ISSN 2075-9827 e-ISSN 2313-0210 Carpathian Math. Publ. 2017, 9 (1), 28–36 doi:10.15330/cmp.9.1.28-36

GAVRYLKIV V.M.

SUPEREXTENSIONS OF THREE-ELEMENT SEMIGROUPS

A family \mathcal{A} of non-empty subsets of a set X is called an *upfamily* if for each set $A \in \mathcal{A}$ any set $B \supset A$ belongs to \mathcal{A} . An upfamily \mathcal{L} of subsets of X is said to be *linked* if $A \cap B \neq \emptyset$ for all $A, B \in \mathcal{L}$. A linked upfamily \mathcal{M} of subsets of X is *maximal linked* if \mathcal{M} coincides with each linked upfamily \mathcal{L} on X that contains \mathcal{M} . The *superextension* $\lambda(X)$ consists of all maximal linked upfamilies on X. Any associative binary operation $* : X \times X \to X$ can be extended to an associative binary operation $\circ : \lambda(X) \times \lambda(X) \to \lambda(X)$ by the formula $\mathcal{L} \circ \mathcal{M} = \left\langle \bigcup_{a \in L} a * M_a : L \in \mathcal{L}, \{M_a\}_{a \in L} \subset \mathcal{M} \right\rangle$ for maximal linked upfamilies $\mathcal{L}, \mathcal{M} \in \lambda(X)$. In the paper we describe superextensions of all three-element semigroups up to isomorphism.

Key words and phrases: semigroup, maximal linked upfamily, superextension, projective retraction, commutative.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine E-mail: vgavrylkiv@gmail.com

INTRODUCTION

In this paper we investigate the algebraic structure of the superextension $\lambda(S)$ of a threeelement semigroup *S*. The thorough study of various extensions of semigroups was started in [11] and continued in [1–7, 12–16]. The largest among these extensions is the semigroup v(S) of all upfamilies on *S*. A family \mathcal{A} of non-empty subsets of a set *X* is called an *upfamily* if for each set $A \in \mathcal{A}$ any subset $B \supset A$ belongs to \mathcal{A} . Each family \mathcal{B} of non-empty subsets of *X* generates the upfamily $\langle B \subset X : B \in \mathcal{B} \rangle = \{A \subset X : \exists B \in \mathcal{B}(B \subset A)\}$. An upfamily \mathcal{F} that is closed under taking finite intersections is called a *filter*. A filter \mathcal{U} is called an *ultrafilter* if $\mathcal{U} = \mathcal{F}$ for any filter \mathcal{F} containing \mathcal{U} . The family $\beta(X)$ of all ultrafilters on a set *X* is called the Stone-Čech compactification of *X*, see [17], [20]. An ultrafilter $\{x\}$, generated by a singleton $\{x\}, x \in X$, is called *principal*. Each point $x \in X$ is identified with the principal ultrafilter $\langle \{x\}\rangle$ generated by the singleton $\{x\}$, and hence we consider $X \subset \beta(X) \subset v(X)$. It was shown in [11] that any associative binary operation $* : S \times S \to S$ can be extended to an associative binary operation $\circ : v(S) \times v(S) \to v(S)$ by the formula

$$\mathcal{L} \circ \mathcal{M} = \Big\langle \bigcup_{a \in L} a * M_a : L \in \mathcal{L}, \ \{M_a\}_{a \in L} \subset \mathcal{M} \Big\rangle$$

for upfamilies $\mathcal{L}, \mathcal{M} \in v(S)$. In this case the Stone-Čech compactification $\beta(S)$ is a subsemigroup of the semigroup v(S).

The semigroup v(S) contains many other important extensions of *S*. In particular, it contains the semigroup $\lambda(S)$ of maximal linked upfamilies. The space $\lambda(S)$ is well-known in

2010 Mathematics Subject Classification: 20M10, 20M14, 20M17, 20M18, 54B20.

УДК 512.53

General and Categorial Topology as the *superextension* of *S*, see [19]- [21]. An upfamily \mathcal{L} of subsets of *S* is *linked* if $A \cap B \neq \emptyset$ for all $A, B \in \mathcal{L}$. The family of all linked upfamilies on *S* is denoted by $N_2(S)$. It is a subsemigroup of v(S). The superextension $\lambda(S)$ consists of all maximal elements of $N_2(S)$, see [10], [11].

