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POINTS OF NARROWNESS AND UNIFORMLY NARROW OPERATORS

It is known that the sum of every two narrow operators on L1 is narrow, however the same is false

for Lp with 1 < p < ∞. The present paper continues numerous investigations of the kind. Firstly,

we study narrowness of a linear and orthogonally additive operators on Köthe function spaces and

Riesz spaces at a fixed point. Theorem 1 asserts that, for every Köthe Banach space E on a finite

atomless measure space there exist continuous linear operators S, T : E → E which are narrow

at some fixed point but the sum S + T is not narrow at the same point. Secondly, we introduce

and study uniformly narrow pairs of operators S, T : E → X, that is, for every e ∈ E and every

ε > 0 there exists a decomposition e = e′ + e′′ to disjoint elements such that ‖S(e′)− S(e′′)‖ < ε

and ‖T(e′) − T(e′′)‖ < ε. The standard tool in the literature to prove the narrowness of the sum

of two narrow operators S + T is to show that the pair S, T is uniformly narrow. We study the

question of whether every pair of narrow operators with narrow sum is uniformly narrow. Having

no counterexample, we prove several theorems showing that the answer is affirmative for some

partial cases.
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INTRODUCTION

The class of narrow operators includes some other classes of “small” operators defined

on atomless function spaces and Riesz spaces, such as weakly compact, Dunford-Pettis, abso-

lutely summing etc. It was introduced and studied in [11] for function spaces and in [7] for

Riesz spaces, however some results on these operators appeared in 80-th years of XXth cen-

tury. The importance of narrow operators is explained by different geometric implications of

their properties, see survey [13] and textbook [14]. Then the notion was naturally generalized

to (nonlinear) orthogonally additive operators in [12]. An operator (linear or, more general,

orthogonally additive) T : E → X from an atomless function space or atomless Riesz space

E to a topological vector space X is said to be narrow if for every e ∈ E and every neighbor-

hood V of zero in X there exists a decomposition to disjoint summands e = e′ + e′′ such that

T(e′)− T(e′′) ∈ V. Although it would be natural to consider narrowness at a fixed point e ∈ E,

no investigation before [12] (2014) took this point into account. However in [12] the authors

considered narrowness of an operator T at a fixed point e ∈ E only for technical reasons to

prove the main result.
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One of the most interesting facts concerning narrow operators is that, for some pairs of

spaces (E, F) the sum S + T of every two narrow operators S, T : E → X is narrow, but for

other pairs the same is not true. For instance, the sum of every two narrow operators on L1

is narrow, however every operator on Lp with 1 < p < ∞ is a sum of two narrow operators.

A number of published papers of different authors devoted to the questions of narrowness of

a sum of two narrow operators (see, e.g. [2, 7, 8, 11]). A very different situation appears for

narrowness at a fixed point. Theorem 1 asserts that for every Köthe Banach space E on a finite

atomless measure space there exist continuous linear operators S, T : E → E which are narrow

at some fixed point but the sum S + T is not narrow at the same point.

A very natural proof that the sum S + T of two narrow operators S, T : E → X is narrow

is reduced to the proof that, for every e ∈ E and every ε > 0 there exists a partition e =

e′ ⊔ e′′ (common for both S and T) such that ‖Se′ − Se′′‖ < ε/2 and ‖Te′ − Te′′‖ < ε/2. This

naturally leads us to a new notion of uniformly narrow pair of operators and to the question

of whether every pair of narrow operators with narrow sum is uniformly narrow. Having no

counterexample, in Section 2 we prove several theorems showing that the answer is affirmative

for some partial cases.

Now we give a brief preliminaries on the notions used below. An F-space is a complete

metric linear space X over a scalar field K ∈ {R, C} with an invariant metric ρ (i.e., ρ(x, y) =

ρ(x + z, y + z) for each x, y, z ∈ X). We set ‖x‖ = ρ(x, 0), and so, ρ(x, y) = ‖x − y‖ and call

the defined map ‖ · ‖ : X × X → [0,+∞) the F-norm of the F-space X. A very important class

of F-spaces is the class of Banach spaces. Let (Ω, Σ, µ) be a finite measure space. An F-space

E of equivalence classes of measurable functions on Ω is called a Köthe F-space if the following

conditions hold: (Ki) if y ∈ E and |x| ≤ |y| then x ∈ E and ‖x‖ ≤ ‖y‖; (Kii) 1Ω ∈ E. If,

moreover, E is a Banach space and (Kiii) E ⊆ L1(µ) then E is called a Köthe Banach space.

