebra Discrete Math. 2012, 13 (1), 26-42.
[5] Banakh T., Gavrylkiv V. Algebra in superextensions of inverse semigroups. Algebra Discrete Math. 2012, 13 (2), 147-168.
[6] Banakh T., Gavrylkiv V. On structure of the semigroups of k-linked upfamilies on groups. Asian-European J. Math. 2017, 10 (4). doi:10.1142/S1793557117500838
[7] Banakh T., Gavrylkiv V., Nykyforchyn O. Algebra in superextensions of groups, I: zeros and commutativity. Algebra Discrete Math. 2008, 3, 1-29.
[8] Clifford A.H., Preston G.B. The algebraic theory of semigroups. In: Math. Surveys and Monographs 7, 1. AMS, Providence, RI, 1961.
[9] Diego F., Jonsdottir K.H. Associative Operations on a Three-Element Set. The Math. Enthusiast 2008, 5 (2-3), 257-268.
[10] Gavrylkiv V. The spaces of inclusion hyperspaces over noncompact spaces. Mat. Stud. 2007, 28 (1), 92-110.
[11] Gavrylkiv V. Right-topological semigroup operations on inclusion hyperspaces. Mat. Stud. 2008, 29 (1), 18-34.
[12] Gavrylkiv V. Monotone families on cyclic semigroups. Precarpathian Bull. Shevchenko Sci. Soc. 2012, 17 (1), 35-45.
[13] Gavrylkiv V. Superextensions of cyclic semigroups. Carpathian Math. Publ. 2013, 5 (1), 36-43. doi: $10.15330 / \mathrm{cmp} \cdot 5.1 .36-43$
[14] Gavrylkiv V. Semigroups of linked upfamilies. Precarpathian Bull. Shevchenko Sci. Soc. 2015, 29 (1), 104-112.
[15] Gavrylkiv V. Semigroups of centered upfamilies on finite monogenic semigroups. J. Algebra, Number Theory: Adv. App. 2016, 16 (2), 71-84. doi:10.18642/jantaa'7100121719
[16] Gavrylkiv V. Semigroups of centered upfamilies on groups. Lobachevskii J. Math. 2017, 38 (3), 420-428. doi:10.1134/S1995080217030106
[17] Hindman N., Strauss D. Algebra in the Stone-Čech compactification. de Gruyter, Berlin, New York, 1998.
[18] Howie J.M. Fundamentals of semigroup theory. The Clarendon Press, Oxford University Press, New York, 1995.
[19] van Mill J. Supercompactness and Wallman spaces. In: Math. Centrum tracts, 85. Math. Centrum, Amsterdam, 1977.
[20] Teleiko A., Zarichnyi M. Categorical Topology of Compact Hausdofff Spaces. In: Math. stud., 5. VNTL Publishers, Lviv, 1999.
[21] Verbeek A. Superextensions of topological spaces. In: Math. Centrum tracts, 41. Math. Centrum, Amsterdam, 1972.

Received 04.04.2017
Revised 09.05.2017

Гаврилків В.М. Суперрозширення трьохелементних напівгруп // Карпатські матем. публ. — 2017. — Т.9, №1. - С. 28-36.

Сім'я \mathcal{A} непорожніх підмножин множини X називається монотонною, якщо для кожної множини $A \in \mathcal{A}$ довільна множина $B \supset A$ належить \mathcal{A}. Монотонна сім'я \mathcal{L} підмножин множини X називається зчепленою, якщо $A \cap B \neq \varnothing$ для всіх $A, B \in \mathcal{L}$. Зчеплена монотонна сім'я \mathcal{M} підмножин множини X є максимальною зчепленою, якщо \mathcal{M} збігається з кожною зчепленою монотонною сім'єю \mathcal{L} на X, яка містить \mathcal{M}. Суперрозширення $\lambda(X)$ складається з усіх максимальних зчеплених монотонних сімей на X. Кожна асоціативна бінарна операція * $: X \times X \rightarrow X$ продовжується до асоціативної бінарної операції ० : $\lambda(X) \times \lambda(X) \rightarrow \lambda(X)$ за формулою $\mathcal{L} \circ \mathcal{M}=\left\langle\bigcup_{a \in L} a * M_{a}: L \in \mathcal{L},\left\{M_{a}\right\}_{a \in L} \subset \mathcal{M}\right\rangle$ для максимальних зчеплених монотонних сімей $\mathcal{L}, \mathcal{M} \in \lambda(X)$. У цій статті описуються суперрозширення всіх трьохелементних напівгруп з точністю до ізоморфізму.

Ключові слова і фрази: напівгрупа, максимальна зчеплена система, суперрозширення, проективна ретракція, комутативність.

[^0]: У $\Delta К 512.53$
 2010 Mathematics Subject Classification: 20M10, 20M14, 20M17, 20M18, 54B20.