Each map $f : X \to Y$ induces the map

$$\lambda f: \lambda(X) \to \lambda(Y), \quad \lambda f: \mathcal{M} \mapsto \langle f(M) \subset Y: M \in \mathcal{M} \rangle \text{ (see [10])}.$$

A non-empty subset *I* of a semigroup *S* is called *an ideal* if $IS \cup SI \subset I$. A semigroup *S* is called *simple* if *S* is the unique ideal of *S*. An element *z* of a semigroup *S* is called a *zero* (resp. a *left zero*, a *right zero*) in *S* if az = za = z (resp. za = z, az = z) for any $a \in S$. A semigroup *S* is said to be a *left (right) zeros semigroup* if ab = a (ab = b) for any $a, b \in S$. A semigroup *S* is called a *null semigroup* if there exists an element $c \in S$ such that xy = c for any $x, y \in S$. By O_n , LO_n and RO_n we denote a null semigroup, a left zero semigroups and a right zero semigroup of order *n* respectively. Following the algebraic tradition, we denote by C_n the cyclic group of order *n*.

Let *S* be a semigroup and $e \notin S$. The binary operation defined on *S* can be extended to $S \cup \{e\}$ putting es = se = s for all $s \in S \cup \{e\}$. The notation S^{+1} denotes a monoid $S \cup \{e\}$ obtained from *S* by adjoining an extra identity *e* (regardless of whether *S* is or is not a monoid). Analogous to the above construction, for every semigroup *S* one can define S^{+0} , a semigroup with attached an extra zero to *S*.

Let us recall that a *semilattice* is a commutative idempotent semigroup. Idempotent semigroups are called *bands*. So, in a band each element x is an *idempotent*, which means that xx = x. By L_n we denote the linear semilattice $\{0, 1, ..., n\}$ of order n, endowed with the operation of minimum. A semigroup S is called *Clifford* if it is a union of groups.

A semigroup $\langle a \rangle = \{a^n\}_{n \in \mathbb{N}}$ generated by a single element *a* is called *monogenic* or *cyclic*. If a monogenic semigroup is infinite, then it is isomorphic to the additive semigroup \mathbb{N} . A finite monogenic semigroup $S = \langle a \rangle$ also has very simple structure (see [8], [18]). There are positive integer numbers *r* and *m* called the *index* and the *period* of *S* such that

- $S = \{a, a^2, \dots, a^{m+r-1}\}$ and m + r 1 = |S|;
- for any $i, j \in \omega$ the equality $a^{r+i} = a^{r+j}$ holds if and only if $i \equiv j \mod m$;
- $C_m = \{a^r, a^{r+1}, \dots, a^{m+r-1}\}$ is a cyclic and maximal subgroup of *S* with the neutral element $e = a^n \in C_m$, where *m* divides *n*.

We denote by $C_{r,m}$ a finite monogenic semigroup of index *r* and period *m*.

An *isomorphism* between *S* and *S'* is one-to-one function $\varphi : S \to S'$ such that $\varphi(xy) = \varphi(x)\varphi(y)$ for all $x, y \in S$. If there exist an isomorphism between *S* and *S'*, then *S* and *S'* are said to be *isomorphic*, denoted $S \cong S'$. An *antiisomorphism* between *S* and *S'* is one-to-one function $\varphi : S \to S'$ such that $\varphi(xy) = \varphi(y)\varphi(x)$ for all $x, y \in S$. If there exist an antiisomorphism between *S* and *S'*, then *S* and *S'* are said to be *antiisomorphic*, denoted $S \cong_a S'$. If (S, *) is a semigroup, then (S, \circ) , where $x \circ y = y * x$, is a semigroup as well. The semigroups (S, *) and (S, \circ) are called *dual*. It is easy to see that dual semigroups are antiisomorphic.