By L(X, Y) we denote the set of all continuous linear operators acting from X to Y.

Let E be a Riesz space (in particular, a Köthe F-space) and X a vector space. A map T : E →
X is called an orthogonally additive operator if T(x + y) = T(x) + T(y) for all x, y ∈ E with x⊥y

(for Köthe F-space it means that x and y have disjoint supports). If, moreover, X is a Riesz space

then an order bounded orthogonally additive operator T : E → X is called an abstract Uryson

operator. We refer the reader to [4, 5, 6, 10] and the bibliography therein for examples and some

usual facts on orthogonally additive operators. An element y of a Riesz space E is called a

fragment (in another terminology, a component) of an element x ∈ E, provided y⊥(x − y). The

notation y ⊑ x means that y is a fragment of x. A net (xα)α∈Λ in E order converges to an element

x ∈ E (notation xα
o

−→ x) if there exists a net (uα)α∈Λ in E such that uα ↓ 0 and |xβ − x| ≤ uβ

for all β ∈ Λ. The equality x =
⊔n

i=1 xi means that x = ∑
n
i=1 xi and xi⊥xj if i 6= j. Note that

in this case one has that xi ⊑ x for all i. If E is a Riesz space and e ∈ E+ then by Fe we denote

the set of all fragments of e. We say that a net (xα)α∈Λ in E up-laterally converges to an element

x ∈ E (notation xα
ℓ↑
−→ x) if xα

o
−→ x and xα ⊑ xβ as α < β. A function f : E → F between

Riesz spaces is said to be up-laterally continuous if for every net (xα)α∈Λ in E and every x ∈ E

the condition xα
ℓ↑
−→ x implies f (xα)

ℓ↑
−→ f (x) in F.

An element e of a Riesz space E is called a projection element if the band Be generated by

e is a projection band. A Riesz space E is said to have the principal projection property if every

element of E is a projection element. For instance, every Dedekind σ-complete Riesz space

has the principal projection property. An element u 6= 0 of a Riesz space E is called an atom
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whenever 0 ≤ x ≤ |u|, 0 ≤ y ≤ |u| and x ∧ y = 0 imply that either x = 0 or y = 0. Evidently, if

u ∈ E is an atom then Fu = {0, u}. A Riesz space without a nonzero atom is said to be atomless.

1 POINTS OF NARROWNESS

Below we give main definitions of narrow operators adapted to the idea to consider nar-

rowness at a fixed point.

Definition 1.1 (of a narrow map). Let E be a Riesz space and X be a topological vector space.

A function f : E → X is said to be:

• narrow at a point e ∈ E if for every neighborhood of zero U in X there exists a decom-

position e = e1 ⊔ e2 such that f (e1)− f (e2) ∈ U. The set of all points of E at which f is

narrow is denoted by N ( f );

• narrow if N ( f ) = E.

Observe that, for linear maps the definition is equivalent to the following one. A linear

operator T : E → X is said to be narrow at a point e ∈ E if for every neighborhood of zero U in

X there exists f ∈ E such that | f | = |e| and T f ∈ U.

Definition 1.2 (of a strictly narrow map). Let E be a Riesz space and X be a set. A function

f : E → X is said to be

• strictly narrow at a point e ∈ E if there exists a decomposition e = e1 ⊔ e2 such that

f (e1) = f (e2). The set of all points of E at which f is strictly narrow is denoted by N s( f );

• strictly narrow if N s( f ) = E.

Likewise, if X is a linear space, a linear operator T : E → X is strictly narrow at a point

e ∈ E if and only if there exists f ∈ E such that | f | = |e| and T f = 0.

Definition 1.3 (of an order narrow map). Let E, X be Riesz spaces. A function f : E → X is

said to be:

• order narrow at a point e ∈ E if there is a net of decompositions e = e′λ ⊔ e′′λ, λ ∈ Λ such

that ( f (e′λ)− f (e′′λ))
o

−→ 0 in X. The set of all points of E at which f is order narrow is

denoted by N o( f );

• order narrow if N o( f ) = E.

Similarly, a linear operator T : E → X is order narrow at a point e ∈ E if and only if there

exists a net fα ∈ E with | fα| = |e| for all indices α such that T fα
o

−→ 0.