There are exactly five pairwise non-isomorphic semigroups having two elements: C_2 , L_2 , O_2 , LO_2 , RO_2 . The superextension $\lambda(S)$ of two-element semigroups *S* consists of two principal ultrafilters and therefore $\lambda(S) \cong S$.

In this paper we concentrate on describing the structure of the superextensions $\lambda(S)$ of three-element semigroups *S*. Among 19683 different operations on a three-element set *S* = $\{a, b, c\}$ there are exactly 113 operations which are associative, see [9]. In other words, there exist exactly 113 three-element semigroups, and many of these are isomorphic so that there are essentially only 24 pairwise non-isomorphic semigroups of order 3.

1 PROJECTIVE RETRACTIONS AND SUPEREXTENSIONS

In this section we will apply some properties of proretract semigroups to study the structure of the superextensions of semigroups.

A subset *R* of a set *X* is called a *retract* if there exists a *retraction* of *X* onto *R*, that is a map of *X* onto *R* which leaves each element of *R* fixed. A retraction $r : S \to T$ of a semigroup *S* onto a subsemigroup *T* of *S* is called a *projective retraction* if xy = r(x)r(y) for any $x, y \in$ *S*. A semigroup *S* is said to be a *proretract-semigroup* provided that there exists a projective retraction $r : S \to T$ of *S* onto some proper subsemigroup *T* of *S*. In this case *T* will be called a *projective retract* of *S* under a projective retraction *r*, and *S* will be called a *proretract extension* of *T* under a projective retraction *r*. If $r : S \to T$ is a projective retraction of a semigroup *S* onto a subsemigroup *T* of *S*, then *r* is a homomorphism and *T* is an ideal of *S*.

If a semigroup *S* is simple, then it is not a proretract-semigroup. In particular, groups, left zero and right zero semigroups are not proretract-semigroups.

Proposition 1. A finite monogenic semigroup $C_{r,m}$ of index r and period m is a proretractsemigroup if and only if r = 2.

Proof. Let $C_{r,m} = \{a, a^2, ..., a^r, ..., a^{r+m-1} \mid a^{r+m} = a^m\}$. If r = 1, then $C_{r,m}$ is simple and thus it is not a proretract-semigroup.

Let r = 2. Consider the map $\varphi : C_{2,m} \to C_m = \{a^2, \dots, a^{m+1}\}, \varphi(s) = es$, where e is the identity of the maximal subgroup C_m of $C_{2,m}$. Then $st \in C_m$ and $st = eset = \varphi(s)\varphi(t)$ for any $s, t \in C_{2,m}$. Consequently, φ is a projective retraction.

Let r > 2. Suppose that $\varphi : C_{r,m} \to I$ is a projective retraction onto some proper ideal I of S. Then $aa = \varphi(a)\varphi(a)$. In monogenic semigroups of index r > 2 the equality $a^2 = \varphi(a)^2$ is possible only in the case $\varphi(a) = a$. Since φ is a homomorphism, then φ leaves each element of $C_{r,m}$ fixed. Therefore, $I = C_{r,m}$, a contradiction.

Let us note that for a subsemigroup *T* of a semigroup *S* the homomorphism $i : \lambda(T) \rightarrow \lambda(S), i : A \rightarrow \langle A \rangle_S$ is injective, and thus we can identify the semigroup $\lambda(T)$ with the subsemigroup $i(\lambda(T)) \subset \lambda(S)$. Therefore, for each family *B* of non-empty subsets of *T* we identify the upfamilies

$$\langle \mathcal{B} \rangle_T = \{ A \in T \mid \exists B \in \mathcal{B}(B \subset A) \} \in \lambda(T) \text{ and } \langle \mathcal{B} \rangle_S = \{ A \in S \mid \exists B \in \mathcal{B}(B \subset A) \} \in \lambda(S).$$

In the following proposition we show that proretract-semigroup property is preserved by superextensions.

Proposition 2. If $r : S \to T$ is a projective retraction of a semigroup *S* onto a subsemigroup *T* of *S*, then $\lambda r : \lambda(S) \to \lambda(T)$ is a projective retraction of the superextension $\lambda(S)$ onto $\lambda(T)$.