Observe that a narrow (in any sense) function sends any atom to zero. So, to avoid triviality

one may consider atomless Köthe F-spaces and atomless Riesz spaces to be the domain spaces

of narrow maps. Another simple observation is that 0 is a point of narrowness of any map in

any sense of narrowness.

Obviously, if X is a topological vector space then every strictly narrow (at a point, on a set)

function is narrow. So, N s( f ) ⊆ N ( f ) for any map f : E → X. Similarly, if X is a Riesz space

then every strictly narrow (at a point, on a set) function is order narrow. So, N s( f ) ⊆ N o( f )
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for any map f : E → X. If one considers a compact linear operator T with zero kernel acting

from a Köthe F-space E to an F-space X then N s(T) = {0}, however N (T) = E, because

every compact operator is narrow [14, Proposition 2.1]. If, moreover, X is an order continuous

Banach lattice then N o(T) = E as well, because in this case every narrow operator is order

narrow [14, Proposition 10.9].

The connections between narrowness and order narrowness of a map is not so obvious,

however it can be easily deduced from the arguments of [7]. Recall that a Banach lattice E is

said to be order continuous if for each net (xα) in E the condition xα ↓ 0 implies that ‖xα‖ → 0.

Note that in this case the weaker condition xα
o

−→ 0 also implies that ‖xα‖ → 0.

Proposition 1.1. Let E be a Riesz space and X a Banach lattice. Then

(1) every narrow at a point e ∈ E map f : E → X is order narrow at e;

(2) if, moreover, X is order continuous then every order narrow at a point e ∈ E map f :

E → X is narrow at e;

(3) there exists an order narrow positive operator T ∈ L(L∞) that is not narrow.

Proof. (1) For each n ∈ N we choose a decomposition e = e′n ⊔ e′′n with ‖ f (e′n)− f (x′′n )‖ < 2−n

and set un = ∑k≥n | f (e
′
k)− f (x′′k )| (the series obviously satisfies Cauchy’s condition and hence

converges). To show that ( f (e′n)− f (e′′n ))
o

−→ 0 is a standard technical exercise.

(2) Let f be order narrow at e. We choose a net of decompositions e = e′λ ⊔ e′′λ, λ ∈ Λ

such that ( f (e′λ) − f (e′′λ))
o

−→ 0. By the definition of an order continuous Banach lattice,

‖ f (e′λ)− f (e′′λ)‖ → 0, and thus, f is narrow at e.

(3) See Example 3.3 of [7].

The following two propositions are simple exercises.

Proposition 1.2. Let E be a Riesz space and X a topological vector space.

1. For a linear operator T : E → X the following assertions are equivalent:

(i) T is narrow;

(ii) E+ ⊆ N (T).

2. For an orthogonally additive operator T : E → X the following are equivalent:

(i) T is narrow;

(ii) E+ ∪ E− ⊆ N (T).

Similar statements are true for strictly narrow and order narrow operators.

Remark that the condition E+ ⊆ N (T) for an orthogonally additive operator T does not

imply that T is narrow, as the following simple example shows: Tx = x− for all x ∈ E.

Proposition 1.3. Let E be a Riesz space and X a topological vector space.

1. Assume T : E → X is a linear operator.

(a) If e, f ∈ E, e ∈ N (T) and | f | = |e| then f ∈ N (T).
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(b) If e1, e2 ∈ N (T), e1 ⊥ e2 and a, b ∈ R then ae1 + be2 ∈ N (T).

2. Assume T : E → X is an orthogonally additive operator. If e1, e2 ∈ N (T) and e1 ⊥ e2

then e1 + e2 ∈ N (T).

Similar statements are true for strictly narrow and order narrow operators.

Proposition 1.4. Let E be a Köthe F-space on a finite atomless measure space (Ω, Σ, µ), X a

topological vector space, T : E → X a uniformly continuous orthogonally additive operator.

Then the set of narrowness N (T) is closed in E.