Proof. Let $\mathcal{L}, \mathcal{M} \in \lambda(S)$. Then

$$\lambda r(\mathcal{L}) \circ \lambda r(\mathcal{M}) = \left\langle \bigcup_{a \in r(L)} a * r(M)_a : r(L) \in \lambda r(\mathcal{L}), \ \{r(M)_a\}_{a \in r(L)} \subset \lambda r(\mathcal{M}) \right\rangle$$
$$= \left\langle \bigcup_{a \in L} r(a) * r(M)_a : L \in \mathcal{L}, \ \{r(M)_a\}_{a \in L} \subset \lambda r(\mathcal{M}) \right\rangle$$
$$= \left\langle \bigcup_{a \in L} a * M_a : L \in \mathcal{L}, \ \{M_a\}_{a \in L} \subset \mathcal{M} \right\rangle = \mathcal{L} \circ \mathcal{M}.$$

Corollary 1. If *S* is a proretract-semigroup, then $\lambda(S)$ is a proretract-semigroup as well.

In the next section we show that there exists a semigroup *S* that is not a proretract-semigroup, but the superextension $\lambda(S)$ is a proretract-semigroup.

Theorem 1. If *S* is a null semigroup, then $\lambda(S)$ is a null semigroup as well.

Proof. Let *S* be a null semigroup. So there exists $c \in S$ such that xy = c for all $x, y \in S$. Then the map $r : S \to \{c\}, r(s) = c$ for any $s \in S$, is a projective retraction. According to Proposition 2 the map $\lambda r : \lambda(S) \to \lambda\{c\} = \{\langle \{c\} \rangle\}$ is a projective retraction as well. Therefore,

$$\mathcal{L} \circ \mathcal{M} = \lambda r(\mathcal{L}) \circ \lambda r(\mathcal{M}) = \langle \{c\} \rangle \circ \langle \{c\} \rangle = \langle \{c\} \rangle$$

for any $\mathcal{L}, \mathcal{M} \in \lambda(S)$. Consequently $\lambda(S)$ is a null semigroup.

A semigroup *S* is said to be an *almost null semigroup* if there exist the distinct elements $a, c \in S$ such that aa = a and xy = c for any $(x, y) \in S \times S \setminus \{(a, a)\}$.

Theorem 2. If *S* is an almost null semigroup, then $\lambda(S)$ is an almost null semigroup as well.

Proof. Let *S* be an almost null semigroup, so there exist the elements $a, c \in S$, $c \neq a$, such that aa = a and xy = c for any $(x, y) \in S \times S \setminus \{(a, a)\}$. Then the map $r : S \to \{a, c\}$, r(a) = a and r(s) = c for any $s \neq a$, is a projective retraction. According to Proposition 2 the map $\lambda r : \lambda(S) \to \lambda\{a, c\}$ is a projective retraction as well. It is easy to see that the semigroup $\lambda\{a, c\} = \{\langle \{a\} \rangle, \langle \{c\} \rangle\} \cong \{a, c\}$ is isomorphic to the semilattice $L_2 = \{0, 1\}$ with operation of minimum.

It is obvious that $\langle \{a\} \rangle \circ \langle \{a\} \rangle = \langle \{a\} \rangle$. If $\mathcal{A} \neq \langle \{a\} \rangle$, then there exists $A \in \mathcal{A}$ such that $a \notin A$ and therefore r(A) = c. This implies that $\lambda r(\mathcal{A}) = \{\langle \{c\} \rangle\}$. If $(\mathcal{L}, \mathcal{M}) \in \lambda(S) \times \lambda(S) \setminus \{(\langle \{a\} \rangle, \langle \{a\} \rangle)\}$, then $\lambda r(\mathcal{L}) = \langle \{c\} \rangle$ or $\lambda r(\mathcal{M}) = \langle \{c\} \rangle$. Therefore, $\mathcal{L} \circ \mathcal{M} = \lambda r(\mathcal{L}) \circ \lambda r(\mathcal{M}) = \langle \{c\} \rangle$. Consequently, $\lambda(S)$ is an almost null semigroup.