Proof. Let e belong to the F-norm closure of N (T). We show that T is narrow at e. Let V be any

neighborhood of zero in X. Choose a neighborhood of zero V1 in X so that V1 + V1 + V1 ⊆ V

and δ > 0 so that if x, y ∈ E with ‖x − y‖ < δ then T(x)− T(y) ∈ V1. Now choose e1 ∈ N (T)

so that ‖e1 − e‖ < δ and choose a decomposition e1 = e′1 ⊔ e′′1 so that T(e′1)− T(e′′1 ) ∈ V1. Set

Ω′ = supp e′1, Ω′′ = Ω \ Ω′, e′ = e · 1Ω′ and e′′ = e · 1Ω′′ . Then e = e′ ⊔ e′′. We show that

Te′ − Te′′ ∈ V. Indeed, observe that

‖e′ − e′1‖ =
∥

∥e · 1Ω′ − e1 · 1Ω′

∥

∥ ≤ ‖e − e1‖ < δ

and analogously ‖e′′ − e′′1‖ < δ. Then Te′ − Te′1 ∈ V1 and Te′′ − Te′′1 ∈ V1. Hence,

Te′ − Te′′ = (Te′ − Te′1) + (Te′1 − Te′′1 ) + (Te′′1 − Te′′) ∈ V1 + V1 + V1 ⊆ V.

Next we provide an example of a linear operator the set of narrowness of which coincides

with the set of all functions with constant modulus.

Example 1. Let (Ω, Σ, µ) be an atomless probability space (that is, a measure space with

µ(Ω) = 1), 1 ≤ p < ∞. Let Ω = A ⊔ B be any partition to measurable sets A, B. Then for

the operator T ∈ L
(

Lp(µ)
)

given by

Tx = x −
(

∫

Ω
rx dµ

)

r, where r = 1A − 1B, x ∈ Lp(µ)

one has N s(T) = N (T) = {e ∈ E : |e(ω)| = λ a.e. on Ω, λ ∈ R}.

Proof. The inclusion {e ∈ E : |e(ω)| = λ a.e. on Ω, λ ∈ R} ⊆ N s(T) follows from the

observation that T(λr) = 0 and |λr| = |e| for any element e ∈ E with |e(ω)| = λ a.e. on Ω. To

show that T is not narrow at each point e ∈ E with |e| 6= λr, λ ∈ R, consider any element of

the form x = e · 1C − e · 1D, where Ω = C ⊔ D (i.e., an arbitrary element x ∈ E with |x| = |e|).
Set F1 = A ∩ C, F2 = A ∩ D, F3 = B ∩ C and F4 = B ∩ D. Then

α
def
=

∫

Ω
rx dµ =

∫

F1

e dµ −
∫

F2

e dµ −
∫

F3

e dµ +
∫

F4

e dµ,

which implies |α| ≤
∫

Ω
|e| dµ = ‖e‖L1(µ).

Hence,

‖Tx‖ = ‖x − αr‖ ≥ ‖x‖ − |α|‖r‖ = ‖e‖ − |α| ≥ ‖e‖Lp(µ) − ‖e‖L1(µ)
. (1)

If we assume that T is narrow at e then by (1), ‖e‖Lp(µ) − ‖e‖L1(µ)
= 0 which yields that |e|

is a constant.
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The following theorem provides an example of narrow at a fixed point operators on an

arbitrary Köthe Banach space with nonnarrow sum at the same point.

Theorem 1. Let E be a Köthe Banach space on a finite atomless measure space (Ω, Σ, µ). Then

there are continuous linear operators T1, T2 ∈ L(E) each of which is strictly narrow at the point

1 = 1Ω, however the sum T1 + T2 is not narrow at 1.

Proof. Assume for simplicity of the notation that µ(Ω) = 1 and ‖1‖ = 1. Decompose Ω =

A1 ⊔ A2 ⊔ A3 ⊔ A4 with measure µ(Ai) = 1/4 each. Set r1 = 1A1
+ 1A2

− 1A3
− 1A4

and

r2 = 1A1
− 1A2

+ 1A3
− 1A4

. Define operators T1, T2 ∈ L(E) by setting

Tix = x −
(

∫

Ω
rix dµ

)

ri, x ∈ E, i = 1, 2.

It is immediately that Ti are strictly narrow at 1, because Tiri = 0, i = 1, 2. We show that

T1 + T2 is not narrow at 1. Let r ∈ E be any element of the form r = 1A − 1B, where A, B ∈ Σ

with Ω = A ⊔ B. We set Dk = A ∩ Ak and Fk = B ∩ Ak for k = 1, 2, 3, 4. Then set

λi =
∫

Ω
rri dµ, i = 1, 2.

Taking into account that µ(Dk) + µ(Fk) = 1/4 for all k, we obtain

λ1 = µ(D1) + µ(D2)− µ(D3)− µ(D4)− µ(F1)− µ(F2) + µ(F3) + µ(F4)

= 2µ(D1) + 2µ(D2)− 2µ(D3)− 2µ(D4)
(2)

and analogously

λ2 = 2µ(D1)− 2µ(D2) + 2µ(D3)− 2µ(D4). (3)

Since |λi| ≤ 1 for i = 1, 2 and E is a Köthe Banach space,

‖(T1 + T2) r‖ = ‖2r − λ1r1 − λ2r2‖ =
∥

∥(2 − λ1 − λ2)1D1
+ (2 − λ1 + λ2)1D2

+ (2 + λ1 − λ2)1D3
+ (2 + λ1 + λ2)1D4

+ (−2 − λ1 − λ2)1F1

+ (−2 − λ1 + λ2)1F2
+ (−2 + λ1 − λ2)1F3

+ (−2 + λ1 + λ2)1F4

∥

∥

≥ max
{

(2 − λ1 − λ2)‖1D1
‖, (2 − λ1 + λ2)‖1D2

‖, (2 + λ1 − λ2)‖1D3
‖,

(2 + λ1 + λ2)‖1D4
‖, (2 + λ1 + λ2)‖1F1

‖, (2 + λ1 − λ2)‖1F2
‖,

(2 − λ1 + λ2)‖1F3
‖, (2 − λ1 − λ2)‖1F4

‖
}

.

Since 1 = 1D1
+ 1D2

+ 1D3
+ 1D4

+ 1F1
+ 1F2

+ 1F3
+ 1F4

, one of the summands has norm at

least 1/8. Of course, it is a matter of similar cases, which one. Say, ‖1D1
‖ ≥ 1/8. Then

‖(T1 + T2) r‖ ≥ (2 − λ1 − λ2)‖1D1
‖ ≥ (2 − λ1 − λ2)/8.

Fix any ε > 0 and assume that r is chosen so that ‖(T1 + T2) r‖ < ε. Then by the above,

2 − λ1 − λ2 < 8ε. (4)

We claim that λi > 1− 8ε for i = 1, 2. Indeed, if λ1 ≤ 1− 8ε then 2− λ1 − λ2 ≥ 1− λ1 ≥ 8ε,

which contradicts (4). Analogously, λ2 > 1 − 8ε. Then by (2),

µ(D1) + µ(D2)− µ(D3)− µ(D4) =
λ1

2
≥

1

2
− 4ε (5)
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and by (3),

µ(D1)− µ(D2) + µ(D3)− µ(D4) =
λ2

2
≥

1

2
− 4ε. (6)

Averaging (5) and (6), one gets 1
4 ≥ µ(D1) ≥ µ(D1) − µ(D4) ≥ 1

2 − 4ε, which implies

ε ≥ 1/16. Thus, T1 + T2 is not narrow at 1.

The following statement characterizes the set of strict narrowness of linear maps.

Proposition 1.5. Let E be a Riesz space, X a linear space and T : E → X a linear operator. Then

N s(T) =
{

x ∈ E : (∃e ∈ ker T) |x| = |e|
}

.

Proof. Let x ∈ N s(T). Choose a decomposition x = x′ ⊔ x′′ so that T(x′) = T(x′′). Then for

e = x′ − x′′ one has that |e| = |x| and e ∈ ker T.

Assume e ∈ ker T x ∈ E and |x| = |e|. Then

e = (x+ ∧ e+) ⊔ (x− ∧ e+) ⊔
(

−(x+ ∧ e−)
)

⊔
(

−(x− ∧ e−)
)

(7)

and

x = (x+ ∧ e+) ⊔
(

−(x− ∧ e+)
)

⊔ (x+ ∧ e−) ⊔
(

−(x− ∧ e−)
)

. (8)

Then setting x′ = (x+ ∧ e+) − (x− ∧ e−) and x′′ = −(x− ∧ e+) + (x+ ∧ e−), we obtain

x = x′ ⊔ x′′ and by (7) and (8),

0 = Te = T(x+ ∧ e+) + T(x− ∧ e+)− T(x+ ∧ e−)− T(x− ∧ e−) = Tx′ − Tx′′.

In particular, N s(T) need not be a linear subspace of E. For instance, if ker T is the set of

all constant functions then N s(T) equals the set of all functions with constant modulus.