Theorem 3. If *S* is a left (right) zero semigroup, then $\lambda(S)$ is a left (right) zero semigroup as well.

Proof. Let *S* be a left zero semigroup. Then

$$\mathcal{L} \circ \mathcal{M} = \Big\langle \bigcup_{a \in L} a * M_a : L \in \mathcal{L}, \ \{M_a\}_{a \in L} \subset \mathcal{M} \Big\rangle = \Big\langle \bigcup_{a \in L} \{a\} : L \in \mathcal{L} \Big\rangle = \mathcal{L}$$

for any $\mathcal{L}, \mathcal{M} \in \lambda(S)$. Thus $\lambda(S)$ is a left zero semigroup as well.

For a right zero semigroup the proof is similar.

2 SUPEREXTENSIONS OF COMMUTATIVE SEMIGROUPS OF ORDER 3

In this section we describe the structure of superextensions of commutative three-element semigroups. Among 24 pairwise non-isomorphic semigroups of order 3 there are 12 commutative semigroups.

For a semigroup $S = \{a, b, c\}$ the semigroup $\lambda(S)$ contains the three principal ultrafilters $\langle \{a\} \rangle, \langle \{b\} \rangle, \langle \{c\} \rangle$ and the maximal linked upfamily $\Delta = \langle \{a, b\}, \{a, c\}, \{b, c\} \rangle$. Since semigroups *S* and $\{\langle \{a\} \rangle, \langle \{b\} \rangle, \langle \{c\} \rangle\}$ are isomorphic, then we can assume that $\lambda(S) = S \cup \{\Delta\}$.

In the sequel we will describe the structure of superextensions of three-element semigroups $S = \{a, b, c\}$ defined by Cayley tables using the formula

$$\mathcal{L} \circ \mathcal{M} = \Big\langle \bigcup_{a \in L} a * M_a : L \in \mathcal{L}, \ \{M_a\}_{a \in L} \subset \mathcal{M} \Big\rangle$$

of product of maximal linked upfamilies $\mathcal{L}, \mathcal{M} \in \lambda(S)$.

The superextension $\lambda(C_3)$ (described by the following Cayley table) of the cyclic group C_3 is isomorphic to $(C_3)^{+0}$ and therefore $\lambda(C_3)$ is a commutative Clifford semigroup. The thorough study of superextensions of groups was started in [7] and continued in [1–3].

•	а	b	С	\triangle
а	а	b	С	\triangle
b	b	С	а	\triangle
С	С	а	b	\triangle
\triangle	\triangle	\triangle	\triangle	\triangle

The superextensions of monogenic semigroups were studied in [13]. The cyclic semigroup $C_{2,2}$ is a proretract extension of cyclic subgroup $\{b, c\} \cong C_2$ under retraction $\varphi : \{a, b, c\} \rightarrow \{b, c\}$ with $\varphi(a) = c$. The superextension $\lambda(C_{2,2})$ is also a proretract extension of $\lambda\{b, c\} \cong \{b, c\}$ according to Proposition 2. The monogenic semigroup $C_{3,1}$ is not a proretract-semigroup by Proposition 1, but its superextension $\lambda(C_{3,1})$ is a proretract extension of $C_{3,1}$ under retraction $r : \lambda(C_{3,1}) \rightarrow C_{3,1}$ with $r(\Delta) = c$, and, therefore, $\lambda(C_{3,1})$ is a proretract-semigroup. Here are the Cayley tables of $\lambda(C_{2,2})$ and $\lambda(C_{3,1})$ respectively:

•	а	b	С	\triangle	•	а	b	С	
а	b	С	b	b	а	b	С	С	
b	С	b	С	С	b	С	С	С	
С	b	С	b	b	С	С	С	С	
\triangle	b	С	b	b	\triangle	С	С	С	