Remark that Proposition 1.5 is not longer true for orthogonally additive operators due to the

obvious example Tx = x− for which N s(T) = E+. To provide more examples for orthogonally

additive operators we recall some necessary information from [9]. Given any two elements x, y

of a Riesz space E, by xy we denote the greatest lower bound of the two-element set {x, y} in

E with respect to the lateral order u ⊑ v on E, if it exists. If E is a Riesz space of functions then

xy(t) =

{

x(t), if x(t) = y(t);

0, if x(t) 6= y(t).

A Riesz space is said to have the intersection property if every two-point subset {x, y}
of E has the lateral infimum xy. In particular, the principal projection property implies the

intersection property [9].

Example 2. Let E be a Riesz space with the intersection property and e ∈ E. Then the function

T : E → E given by Tx = ex is an orthogonally additive operator with N s(T) = {0} ∪ (E \Fe).

Example 3. Let E be a Riesz space with the intersection property and e ∈ E. Then the function

T : E → E given by Tx = x − ex is an orthogonally additive operator with N s(T) = Fe.

The following example [7, Example 4.2] shows that, a continuous linear functional on an

atomless Banach lattice may have the only zero point of narrowness.
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Example 4. There is a continuous linear functional f ∈ L∗
∞ for which N ( f ) = N o( f ) = {0}.

Proof. Denote by B the Boolean algebra of Borel subsets of [0, 1] equals up to measure null sets.

Let U be any ultrafilter on B. Then the linear functional f : E → R defined by

f (x) = lim
A∈U

1

µ(A)

∫

A
x dµ

is obviously bounded. However it is not narrow in any sense at every nonzero point. Indeed,

for each x ∈ L∞ \ {0} of the form x = 1A − 1B where [0, 1] = A ⊔ B one has f (x) = ±1

depending on whether A ∈ U or B ∈ U .

2 UNIFORMLY NARROW PAIRS OF OPERATORS

Below we define a uniformly narrow pair of operators; even though one can consider an

arbitrary uniformly narrow set of operators.

Definition 2.1. Let E be a Riesz space and X be an F-space. We say that an orthogonally

additive operators S, T : E → X are uniformly narrow if for every e ∈ E and every ε > 0 there

exists a partition e = e′ ⊔ e′′ such that ‖Se′ − Se′′‖ < ε and ‖Te′ − Te′′‖ < ε.

As was noted in the introduction, a simple argument shows that, if orthogonally additive

operators S, T : E → X are uniformly narrow then the sum S + T is narrow. The following

question naturally arises.

Problem 1. Let E be a Riesz space and X be an F-space. Are the following assertions equivalent

for every pair of narrow linear (orthogonally additive operators) S, T : E → X?

(i) S + T is narrow;

(ii) S, T are uniformly narrow.

Although we do not know any example of spaces with negative answer to Problem 1, we

present below an affirmative solution for some partial cases. We refer the reader to [1] for

further standard terminology concerning operators on Riesz spaces.

We say that a Banach space X has the contains its square if there are a subspace Y of X and

a decomposition Y = X1 ⊕ X2 onto subspaces X1, X2 isomorphic to X.

Theorem 2. Let E be a Riesz space and X be a Banach space containing its square. Let the

sum of every two narrow linear bounded operators from E to X is narrow. Then every pair

S, T : E → X of narrow linear bounded operators is uniformly narrow.

Proof. Let Y be a subspace of X, Y = X1 ⊕ X2 with subspaces X1, X2 isomorphic to X. Let

τi : X → Xi be isomorphisms, i = 1, 2. Let S, T : E → X be narrow linear operators. Then the

linear operators S′, T′ : E → Y ⊆ X defined by setting S′ = τ1 ◦ S and T′ = τ2 ◦ T are narrow

as compositions of a narrow operator from the right by a bounded operator from the left. By

the assumption, the operator A = S′ + T′ is narrow. Denote by P the projection of Y onto X1

parallel to X2 and by Q the projection of Y onto X2 parallel to X1. Observe that P ◦ A = S′ and

Q ◦ A = T′. Given any e ∈ E+ and ε > 0, we choose a decomposition e = e′ ⊔ e′′ such that

‖Ae′ − Ae′′‖ <
ε

‖τ−1‖max{‖P‖, ‖Q‖}
.
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Then

‖Se′ − Se′′‖ ≤ ‖τ−1‖‖τ(Se′ − Se′′)‖ = ‖τ−1‖‖S′e′ − S′e′′‖

= ‖τ−1‖‖P(Ae′ − Ae′′)‖ ≤ ‖τ−1‖‖P‖‖Ae′ − Ae′′‖ < ε.

Analogously, ‖Te′ − Te′′‖ < ε.

For example, the assumptions of Theorem 2 are valid for E = F = L1 (see [2] or [14, Theo-

rem 7.46] for the fact that a sum of every two narrow operators on L1 is narrow).

We say that a Banach lattice X regularly contains its square if there are a subspace Y of X

and a decomposition Y = X1 ⊕ X2 onto subspaces X1, X2 isomorphic to X by means of regular

isomorphisms τi : X → Xi, i = 1, 2.

Theorem 3. Let E be a Riesz space and X be a Banach lattice regularly containing its square.

Let the sum of every two narrow regular linear operators from E to X is narrow. Then every

pair S, T : E → X of narrow regular linear operators is uniformly narrow.

Proof. Let Y be a subspace of X, Y = X1 ⊕ X2 with subspaces X1, X2 isomorphic to X by means

of regular isomorphisms τi : X → Xi, i = 1, 2. Let S, T : E → X be narrow regular linear

operators. Then the linear operators S′, T′ : E → Y ⊆ X defined by setting S′ = τ1 ◦ S and

T′ = τ2 ◦ T are narrow regular as compositions of a narrow regular operator from the right

by a bounded regular operator from the left. By the assumption, the operator A = S′ + T′ is

narrow. Starting from this point, the proof is the same as that of Theorem 2.

Corollary 2.1. Let E, F be order continuous Banach lattices with E atomless and F regularly

containing its square. Then every pair of narrow regular operator S, T : E → F is uniformly

narrow.

Proof. Accordingly to Theorem 11.8 of [7] (see also [14, Theorem 10.41]), the set of all narrow

regular linear operators is a band in the Riesz space of all regular linear operators from E to F.

In particular, the sum of every two narrow regular linear operators from E to X is narrow. By

Theorem 3, every pair of narrow regular operator S, T : E → F is uniformly narrow.

Now we pass to orthogonally additive operators. Let E and F be Riesz spaces. An orthog-

onally additive operator T : E → F is called:

• positive provided Tx ≥ 0 holds in F for all x ∈ E;

• order bounded it T maps order bounded sets in E to order bounded sets in F.

Observe that if T : E → F is a positive orthogonally additive operator and x ∈ E is such

that T(x) 6= 0 then T(−x) 6= −T(x) (otherwise both T(x) ≥ 0 and T(−x) ≥ 0 would imply

T(x) = 0). Thus, this positivity turns out to be more restrictive than the usual one for linear

operators because the only linear operator which is positive in the above sense is zero.

A positive orthogonally additive operator need not be order bounded. Indeed, every func-

tion T : R → R with T(0) = 0 is an orthogonally additive operator, and obviously, not each of

them is order bounded.

Banach lattices E and F are said to be Riesz isomorphic if there exists a Riesz isomorphism

τ : E → F, that is, an isomorphism between Banach spaces such that both τ and τ−1 are order

preserving operators.
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We say that a Banach lattice X contains its Riesz square if there are a subspace Y of X and a

decomposition Y = X1 ⊕ X2 onto subspaces X1, X2 Riesz isomorphic to X and, moreover, the

corresponding projections of Y onto Xi parallel to X3−i are order continuous. For example, the

Banach lattice Lp[0, 1] with 1 ≤ p ≤ ∞ obviously contains its Riesz square.

Theorem 4. Let E be an atomless Riesz space and F be an order continuous Banach lattice

containing its Riesz square. Let the sum of every two narrow up-laterally continuous abstract

Uryson operators from E to X is narrow. Then every pair S, T : E → X of narrow up-laterally

continuous abstract Uryson operators is uniformly narrow.

Proof. By [12, Lemma 2.7], under the assumptions on E and F, an abstract Uryson operator

B : E → F is narrow if and only if B is order narrow. Let Y be a subspace of X, Y = X1 ⊕ X2

and τi : X → Xi be Riesz isomorphisms, i = 1, 2. Let S, T : E → X be narrow up-laterally

continuous abstract Uryson operators. Then the maps S′, T′ : E → Y ⊆ X defined by setting

S′ = τ1 ◦ S and T′ = τ2 ◦ T are narrow up-laterally continuous abstract Uryson operators as

compositions of such an operator from the right by a bounded regular operator from the left.