The following Cayley tables for the semigroups $\lambda((C_2)^{+0})$ and $\lambda((C_2)^{+1})$, where $C_2 \cong \{a, b\}$, imply that

$$\lambda((C_2)^{+0}) \cong \{a, b, \Delta\}^{+0} \cong ((C_2)^{+0})^{+0}$$

and

$$\lambda((C_2)^{+1}) \cong \{a, b, \triangle\}^{+1} \cong ((C_2)^{+1})^{+1}:$$

					-					
•	а	b	С	\triangle		•	а	b	С	\triangle
а	а	b	С	\triangle		а	а	b	а	а
b	b	а	С	\triangle		b	b	а	b	b
С	С	С	С	С		С	а	b	С	\triangle
\triangle	\triangle	\triangle	С	\triangle		\triangle	а	b	\triangle	\triangle

The superextensions of a null semigroup and an almost null semigroup are a null semigroup and an almost null semigroup as well according to Theorems 1 and 2:

•	а	b	С	\triangle
а	С	С	С	С
b	С	С	С	С
С	С	С	С	С
\triangle	С	С	С	С

•	а	b	С	\triangle	•	а	b	С	\triangle
а	С	С	С	С	а	а	С	С	С
b	С	С	С	С	b	С	С	С	С
С	С	С	С	С	С	С	С	С	С
\triangle	С	С	С	С	\triangle	С	С	С	С

The following Cayley tables for the semigroups $\lambda((O_2)^{+0})$ and $\lambda((O_2)^{+1})$ imply that

$$\lambda((O_2)^{+0}) \cong \{a, b, \triangle\}^{+0} \cong (O_3)^{+0} \quad \text{and} \quad \lambda((O_2)^{+1}) \cong \{a, b, \triangle\}^{+1} \cong (O_3)^{+1}.$$

The semigroups $(O_2)^{+0}$ and $\lambda((O_2)^{+0})$ are proretract extensions of the subsemigroup $\{b, c\} \cong$ L_2 .

•	а	b	С	\triangle
а	b	b	С	b
b	b	b	С	b
С	С	С	С	С
\triangle	b	b	С	b

•	а	b	С	\triangle
а	b	b	а	b
b	b	b	b	b
С	а	b	С	\triangle
\triangle	b	b	\triangle	b

The superextensions of semilattices were studied in [4]. The following Cayley tables imply that $\lambda(L_3) \cong L_4$ is a linear semilattice, but the superextension of the non-linear semilattice is its proretract extension and it is not even a Clifford semigroup:

•	а	b	С	\triangle	•	а	b	С	Ζ
а	а	b	С	\triangle	а	а	С	С	(
b	b	b	С	b	b	С	b	С	(
С	С	С	С	С	С	С	С	С	(
\triangle	\triangle	b	С	\triangle	\triangle	С	С	С	(

The structure of the superextension of the last commutative semigroup is shown in the following table. This semigroup and its superextension are proretract extensions of the subgroup $\{a,c\} \cong C_2.$

•	а	b	С	\triangle
а	С	а	а	а
b	а	С	С	С
С	а	С	С	С
\triangle	а	С	С	С

3 SUPEREXTENSIONS OF NON-COMMUTATIVE SEMIGROUPS OF ORDER 3

There are 12 pairwise non-isomorphic non-commutative three-element semigroups. Noncommutative semigroups are divided into the pairs of dual semigroups that are antiisomorphic.

The superextension of a left (right) zero semigroup is a left (right) zero semigroup as well according to Theorem 3. Therefore $\lambda(LO_3) \cong LO_4$ and $\lambda(RO_3) \cong RO_4$.

•	а	b	С	\triangle
а	а	а	а	а
b	b	b	b	b
С	С	С	С	С
\triangle	\triangle	\triangle	\triangle	\triangle

•	а	b	С	\triangle
а	а	b	С	\triangle
b	а	b	С	\triangle
С	а	b	С	\triangle
\triangle	а	b	С	\triangle

The following Cayley tables for the semigroups $\lambda((LO_2)^{+0})$ and $\lambda((RO_2)^{+0})$ imply that $\lambda((LO_2)^{+0}) \cong \{a, b, \triangle\}^{+0} \cong (LO_3)^{+0}$

and

$$\lambda((RO_2)^{+0}) \cong \{a, b, \triangle\}^{+0} \cong (RO_3)^{+0}:$$

•	а	b	С	\triangle
а	а	а	С	а
b	b	b	С	b
С	С	С	С	С
\triangle	\triangle	\triangle	С	\triangle