By the theorem assumptions, the operator A = S′ + T′ is narrow and so, is order narrow.

Denote by P the projection of Y onto X1 parallel to X2 and by Q the projection of Y onto X2

parallel to X1. Observe that P ◦ A = S′ and Q ◦ A = T′. Given any e ∈ E+ and ε > 0, we

choose a net of decompositions e = e′α ⊔ e′′α with (Ae′α − Ae′′α )
o

−→ 0. Since the operators τ−1

and P are order continuous,

Se′α − Se′′α = τ−1(S′e′α − S′e′′α) = τ−1P(Ae′α − Ae′′α )
o

−→ 0.

By the order continuity of F, ‖Se′α − Se′′α‖ → 0. Analogously, ‖Te′α − Te′′α‖ → 0. We choose α so

that ‖Se′α − Se′′α‖ < ε and ‖Te′α − Te′′α‖ < ε.

As a consequence of [12, Theorem 8.2], we obtain the following assertion.

Corollary 2.2. Let E be an atomless Riesz space with the principal projection property and F be

an order continuous Banach lattice containing its Riesz square. Then every pair S, T : E → X

of narrow up-laterally continuous abstract Uryson operators is uniformly narrow.

Proof. By [12, Lemma 2.7], under the assumptions on E and F, an abstract Uryson operator

B : E → F is narrow if and only if B is order narrow. So, by [12, Theorem 8.2], the sum of every

two narrow up-laterally continuous abstract Uryson operators from E to X is narrow. Then

apply Theorem 4.

Recall that an operator T ∈ L(E, X) from a Köthe Banach space E on a finite atomless

measure space (Ω, Σ, µ) to a Banach space X is called hereditarily narrow if for every A ∈ Σ,

µ(A) > 0 and every atomless sub-σ-algebra F of Σ(A) the restriction of T to E(F ) is narrow

(here Σ(A) = {B ∈ Σ : B ⊆ A} and E(F ) = {x ∈ E(A) : x is F − measurable}). We refer the

reader to [14, Section 11.1] for more information on hereditarily narrow operators.

Proposition 2.1. Let E be a Köthe Banach space on [0, 1] with an absolutely continuous norm

and X be a Banach space. If S ∈ L(E, X) is a hereditarily narrow operator and T ∈ L(E, X) is

a narrow operator then the pair S, T is uniformly narrow.

The proof of Proposition 2.1 just repeats the proof of [14, Proposition 11.2] (see also [3]).
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Гуменчук А.I., Красiкова I.В., Попов М.М. Точки вузькостi i одностайно вузькi лiнiйнi та ортого-

нально адитивнi оператори // Карпатськi матем. публ. — 2017. — Т.9, №1. — C. 37–47.

Вiдомо, що сума довiльних двох вузьких операторiв на L1 є вузькою, проте для просторiв

Lp з 1 < p < ∞ аналогiчне твердження хибне. Дана стаття продовжує численнi дослiдження

на цю тему. По-перше, ми вивчаємо вузькiсть лiнiйних та ортогонально адитивних операторiв

на функцiональних просторах Кете i векторних ґратках у фiксованiй точцi. Теорема 1 ствер-

джує, що для кожного банахового простору Кете на просторi зi скiнченною безатомною мiрою

iснують лiнiйнi неперервнi оператори S, T : E → E, якi є вузькими у деякiй фiксованiй точцi,

проте сума S+ T не є вузькою у цiй же самiй точцi. По-друге, ми уводимо i дослiджуємо одно-

стайно вузькi пари операторiв S, T : E → X, тобто, для кожного e ∈ E та кожного ε > 0 iснує

розклад e = e′+ e′′ на диз’юнктнi елементи такий, що ‖S(e′)− S(e′′)‖ < ε та ‖T(e′)− T(e′′)‖ < ε.

Стандартний метод в лiтературi доведення вузькостi суми двох вузьких операторiв S + T по-

лягає в тому, щоби показати, що пара S, T є одностайно вузькою. Ми вивчаємо питання, чи

кожна пара вузьких операторiв з вузькою сумою є одностайно вузькою. Не маючи жодно-

го контрприкладу, ми доводимо кiлька теорем, якi надають позитивну вiдповiдь для деяких

часткових випадкiв.

Ключовi слова i фрази: вузький оператор, ортогонально адитивний оператор, банахiв про-

стiр Кете.