•	а	b	С	\triangle
а	а	b	С	\triangle
b	а	b	С	\triangle
С	С	С	С	С
\triangle	а	b	С	\triangle

The following Cayley tables for the semigroups $\lambda((LO_2)^{+1})$ and $\lambda((RO_2)^{+1})$ imply that $\lambda((LO_2)^{+1}) \cong \{a, b, \wedge\}^{+1} \cong (\{a, b\}^{+1})^{+1} \cong ((LO_2)^{+1})^{+1}$

$$\Lambda((LO_2)^{+1}) \cong \{a, b, \Delta\}^{+1} \cong (\{a, b\}^{+1})^{+1} \cong ((LO_2)^{+1})^{+1}$$

and

$$\lambda((RO_2)^{+1}) \cong \{a, b, \triangle\}^{+1} \cong (\{a, b\}^{+1})^{+1} \cong ((RO_2)^{+1})^{+1}:$$

•	а	b	С	\triangle	•	а	b	С	Ζ
а	а	а	а	а	а	а	b	а	l
b	b	b	b	b	b	а	b	b	ł
С	а	b	С	\triangle	С	а	b	С	Ζ
\triangle	а	b	\triangle	\triangle	\triangle	а	b	\triangle	Ζ

The following three-element semigroups and its superextensions are proretract extensions of its subsemigroups, which are isomorphic to *LO*₂ and *RO*₂ respectively:

•	а	b	С	\triangle
а	С	С	С	С
b	b	b	b	b
С	С	С	С	С
\triangle	С	С	С	С

•	а	b	С	\triangle
а	С	b	С	С
b	С	b	С	С
С	С	b	С	С
\triangle	С	b	С	С

Other two pairs of non-Clifford non-commutative dual superextensions of three-element semigroups are given by the following Cayley tables:

•	а	b	С	\triangle		•	a	b	С	\triangle
а	С	С	С	С		а	С	а	С	С
b	а	b	С	\triangle		b	С	b	С	С
С	С	С	С	С		С	С	С	С	С
\triangle	С	С	С	С		\triangle	С	\triangle	С	С
					-					
•	а	b	С	\triangle]	•	а	b	С	\triangle
· a	a a	b a	с а	△ a		а	a a	b b	с а	\triangle a
a b	a a b	b a b	с а b	△ <i>a</i> <i>b</i>			а а а	b b b	C a a	△ <i>a</i> <i>a</i>
a b c	a a b a	b a b a	c a b c	 △ <i>a</i> <i>b</i> <i>a</i> 		a b c	a a a a	b b b b	C a a C	$\begin{array}{c} \triangle \\ a \\ a \\ \triangle \end{array}$

The last two three-element semigroups are the examples of non-commutative bands whose superextensions are not Clifford semigroups.

REFERENCES

- [1] Banakh T., Gavrylkiv V. *Algebra in superextension of groups, II: cancelativity and centers*. Algebra Discrete Math. 2008, **4**, 1–14.
- [2] Banakh T., Gavrylkiv V. Algebra in superextension of groups: minimal left ideals. Mat. Stud. 2009, 31 (2), 142–148.
- Banakh T., Gavrylkiv V. Algebra in the superextensions of twinic groups. Dissertationes Math. 2010, 473, 1–74. doi:10.4064/dm473-0-1
- [4] Banakh T., Gavrylkiv V. Algebra in superextensions of semilattices. Algebra Discrete Math. 2012, 13 (1), 26–42.
- [5] Banakh T., Gavrylkiv V. Algebra in superextensions of inverse semigroups. Algebra Discrete Math. 2012, 13 (2), 147–168.
- [6] Banakh T., Gavrylkiv V. On structure of the semigroups of k-linked upfamilies on groups. Asian-European J. Math. 2017, 10 (4). doi:10.1142/S1793557117500838
- [7] Banakh T., Gavrylkiv V., Nykyforchyn O. Algebra in superextensions of groups, I: zeros and commutativity. Algebra Discrete Math. 2008, 3, 1–29.
- [8] Clifford A.H., Preston G.B. The algebraic theory of semigroups. In: Math. Surveys and Monographs 7, 1. AMS, Providence, RI, 1961.
- [9] Diego F., Jonsdottir K.H. Associative Operations on a Three-Element Set. The Math. Enthusiast 2008, 5 (2–3), 257–268.
- [10] Gavrylkiv V. The spaces of inclusion hyperspaces over noncompact spaces. Mat. Stud. 2007, 28 (1), 92–110.
- [11] Gavrylkiv V. Right-topological semigroup operations on inclusion hyperspaces. Mat. Stud. 2008, 29 (1), 18–34.
- [12] Gavrylkiv V. Monotone families on cyclic semigroups. Precarpathian Bull. Shevchenko Sci. Soc. 2012, 17 (1), 35–45.
- [13] Gavrylkiv V. Superextensions of cyclic semigroups. Carpathian Math. Publ. 2013, 5 (1), 36–43. doi: 10.15330/cmp.5.1.36-43
- [14] Gavrylkiv V. Semigroups of linked upfamilies. Precarpathian Bull. Shevchenko Sci. Soc. 2015, 29 (1), 104–112.
- [15] Gavrylkiv V. Semigroups of centered upfamilies on finite monogenic semigroups. J. Algebra, Number Theory: Adv. App. 2016, 16 (2), 71–84. doi:10.18642/jantaa⁷¹⁰⁰¹²¹⁷¹⁹

- [16] Gavrylkiv V. Semigroups of centered upfamilies on groups. Lobachevskii J. Math. 2017, 38 (3), 420–428. doi:10.1134/S1995080217030106
- [17] Hindman N., Strauss D. Algebra in the Stone-Čech compactification. de Gruyter, Berlin, New York, 1998.
- [18] Howie J.M. Fundamentals of semigroup theory. The Clarendon Press, Oxford University Press, New York, 1995.
- [19] van Mill J. Supercompactness and Wallman spaces. In: Math. Centrum tracts, 85. Math. Centrum, Amsterdam, 1977.
- [20] Teleiko A., Zarichnyi M. Categorical Topology of Compact Hausdofff Spaces. In: Math. stud., 5. VNTL Publishers, Lviv, 1999.
- [21] Verbeek A. Superextensions of topological spaces. In: Math. Centrum tracts, 41. Math. Centrum, Amsterdam, 1972.

Received 04.04.2017 Revised 09.05.2017

Гаврилків В.М. *Суперрозширення трьохелементних напівгруп //* Карпатські матем. публ. — 2017. — Т.9, №1. — С. 28–36.

Сім'я \mathcal{A} непорожніх підмножин множини X називається монотонною, якщо для кожної множини $A \in \mathcal{A}$ довільна множина $B \supset A$ належить \mathcal{A} . Монотонна сім'я \mathcal{L} підмножин множини X називається зиепленою, якщо $A \cap B \neq \emptyset$ для всіх $A, B \in \mathcal{L}$. Зчеплена монотонна сім'я \mathcal{M} підмножин множини X є максимальною зиепленою, якщо \mathcal{M} збігається з кожною зчепленою монотонною сім'єю \mathcal{L} на X, яка містить \mathcal{M} . Суперрозширення $\lambda(X)$ складається з усіх максимальних зчеплених монотонних сімей на X. Кожна асоціативна бінарна операція $* : X \times X \to X$ продовжується до асоціативної бінарної операції $\circ : \lambda(X) \times \lambda(X) \to \lambda(X)$ за формулою $\mathcal{L} \circ \mathcal{M} = \left\langle \bigcup_{a \in L} a * M_a : L \in \mathcal{L}, \{M_a\}_{a \in L} \subset \mathcal{M} \right\rangle$ для максимальних зчеплених монотонних сімей $\mathcal{L}, \mathcal{M} \in \lambda(X)$. У цій статті описуються суперрозширення всіх трьохелементних напівгруп з точністю до ізоморфізму.

Ключові слова і фрази: напівгрупа, максимальна зчеплена система, суперрозширення, проективна ретракція, комутативність.